
Appendix B

The Basics of Logic Design

Copyright © 2014 Elsevier Inc. All rights reserved.

2 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.2.1 Standard drawing for an AND gate, OR gate, and an inverter, shown from left to right. The

signals to the left of each symbol are the inputs, while the output appears on the right. The AND and OR gates

both have two inputs. Inverters have a single input.

3 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.2.2 Logic gate implementation of using explicit inverts on the left and bubbled inputs and outputs

on the right. This logic function can be simplified to or in Verilog, A & ~ B.

4 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.3.1 A 3-bit decoder has 3 inputs, called 12, 11, and 10, and 23 = 8 outputs, called Out0 to Out7.

Only the output corresponding to the binary value of the input is true, as shown in the truth table. The label 3 on

the input to the decoder says that the input signal is 3 bits wide.

5 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.3.2 A two-input multiplexor on the left and its implementation with gates on the right. The multiplexor

has two data inputs (A and B), which are labeled 0 and 1, and one selector input (S), as well as an output C.

Implementing multiplexors in Verilog requires a little more work, especially when they are wider than two inputs.

We show how to do this beginning on page B-23.

6 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.3.3 The basic form of a PLA consists of an array of AND gates followed by an array of OR gates.

Each entry in the AND gate array is a product term consisting of any number of inputs or inverted inputs. Each

entry in the OR gate array is a sum term consisting of any number of these product terms.

7 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.3.4 The PLA for implementing the logic function described in the example.

8 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.3.5 A PLA drawn using dots to indicate the components of the product terms and sum terms in the

array. Rather than use inverters on the gates, usually all the inputs are run the width of the AND plane in both

true and complement forms. A dot in the AND plane indicates that the input, or its inverse, occurs in the product

term. A dot in the OR plane indicates that the corresponding product term appears in the corresponding output.

9 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.3.6 A multiplexor is arrayed 32 times to perform a selection between two 32-bit inputs. Note that

there is still only one data selection signal used for all 32 1-bit multiplexors.

13 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.5.1 The 1-bit logical unit for AND and OR.

14 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.5.2 A 1-bit adder. This adder is called a full adder; it is also called a (3,2) adder because it has 3

inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2) adder or half-adder.

15 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.5.3 Input and output specification for a 1-bit adder.

16 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.5.4 Values of the inputs when CarryOut is a 1.

17 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.5.5 Adder hardware for the CarryOut signal. The rest of the adder hardware is the logic for the Sum

output given in the equation on this page.

18 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure B.5.5).

19 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less significant bit is connected to

the CarryIn of the more significant bit. This organization is called ripple carry.

20 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By selecting (Binvert 5

1) and setting CarryIn to 1 in the least significant bit of the ALU, we get two’s comple-ment subtraction of b from

a instead of addition of b to a.

21 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By selecting (Ainvert 5

1) and (Binvert 5 1), we get a NOR b instead of a AND b.

22 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b , and (bottom) a 1-bit

ALU for the most significant bit. The top drawing includes a direct input that is connected to perform the set on

less than operation (see Figure B.5.11); the bottom has a direct output from the adder for the less than

comparison called Set. (See Exercise B.24 at the end of this appendix to see how to calculate overflow with

fewer inputs.)

23 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top of Figure B.5.10 and

one 1-bit ALU in the bottom of that figure. The Less inputs are connected to 0 except for the least significant bit,

which is connected to the Set output of the most significant bit. If the ALU performs a 2 b and we select the input

3 in the multiplexor in Figure B.5.10, then Result 5 0 … 001 if

a , b, and Result 5 0 … 000 otherwise.

24 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.5.12 The final 32-bit ALU. This adds a Zero detector to Figure B.5.11.

25 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.5.13 The values of the three ALU control lines, Bnegate, and Operation, and the corresponding ALU

operations.

26 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.5.14 The symbol commonly used to represent an ALU, as shown in Figure B.5.12. This symbol is

also used to represent an adder, so it is normally labeled either with ALU or Adder.

