Lecture 7: Minimum Spanning Trees and
Prim’s Algorithm
CLRS Chapter 23

Outline of this Lecture

e Spanning trees and minimum spanning trees.

e The minimum spanning tree (MST) problem.

e The generic algorithm for MST problem.

e Prim’s algorithm for the MST problem.
— The algorithm
— Correctness

— Implementation + Running Time

Spanning Trees

Spanning Trees: A subgraph T of a undirected graph
G = (V, E) is a spanning tree of G ifitis a tree and
contains every vertex of G.

Example:
€) (b)
© © ©
Spanning tree 1
() (b)
© © ©

Spanning tree 2 gpanning tree 3

Spanning Trees

Theorem: Every connected graph has a spanning
tree.

Question: Why is this true?

Question: Given a connected graph G, how can you
find a spanning tree of G?

I Q/Q\Q
b

Weighted Graphs

Weighted Graphs: A weighted graph is a graph, in
which each edge has a weight (some real number).

Weight of a Graph: The sum of the weights of all
edges.

Example:

Tree 2, w=71 Tree 3, w=/2
Minimum spanning tree

Minimum Spanning Trees

A Minimum Spanning Tree in an undirected connected

weighted graph is a spanning tree of minimum weight
(among all spanning trees).

Example:

Tree 2, w=71 Tree 3, w=/2
Minimum spanning tree

Minimum Spanning Trees

Remark: The minimum spanning tree may not be
unigue. However, if the weights of all the edges are
pairwise distinct, it is indeed unique (we won’t prove

this now).

Example:

WP O

24

67 24 67

100
weighted graph

MST1

24

MST2

O

67

Minimum Spanning Tree Problem

MST Problem: Given a connected weighted undi-
rected graph GG, design an algorithm that outputs a
minimum spanning tree (MST) of G.

Question: What is most intuitive way to solve?

Generic approach: A tree is an acyclic graph.

The idea iIs to start with an empty graph and try to add
edges one at a time, always making sure that what is
built remains acyclic. And if we are sure every time the
resulting graph always is a subset of some minimum
spanning tree, we are done.

Generic Algorithm for MST problem

Let A be a set of edges such that A C T, where
T is a MST. An edge (u,v) is a safe edge for A, if
AU {(u,v)} is also a subset of some MST.

If at each step, we can find a safe edge (u,v), we
can 'grow’ a MST. This leads to the following generic
approach:

Generic-MST (G, w)
Let A=EMPTY;
while A does not form a spanning tree
find an edge (u, v) that is safe for A
add (u, v) to A

return A

How can we find a safe edge?

How to find a safe edge

We first give some definitions. Let G = (V, E) be a
connected and undirected graph. We define:

Cut Acut (S,V — S) of G is a partition of V.

Cross An edge (u,v) € E crosses the cut (S,V —
S) if one of its endpoints is in S, and the other is
nV — S.

Respect A cut respects a set A of edges if no edge
In A crosses the cut.

Light edge An edge is a light edge crossing a cut
If its weight is the minimum of any edge crossing
the cut.

How to find a safe edge

Lemma

Let G = (V,E) be a connected, undirected graph
with a real-valued weight function w defined on E. Let
A be a subset of E that is included in some minimum
spanning tree for G, let (S, V —.S5) be any cut of G that
respects A, and let (u, v) be a light edge crossing the
cut (S,V — S). Then, edge (u,v) is safe for A.

It means that we can find a safe edge by

1. first finding a cut that respects A,

2. then finding the light edge crossing that cut.

That light edge is a safe edge.

10

Proof

1. Let A C T, where T is a MST. Suppose (u,v) &
T.

2. The trick is to construct another MST T' that con-
tains both A and (u, v), thereby showing (u, v) is
a safe edge for A.

11

3. Since u, and v are on opposite sides of the cut
(S,V —85), there is at least one edge in T on the
path from w to v that crosses the cut. Let (z, y) be
such edge. Since the cut respects A, (z,y) € A.

Since (u,v) is a light edge crossing the cut, we
have w(z,y) > w(u,v).

another MST T’

/’ acut respects A ,

12

. Add (u,v) to T, it creates a cycle. By removing
an edge from the cycle, it becomes a tree again.
In particular, we remove (x,y) (€ A) to make a
new tree T

. The weight of T" is

w(T") w(T) —w(z,y) + wlu,v)

< w(T)

. Since T is a MST, we must have w(T) = w(T),
hence T is also a MST.

