
Lecture 7: Minimum Spanning Trees and
Prim’s Algorithm

CLRS Chapter 23

Outline of this Lecture

� Spanning trees and minimum spanning trees.

� The minimum spanning tree (MST) problem.

� The generic algorithm for MST problem.

� Prim’s algorithm for the MST problem.

– The algorithm

– Correctness

– Implementation + Running Time

1

Spanning Trees

Spanning Trees: A subgraph
�

of a undirected graph� � �����	�

is a spanning tree of

�
if it is a tree and

contains every vertex of
�

.

Example:

�
��
�

�
��
� �
��
� �
��
�
�
��
� �
��
��
��
�

�
��
� �
��
� �
��
�

�
��
�

�
��
� �
��
�
�
��
�

�
��
� �
��
�
�
��
�
�
��
�

�
��
�

�
��
�

� �
� � � � � � � �� � � �
����

������ � � � � � � �
����

� � �� � � � � � � �� � � �
����
� � ����� � � �

a b

c
d

e

a b

c
d

e

a b

c
d

e

a b

c
d

e

Graph spanning tree 1

spanning tree 2 spanning tree 3

2

Spanning Trees

Theorem: Every connected graph has a spanning
tree.

Question: Why is this true?

Question: Given a connected graph
�

, how can you
find a spanning tree of

�
?

3

Weighted Graphs

Weighted Graphs: A weighted graph is a graph, in
which each edge has a weight (some real number).

Weight of a Graph: The sum of the weights of all
edges.

Example:

�
��
�

�
��
� �
��
� �
��
�
�
��
� �
��
��
��
�

�
��
� �
��
� �
��
�

�
��
�

�
��
� �
��
�
�
��
�

�
��
� �
��
�
�
��
�
�
��
�

�
��
�

�
��
�

� �
� � � � � � � �� � � �
����

������ � � � � � � �
����

� � �� � � � � � � �� � � �
����
� � ����� � � �

a b

c
d

e

a b

c
d

e

a b

c
d

e

a b

c
d

e

10

9

7 32

23
10 32

23
9

7 7

9

32

23

32
23

10

weighted graph

Tree 2, w=71 Tree 3, w=72

Tree 1. w=74

Minimum spanning tree

4

Minimum Spanning Trees

A Minimum Spanning Tree in an undirected connected
weighted graph is a spanning tree of minimum weight
(among all spanning trees).

Example:

�
��
�

�
��
� �
��
� �
��
�
�
��
� �
��
��
��
�

�
��
� �
��
� �
��
�

�
��
�

�
��
� �
��
�
�
��
�

�
��
� �
��
�
�
��
�
�
��
�

�
��
�

�
��
�

� �
� � � � � � � �� � � �
����

������ � � � � � � �
����

� � �� � � � � � � �� � � �
����
� � ����� � � �

a b

c
d

e

a b

c
d

e

a b

c
d

e

a b

c
d

e

10

9

7 32

23
10 32

23
9

7 7

9

32

23

32
23

10

weighted graph

Tree 2, w=71 Tree 3, w=72

Tree 1. w=74

Minimum spanning tree

5

Minimum Spanning Trees

Remark: The minimum spanning tree may not be
unique. However, if the weights of all the edges are
pairwise distinct, it is indeed unique (we won’t prove
this now).

Example:

1

2

6724

1

2

6724

MST1 MST2weighted graph

1

2 2

100

6724

6

Minimum Spanning Tree Problem

MST Problem: Given a connected weighted undi-
rected graph

�
, design an algorithm that outputs a

minimum spanning tree (MST) of
�

.

Question: What is most intuitive way to solve?

Generic approach: A tree is an acyclic graph.
The idea is to start with an empty graph and try to add
edges one at a time, always making sure that what is
built remains acyclic. And if we are sure every time the
resulting graph always is a subset of some minimum
spanning tree, we are done.

7

Generic Algorithm for MST problem

Let � be a set of edges such that � � �
, where�

is a MST. An edge
��� ���

is a safe edge for � , if
� � � ��� ���
	� is also a subset of some MST.

If at each step, we can find a safe edge
��� ���

, we
can ’grow’ a MST. This leads to the following generic
approach:

Generic-MST(G, w)
Let A=EMPTY;
while A does not form a spanning tree
find an edge (u, v) that is safe for A
add (u, v) to A

return A

How can we find a safe edge?

