
Computer Arithmetic Fundamentals Koç

Carry Save Adder

The carry save adder seems to be the most useful adder for our application. It is
simply a parallel ensemble of k full-adders without any horizontal connection. Its
main function is to add three k-bit integers A, B, and C to produce two integers C ′

and S such that
C ′ + S = A + B + C .

As an example, let A = 40, B = 25, and C = 20, we compute S and C ′ as shown
below:

A = 40 = 1 0 1 0 0 0
B = 25 = 0 1 1 0 0 1
C = 20 = 0 1 0 1 0 0
S = 37 = 1 0 0 1 0 1
C ′ = 48 = 0 1 1 0 0 0

The ith bit of the sum Si and the (i + 1)st bit of the carry C ′
i+1 is calculated using

the equations

Si = Ai ⊕Bi ⊕ Ci .

C ′
i+1 = AiBi + AiCi + BiCi ,

in other words, a carry save adder cell is just a full-adder cell. A carry save adder,
sometimes named a one-level CSA, is illustrated below for k = 6.

FA

C5

C’6 S5

A5 B5

FA

C4

C’5 S4

A4 B4

FA

C3

C’4 S3

A3 B3

FA

C2

C’3 S2

A2 B2

FA

C1

C’2 S1

A1 B1

FA

C0

C’1 S0

A0 B0

Since the input vectors A, B, and C are applied in parallel, the total delay of a
carry save adder is equal to the total delay of a single FA cell. Thus, the addition
of three integers to compute two integers requires a single FA delay. Furthermore,
the CSA requires only k times the areas of FA cell, and scales up very easily by
adding more parallel cells. The subtraction operation can also be performed by using
2’s complement encoding. There are basically two disadvantages of the carry save
adders:

1



• It does not really solve our problem of adding two integers and producing a
single output. Instead, it adds three integers and produces two such that sum
of these two is equal to the sum of three inputs. This method may not be
suitable for application which only needs the regular addition.

• The sign detection is hard: When a number is represented as a carry-save pair
(C, S) such that its actual value is C + S, we may not know the exact sign of
total sum C + S. Unless the addition is performed in full length, the correct
sign may never be determined.

We will explore this sign detection problem in an upcoming section in more detail. For
now, it suffices to briefly mention the sign detection problem, and introduce a method
of sign detection. This method is based on adding a few of the most significant bits
of C and S in order to calculate (estimate) the sign. As an example, let A = −18,
B = 19, C = 6. After the carry save addition process, we produce S = −5 and
C ′ = 12, as shown below. Since the total sum C ′ + S = 12 − 5 = 7, its correct
sign is 0. However, when we add the first most significant bits, we estimate the sign
incorrectly.

A = −18 = 1 0 1 1 1 0
B = 19 = 0 1 0 0 1 1
C = 6 = 0 0 0 1 1 0
S = −5 = 1 1 1 0 1 1
C ′ = 12 = 0 0 0 1 1 0

1 (1 MSB)
1 1 (2 MSB)
0 0 0 (3 MSB)
0 0 0 1 (4 MSB)
0 0 0 1 1 (5 MSB)
0 0 0 1 1 1 (6 MSB)

The correct sign is computed only after adding the first three most significant bits. In
the worst case, up to a full length addition may be required to calculate the correct
sign.

Carry Delayed Adder

The carry delayed adder is a two-level carry save adder. As we will see in Section 7.3,
a certain property of the carry delayed adder can be used to reduce the multiplication
complexity. The carry delayed adder produced a pair of integers (D,T ), called a carry

2



delayed number, using the following set of equations:

Si = Ai ⊕Bi ⊕ Ci ,

Ci+1 = AiBi + AiCi + BiCi ,

Ti = Si ⊕ Ci ,

Di+1 = SiCi ,

where D0 = 0. Notice that Ci+1 and Si are the outputs of a full-adder cell with inputs
Ai, Bi, and Ci, while the values Di+1 and Ti are the outputs of an half-adder cell.

An important property of the carry delayed adder is that Di+1Ti = 0 for all
i = 0, 1, . . . , k − 1. This is easily verified as

Di+1Ti = SiCi(Si ⊕ Ci) = SiCi(S̄iCi + SiC̄i) = 0 .

As an example, let A = 40, B = 25, and C = 20. In the first level, we compute the
carry save pair (C, S) using the carry save equations. In the second level, we compute
the carry delayed pair (D,T ) using the definitions Di+1 = SiCi and Ti = Si ⊕ Ci as

A = 40 = 1 0 1 0 0 0
B = 25 = 0 1 1 0 0 1
C = 20 = 0 1 0 1 0 0
S = 37 = 1 0 0 1 0 1
C = 48 = 0 1 1 0 0 0 0
T = 21 = 0 1 0 1 0 1
D = 64 = 1 0 0 0 0 0 0

Thus, the carry delayed pair (64, 21) represents the total of A + B + C = 85. The
property of the carry delayed pair that TiDi+1 = 0 for all i = 0, 1, . . . , k−1 also holds.

T = 21 = 0 1 0 1 0 1
D = 64 = 1 0 0 0 0 0 0
TiDi+1 = 0 0 0 0 0 0

We will explore this property in Section 7.3 to design an efficient modular multiplier
which was introduced by Brickell [1]. The following figure illustrates the carry delayed
adder for k = 6.

FA

C5A5 B5

FA

C4A4 B4

FA

C3A3 B3

FA

C2A2 B2

FA

C1

S1

A1 B1

FA

C0

C1 S0

A0 B0

HA

C0

HAHAHAHAHA

T0T1 D1T2T3T4T5 D2D3D4D5D6 D0 = 0

C2C3C4C5C6 S2S3S4S5

3



References

[1] E. F. Brickell. A fast modular multiplication algorithm with application to two key
cryptography. In D. Chaum, R. L. Rivest, and A. T. Sherman, editors, Advances
in Cryptology, Proceedings of Crypto 82, pages 51–60. Plenum Press, 1982.

4