. Since AU{(u,v)} is also a subset of T’ (a MST),
(u,v) is safe for A.

13

Prim’s Algorithm

The generic algorithm gives us an idea how to 'grow’
a MST.

If you read the theorem and the proof carefully, you
will notice that the choice of a cut (and hence the
corresponding light edge) in each iteration is imma-
terial. We can select any cut (that respects the se-
lected edges) and find the light edge crossing that cut
to proceed.

The Prim’s algorithm makes a nature choice of the cut
In each iteration — it grows a single tree and adds a
light edge in each iteration.

14

Prim’s Algorithm : How to grow a tree

Grow a Tree

e Start by picking any vertex r to be the root of the
tree.

e While the tree does not contain
all vertices in the graph
find shortest edge leaving the tree
and add it to the tree .

Running time is O((|V| 4+ |E]|) log |V]).

15

More Details

Step 0: Choose any element r; set S = {r} and
A = (. (Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint
is in S and the otherisin V' \ S. Add this edge to
A and its (other) endpoint to S.

Step 2: If V' \ S = (), then stop & output (minimum)
spanning tree (S, A). Otherwise go to Step 1.

The idea: expand the current tree by adding the
lightest (shortest) edge leaving it and its endpoint.

be - 24..h be 24 o h
/ T 120 - O 12 o
_ ‘@ g7 6 i
—@ 8 \.
d e \
new edge

16

Prim’s Algorithm

Worked Example

V
&

4

(o) 9

.

\/
/\

\/
/\

mgg

x@%

Connected graph

Step O
S={a}

V\S={b,cdef,qg}
lightest edge = {a,b}

17

Prim’s Algorithm

Prim’s Example — Continued

®

X

s

©

O

N

=N

©

2

10
7

@

\3 /@& gt:e{pa}l.l before

5 (@ V\S={bcdefg}

9
A={}
\®A lightest edge = {ab}
1

10
7
e
ﬁ 9
1

® Step 1.1 after
\5 S={ab}
5 © V\S={cdef,g}

ﬁ A={{ab}}
lightest edge = {b,d}, {a,c}

®

18

Prim’s Algorithm

Prim’s Example — Continued

\3 /@& gt:e{palt;f before

V\S={cdef,g}

/ \ A fi\g:rft{ezb}ecilge ={bd}, {ac}

73\
é

Step 1.2 after

\ / 5\5 \S/:\{g E’({j}c,e,f,g}
/ U et

/‘Z’,\h

19

Prim’s Algorithm

Prim’s Example — Continued

e

\/
/\

v

o

\/
/\

/‘“i\h

Step 1.3 before
S={ab,d}
V\S={cef,g

A={{ab} {b,d}}
lightest edge = {d,c}

Step 1.3 after

S={ab,c,d}
V\S={ef,g

A={{ab}.{bd} {cd}}
lightest edge = {c,f}

20

Prim’s Algorithm

Prim’s Example — Continued

10
O ® Step 1.4 before

y w / & S={ab,c,d}

@ 9 0O, 5 ©@ yis={eig

& / & A A={{ab} {bd} {cd}}

0 [© lightest edge = { c,f}

b 10 ® Step 1.4 after

\5 S={ab,c,d,f}

9 d 5 @ V\S={ed}

4
e
9 A={{ab} {b,d} {cd} {cf}}
}3\ ﬁ \ ﬁ lightest edge = {,g}

21

Prim’s Algorithm

Prim’s Example — Continued

N

@ ° 0@, -5
ol e
02 @

AN

Step 1.5 before
S={ab,c,d,f}
V\S={eg}

A={{ab} {bd} {cd}{cf}}
lightest edge = {f,g}

Step 1.5 after

S={ab,c,d,f,g}

V\S={¢

A={{ab} {b,d} {cd}{c,i},
{f.a}}

lightest edge = {f,e}

22

Prim’s Algorithm

Prim’s Example — Continued

N

@ ° O, 5
VANV
o ° 0

AN

Step 1.6 before
S={ab,c,d,f,g}
V\S={¢e}
A={{ab}{bd} {cd} {cf},

{f.0}}
lightest edge = {f,e}

Step 1.6 after

S={ab,c,d,ef,g}
V\S={}

A={{ab}.{bd} {cd}.{c},
{f.g}.{f.€}}

MST completed

23

Recall Idea of Prim’s Algorithm

Step 0: Choose any element » and set S = {r} and A = 0.
(Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpointis in S and
the other is in V' \ S. Add this edge to A and its (other)
endpointto S.