8

How to find a safe edge

We first give some definitions. Let
� � ��� � �

be a
connected and undirected graph. We define:

Cut A cut
��� ��� � ��

of G is a partition of V.

Cross An edge
��� ���
 � �

crosses the cut
��� � � �

��

if one of its endpoints is in

�
, and the other is

in
� � �

.

Respect A cut respects a set � of edges if no edge
in A crosses the cut.

Light edge An edge is a light edge crossing a cut
if its weight is the minimum of any edge crossing
the cut.

9

How to find a safe edge

Lemma

Let
� � ��� � �

be a connected, undirected graph
with a real-valued weight function � defined on

�
. Let

� be a subset of
�

that is included in some minimum
spanning tree for

�
, let

��� � � � ��

be any cut of

�
that

respects � , and let
��� ���

be a light edge crossing the
cut

��� � � � ��

. Then, edge

��� ���

is safe for � .

It means that we can find a safe edge by

1. first finding a cut that respects � ,

2. then finding the light edge crossing that cut.

That light edge is a safe edge.

10

Proof

1. Let � � �
, where

�
is a MST. Suppose

��� ���
 ��
�

.

2. The trick is to construct another MST
� �

that con-
tains both � and

��� ���

, thereby showing

��� ���

is

a safe edge for � .

11

3. Since
�

, and
�

are on opposite sides of the cut��� � � � ��

, there is at least one edge in

�
on the

path from
�

to
�

that crosses the cut. Let
��� ���

be
such edge. Since the cut respects � ,

��� ���
 �� � .

Since
��� ���

is a light edge crossing the cut, we
have �

��� ���
 �
�
��� � �

.

a cut respects A

another MST T’

A

v

u

y

x
A

MST T

v

u

y

x

12

4. Add
��� ���

to
�

, it creates a cycle. By removing
an edge from the cycle, it becomes a tree again.
In particular, we remove

��� ���

(

�� �) to make a
new tree

� �
.

5. The weight of
� �

is

�
� � �
 �

�
� �
 �

�
��� ���
��

�
��� ���

�
�
� �

6. Since
�

is a MST, we must have �
� �
 �

�
� � �

,
hence

� �
is also a MST.

7. Since � � � ��� � �
	� is also a subset of
� �

(a MST),��� ���

is safe for � .

13

Prim’s Algorithm

The generic algorithm gives us an idea how to ’grow’
a MST.

If you read the theorem and the proof carefully, you
will notice that the choice of a cut (and hence the
corresponding light edge) in each iteration is imma-
terial. We can select any cut (that respects the se-
lected edges) and find the light edge crossing that cut
to proceed.

The Prim’s algorithm makes a nature choice of the cut
in each iteration – it grows a single tree and adds a
light edge in each iteration.

14

Prim’s Algorithm : How to grow a tree

Grow a Tree

� Start by picking any vertex � to be the root of the
tree.

� While the tree does not contain
all vertices in the graph
find shortest edge leaving the tree
and add it to the tree .

Running time is
� � ��� � � � ��� �
����	� � � �

.

15

More Details

Step 0: Choose any element � ; set
� � ��� � and

� � �
. (Take � as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint
is in

�
and the other is in

� � �
. Add this edge to

� and its (other) endpoint to
�

.

Step 2: If
� � � � �

, then stop & output (minimum)
spanning tree

��� � �

. Otherwise go to Step 1.

The idea: expand the current tree by adding the
lightest (shortest) edge leaving it and its endpoint.