31 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.6.3 Four 4-bit ALUs using carry lookahead to form a 16-bit adder. Note that the carries come from

the carry-lookahead unit, not from the 4-bit ALUs.

32 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.7.1 A clock signal oscillates between high and low values. The clock period is the time for one full

cycle. In an edge-triggered design, either the rising or falling edge of the clock is active and causes state to be

changed.

33 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.7.2 The inputs to a combinational logic block come from a state element, and the outputs are

written into a state element. The clock edge determines when the contents of the state elements are updated.

34 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.7.3 An edge-triggered methodology allows a state element to be read and written in the same clock

cycle without creating a race that could lead to undetermined data values. Of course, the clock cycle must still be

long enough so that the input values are stable when the active clock edge occurs.

35 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.8.1 A pair of cross-coupled NOR gates can store an internal value. The value stored on the output

Q is recycled by inverting it to obtain and then inverting to obtain Q. If either R or is asserted, Q will be

deasserted and vice versa.

36 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.8.2 A D latch implemented with NOR gates. A NOR gate acts as an inverter if the other input is 0.

Thus, the cross-coupled pair of NOR gates acts to store the state value unless the clock input, C, is asserted, in

which case the value of input D replaces the value of Q and is stored. The value of input D must be stable when

the clock signal C changes from asserted to deasserted.

37 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.8.3 Operation of a D latch, assuming the output is initially deasserted. When the clock, C, is

asserted, the latch is open and the Q output immediately assumes the value of the D input.

38 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.8.4 A D flip-flop with a falling-edge trigger. The first latch, called the master, is open and follows the

input D when the clock input, C, is asserted. When the clock input, C, falls, the first latch is closed, but the

second latch, called the slave, is open and gets its input from the output of the master latch.

39 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.8.5 Operation of a D flip-flop with a falling-edge trigger, assuming the output is initially deasserted.

When the clock input (C) changes from asserted to deasserted, the Q output stores the value of the D input.

Compare this behavior to that of the clocked D latch shown in Figure B.8.3. In a clocked latch, the stored value

and the output, Q, both change whenever C is high, as opposed to only when C transitions.

40 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.8.6 Setup and hold time requirements for a D flip-flop with a falling-edge trigger. The input must be

stable for a period of time before the clock edge, as well as after the clock edge. The minimum time the signal

must be stable before the clock edge is called the setup time, while the minimum time the signal must be stable

after the clock edge is called the hold time. Failure to meet these minimum requirements can result in a situation

where the output of the flip-flop may not be predictable, as described in Section B.11. Hold times are usually

either 0 or very small and thus not a cause of worry.

41 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.8.7 A register file with two read ports and one write port has five inputs and two outputs. The control

input Write is shown in color.

42 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.8.8 The implementation of two read ports for a register file with n registers can be done with a pair

of n-to-1 multiplexors, each 32 bits wide. The register read number signal is used as the multiplexor selector

signal. Figure B.8.9 shows how the write port is implemented.

koc
Highlight

43 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.8.9 The write port for a register file is implemented with a decoder that is used with the write signal

to generate the C input to the registers. All three inputs (the register number, the data, and the write signal) will

have setup and hold-time constraints that ensure that the correct data is written into the register file.

46 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.9.1 A 32K 3 8 SRAM showing the 21 address lines (32K 5 215) and 16 data inputs, the 3 control

lines, and the 16 data outputs.

47 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.9.2 Four three-state buffers are used to form a multiplexor. Only one of the four Select inputs can

be asserted. A three-state buffer with a deasserted Output enable has a high-impedance output that allows a

three-state buffer whose Output enable is asserted to drive the shared output line.