Step 2: If V' \ S = 0, then stop and output the minimum span-

ning tree (S, A).
Otherwise go to Step 1.

Questions:

e Why does this produce a Minimum Spanning
Tree?

e How does the algorithm find the lightest edge and
update A efficiently?

e How does the algorithm update S efficiently?

24

Prim’s Algorithm

Question: How does the algorithm update S efficiently?

Answer: Color the vertices. Initially all are white.
Change the color to black when the vertex is moved
to S. Use color[v] to store color.

Question: How does the algorithm find the lightest
edge and update A efficiently?

Answer:
(a) Use a priority queue to find the lightest edge.
(b) Use pred[v] to update A.

25

Reviewing Priority Queues

Priority Queue is a data structure (can be implemented
as a heap) which supports the following operations:

insert(u, key):
Insert v with the key value key in Q.

u = extractMin():
Extract the item with the minimum key value in Q.

decreaseKey(u, new-key):
Decrease u’s key value to new-key.

Remark: Priority Queues can be implemented so that
each operation takes time O(log |Q]). See CLRS!

26

Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a triple (u, pred[u], key[u]),
where
e uisavertexinV\ S,
e key[u] is the weight of the lightest edge
from u to any vertex in S, and
e pred[u] is the endpoint of this edge in S.
The array is used to build the MST tree.

b. 24 O h b. A O h
Y 260 12 aO{,za 20 ~12
/ e 120 / T 12 0
Caq 16 o Ca 16 I
140 23 r 4@ 23
o f o f
—@ 8 —@’8
d e d e \
new edge
key[f] =8, pred[f] =e
key[i] = infinity, pred[i] = nil key[i] = 23, pred[i] = f
key[g] = 16, pred[g] = After adding the new edge

and vertex f, update the key[V]
and pred[v] for each vertex v

— f has the minimum key adjacent to f

key[h] = 24, pred[h] = b

27

Description of Prim’s Algorithm

Remark: G is given by adjacency lists. The vertices in V' \ S
are stored in a priority queue with key=value of lightest edge to
vertexin S.

Prim(G, w, r)
{ foreachu eV initialize
{ key[u] = +oo;
color[u] = W,
}
key[r] = O; start at root
pred[r] = NIL;
@ = new PriQueue(V); put vertices in)
while(Q is nonempty) until all vertices in MST
{ u=Q.extraxtMin(); lightest edge

for each (v € adj[u])

{ if ((color[v] == W)&&(w[u, v] < key[v]))
key[v] = wlu,v]; new lightest edge
QQ.decreaseKey(v, key[v]);
pred[v] = u;

}

color[u] = B,;
}
}

When the algorithm terminates, Q = () and the MST is
T = {{v,pred[v]} : v e V\ {r}}.
The pred pointers defi ne the MST as an inverted tree

rooted at r.
28

Example for Running Prim’s Algorithm

e
e

U Talblc|d|e]|lf

key[u]
pred[u]

29

Analysis of Prim’s Algorithm

Letn = |V | and e = | E|. The data structure PriQueue
supports the following two operations: (See CLRS)

e O(logn) to extract each vertex from the queue.
Done once for each vertex = O(nlogn).

e O(logn) time to decrease the key value of neigh-
boring vertex.
Done at most once for each edge = O(elogn).

Total cost is then

O((n+e)logn)

30

Analysis of Prim’s Algorithm — Continued

Prim(G, w, r) {
for each (uinV)

key[u] = +infinity;
color[u] = white;

}

key[r] =0;
pred[r] = nil;
Q = new PriQueue(V); n

2N

==

\{/vhi le (Q. nonempty())

u = Q.extractMin();
for each (v in adj[u])

If ((color[v] == white) &
(w(u,v) <key[v])

1
1
key[Vv] = w(u, v); 1
Q.decreaseKey(v, key[v]); O
pred[v] = u; 1

}}

color[u] = black;

(log n)

. [O(log n) + O(deg(u) log)]

uinVv
31

Analysis of Prim’s Algorithm — Continued

So the overall running time is

T(n,e)
= 3n+24) [O(logn)+ O(deg(u)logn)]

ucV

= 3n+2+40 |(logn) Y (1+ deg(u))

ueV

3n + 2 4 O[(log n) (n + 2e)]
O[(1og n)(n + 2¢)]

= O[(logn)(n + e)]

Ol(V| +|E]) log |V].

32