e

24
20

r

a
b

c

d

26

f

g i
r

a
b

c

d e

f

g i

8 8

12

16
14

new

24
2026

16
14

12

23 23

new edge

12
12

h h

16

Prim’s Algorithm

Worked Example

a

b

c

d

e

f

g

4

8

9

8

2

1

9

7

10

5

6

2

b

c

d

e

f

g

4

8

10

8

2

1

7

9
5

6

2

S={a}

Step 0

a
V \ S = {b,c,d,e,f,g}

9

Connected graph

lightest edge = {a,b}

17

Prim’s Algorithm

Prim’s Example – Continued

b

c

d

e

f

g

4

8

9

8

2

1

9

7

10

5

6

2

c

d

e

f

g

8

9

10

8

2

1

7

9
5

6

2

a

a

Step 1.1

Step 1.1 after

4

S={a}

S={a,b}
b

before

V \ S = {b,c,d,e,f,g}

V \ S = {c,d,e,f,g}

lightest edge = {a,b}

lightest edge = {b,d}, {a,c}

A={}

A={{a,b}}

18

Prim’s Algorithm

Prim’s Example – Continued

c

d

e

f

g

4

8

9

8

2

1

9

7

10

5

6

2

c

e

f

g

8

10

8

2

1

7

9
5

6

2

a

a

4
b

beforeb Step 1.2
S={a,b}

Step 1.2 after

S={a,b,d}

d

V \ S = {c,d,e,f,g}

V \ S = {c,e,f,g}9

lightest edge = {b,d}, {a,c}

lightest edge = {d,c}

A={{a,b}}

A={{a,b},{b,d}}

19

Prim’s Algorithm

Prim’s Example – Continued

c

e

f

g

4

8

9

8

2

1

9

7

10

5

6

2

e

f

g

8

9

10

8

2

1

7

9
5

6

2

a

a

4
b

beforeb

d

Step 1.3

Step 1.3 after

S={a,b,d}
d

S={a,b,c,d}

V \ S = {c,e,f,g}

V \ S = {e,f,g}

c

lightest edge = {d,c}

lightest edge = {c,f}

A={{a,b},{b,d}}

A={{a,b},{b,d},{c,d}}

20

Prim’s Algorithm

Prim’s Example – Continued

e

f

g

4

8

9

8

2

1

9

7

10

5

6

2

e

g

8

9

10

8

2

1

7

9
5

6

2

a

a

4
b

beforeb

d

d

c

S={a,b,c,d}

V \ S = {e,f,g}

c

S={a,b,c,d,f}
V \ S = {e,g}

Step 1.4

Step 1.4 after

f

lightest edge = {c,f}

lightest edge = {f,g}

A={{a,b},{b,d},{c,d}}

A={{a,b},{b,d},{c,d},{c,f}}

21

Prim’s Algorithm

Prim’s Example – Continued

e

g

4

8

9

8

2

1

9

7

10

5

6

2

e

8

9

10

8

2

1

7

9
5

6

2

a

a

4
b

beforeb

d

d

c

c

f

S={a,b,c,d,f}
V \ S = {e,g}

f

Step 1.5

Step 1.5 after

S={a,b,c,d,f,g}
V \ S = {e}

{f,g}}

g

lightest edge = {f,g}

lightest edge = {f,e}

A={{a,b},{b,d},{c,d},{c,f}}

A={{a,b},{b,d},{c,d},{c,f},

22

Prim’s Algorithm

Prim’s Example – Continued

e
4

8

9

8

2

1

9

7

10

5

6

2

8

9

10

8

2

1

7

9
5

6

2

a

a

4
b

beforeb

d

d

c

c

f

f

g

S={a,b,c,d,f,g}
V \ S = {e}

{f,g}}

g

Step 1.6

Step 1.6 after

S={a,b,c,d,e,f,g}
V \ S = {}

{f,g},{f,e}}

MST completed

e

lightest edge = {f,e}

A={{a,b},{b,d},{c,d},{c,f},

A={{a,b},{b,d},{c,d},{c,f},

23

Recall Idea of Prim’s Algorithm

Step 0: Choose any element � and set
� � � ��� and � � �

.
(Take � as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in
�

and
the other is in � 	 � . Add this edge to � and its (other)
endpoint to

�
.

Step 2: If � 	 � � �
, then stop and output the minimum span-

ning tree
 ��� ��
 .
Otherwise go to Step 1.

Questions:

� Why does this produce a Minimum Spanning
Tree?

� How does the algorithm find the lightest edge and
update � efficiently?

� How does the algorithm update
�

efficiently?

24

Prim’s Algorithm

Question: How does the algorithm update
�

efficiently?

Answer: Color the vertices. Initially all are white.
Change the color to black when the vertex is moved
to

�
. Use color[

�
] to store color.

Question: How does the algorithm find the lightest
edge and update � efficiently?

Answer:
(a) Use a priority queue to find the lightest edge.
(b) Use pred[

�
] to update � .