48 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.9.3 The basic structure of a 4 3 2 SRAM consists of a decoder that selects which pair of cells to

activate. The activated cells use a three-state output connected to the vertical bit lines that supply the requested

data. The address that selects the cell is sent on one of a set of horizontal address lines, called word lines. For

simplicity, the Output enable and Chip select signals have been omitted, but they could easily be added with a

few AND gates.

49 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.9.4 Typical organization of a 4M 3 8 SRAM as an array of 4K 3 1024 arrays. The first decoder

generates the addresses for eight 4K 3 1024 arrays; then a set of multiplexors is used to select 1 bit from each

1024-bit-wide array. This is a much easier design than a single-level decode that would need either an enormous

decoder or a gigantic multiplexor. In practice, a modern SRAM of this size would probably use an even larger

number of blocks, each somewhat smaller.

50 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.9.5 A single-transistor DRAM cell contains a capacitor that stores the cell contents and a transistor

used to access the cell.

51 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.9.6 A 4M 3 1 DRAM is built with a 2048 3 2048 array. The row access uses 11 bits to select a row,

which is then latched in 2048 1-bit latches. A multiplexor chooses the output bit from these 2048 latches. The

RAS and CAS signals control whether the address lines are sent to the row decoder or column multiplexor.

52 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.10.1 A state machine consists of internal storage that contains the state and two combinational

functions: the next-state function and the output function. Often, the output function is restricted to take only the

current state as its input; this does not change the capability of a sequential machine, but does affect its

internals.

53 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.10.2 The graphical representation of the two-state traffic light controller. We simplified the logic

functions on the state transitions. For example, the transition from NSgreen to EWgreen in the next-state table is

, which is equivalent to EWcar.

54 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.10.3 A finite-state machine is implemented with a state register that holds the current state and a

combinational logic block to compute the next state and output functions. The latter two functions are often split

apart and implemented with two separate blocks of logic, which may require fewer gates.

56 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.11.1 In an edge-triggered design, the clock must be long enough to allow signals to be valid for the

required setup time before the next clock edge. The time for a flip-flop input to propagate to the flip-flip outputs is

tprop; the signal then takes tcombinational to travel through the combinational logic and must be valid tsetup before the

next clock edge.

57 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.11.2 Illustration of how clock skew can cause a race, leading to incorrect operation. Because of the

difference in when the two flip-flops see the clock, the signal that is stored into the first flip-flop can race forward

and change the input to the second flip-flop before the clock arrives at the second flip-flop.

58 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.11.3 A two-phase clocking scheme showing the cycle of each clock and the nonoverlapping periods.

59 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.11.4 A two-phase timing scheme with alternating latches showing how the system operates on both

clock phases. The output of a latch is stable on the opposite phase from its C input. Thus, the first block of

combinational inputs has a stable input during f2, and its output is latched by f2. The second (rightmost)

combinational block operates in just the opposite fashion, with stable inputs during f1. Thus, the delays through

the combinational blocks determine the minimum time that the respective clocks must be asserted. The size of

the nonoverlapping period is determined by the maximum clock skew and the minimum delay of any logic block.

60 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.11.5 A synchronizer built from a D flip-flop is used to sample an asynchronous signal to produce an

output that is synchronous with the clock. This “synchronizer” will not work properly!

61 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.11.6 This synchronizer will work correctly if the period of metastability that we wish to guard against

is less than the clock period. Although the output of the first flip-flop may be metastable, it will not be seen by any

other logic element until the second clock, when the second D flip-flop samples the signal, which by that time

should no longer be in a metastable state.

62 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE B.14.1 Traditional ripple carry and carry save addition of four 4-bit numbers. The details are shown on

the left, with the individual signals in lowercase, and the corresponding higher-level blocks are on the right, with

collective signals in upper case. Note that the sum of four n-bit numbers can take n + 2 bits.

63 Copyright © 2014 Elsevier Inc. All rights reserved.

66 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 1

67 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 2

68 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 3

69 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 4

70 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 5

71 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 6

72 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 7

73 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 8

74 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 9

75 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 10

76 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 11