25

Reviewing Priority Queues

Priority Queue is a data structure (can be implemented
as a heap) which supports the following operations:

insert(
� ����� �

):
Insert

�
with the key value

��� �
in � .

u = extractMin():
Extract the item with the minimum key value in � .

decreaseKey(
� �����

� -
��� �

):
Decrease

�
’s key value to

���
� -

��� �
.

Remark: Priority Queues can be implemented so that
each operation takes time

� � ���	� � � �

. See CLRS!

26

Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a triple
��� ���

�
����� ���

,
��� ��� �	�

,
where

�
�

is a vertex in
� � �

,
�

��� ��� �	�
is the weight of the lightest edge

from
�

to any vertex in
�

, and
�

�
�
����� ���

is the endpoint of this edge in
�

.
The array is used to build the MST tree.

r

a
b

c

d e

f

g i
r

a
b

c

d e

f

g i

24
2026

16
14

8

24
2026

16
14

8

12
12

23 23

new edge
key[f] = 8, pred[f] = e

12
12

key[i] = infinity, pred[i] = nil key[i] = 23, pred[i] = f

After adding the new edge
and vertex f, update the key[v]
and pred[v] for each vertex v
adjacent to f

key[g] = 16, pred[g] = c

key[h] = 24, pred[h] = b

f has the minimum key

h h

27

Description of Prim’s Algorithm

Remark: � is given by adjacency lists. The vertices in � 	 �
are stored in a priority queue with key=value of lightest edge to
vertex in

�
.

Prim(� ��� � �)�
for each � � � initialize� ���
	�� ��
 � � �

;������� � � ��
 � �
;����
	�� ��
 � �

; start at root� � �
��� ��
 � � �!
;" �

new PriQueue(�); put vertices in
"

while(
"

is nonempty) until all vertices in MST�
u=

"$#
extraxtMin(); lightest edge

for each (%&� ' �)(*� ��
)�
if ((������� � � %!
 � � �

)&&(
� � � � %!
,+ ���
	�� %!
))���-	.� %/
 � � � � � %!
 ; new lightest edge"$#

decreaseKey(% � ���-	.� %!
);� � �0��� %!
 � � ;�
������� � � ��
 � 1 2��

When the algorithm terminates,
" � �

and the MST is3 � � � % � � � �0��� %!
 �$4/%&� � 	 � ��� � #
The pred pointers define the MST as an inverted tree

rooted at � .
28

Example for Running Prim’s Algorithm

a

b

c

d

e

f

1

2

3

4

5

1

10
3

4

u

key[u]

pred[u]

a b c d e f

29

Analysis of Prim’s Algorithm

Let
� � � � �

and
� � ��� �

. The data structure PriQueue
supports the following two operations: (See CLRS)

�
� � � � � �

to extract each vertex from the queue.
Done once for each vertex

� � � � ���	� �
��

�
� � � � � �

time to decrease the key value of neigh-
boring vertex.
Done at most once for each edge

� � � � � � � �
��

Total cost is then

� � � � � �
 ��� � �

30

Analysis of Prim’s Algorithm – Continued

Prim(G, w, r) {
for each (u in V)
{

key[u] = +infinity;
color[u] = white;

}

key[r] = 0;
pred[r] = nil;
Q = new PriQueue(V);

while (Q. nonempty())
{

u = Q.extractMin();
for each (v in adj[u])
{

if ((color[v] == white) &
(w(u,v) < key[v])

key[v] = w(u, v);
{

}
}
color[u] = black;

}
}

1
O(log n)
1

1
1

pred[v] = u;

O(log n)

1

O(deg(u) log n)

1

[O(log n) + O(deg(u) log n)]
u in V

1
1

2n

n

Q.decreaseKey(v, key[v]);

31

Analysis of Prim’s Algorithm – Continued

So the overall running time is

� � � ���

� � � � � �

� � �
� � � ���	� �
 � � ����� � ���
����	� �
 �

� � � � � � �
��
� � � � �

� � �
�	� � ��� � ���

�
�

� � � � � � � � � ���	� �
 � � � � �
 �
� � � � ���	� �
 � � � � �
 �
� � � � ���	� �
 � � � �
 �
� � � ��� � � � ��� �
 ��� � � � � � �

32

