Computer Arithmetic Fundamentals Kog

Chinese Remainder Theorem

Given the moduli set m; for ¢ = 1,2,...,n such that
ged(m;,m;) =1 for i#7,

there exists a unique integer v in the range [0, M — 1] where M = myms - - - m,, with
the property
uw=wu; (modm;)

fori=1,2,...,n.

Single-Radix Conversion Algorithm
Step 1. Compute M = mymso---m, and mymeo---m;_1Mirq---m, = mM using

K2
multi-precision arithmetic.

Step 2. Compute the multiplicative inverses of mM modulo m; for 1 < ¢ < n, ie.,
compute the constants ¢; such that

M
— ;=1 (modmy) for 1<i<n.

Step 3. Compute u by performing the sum

M

u=—cu + —coug + -+ —cpu, (mod M) |
mq mo my,
in multi-precision arithmetic.

Theorem 1 Given the moduli my, mo, ..., m, and the remainders ug, uy, . .., U, Such
that m; < W for 0 <i < n, the number u can be computed in O(n?) arithmetic steps
with the single-radixz conversion algorithm.

Mixed-Radix Conversion Algorithm

Step 1. Compute constants ¢;; for 1 <1i < j < n where

cij-m; =1 (mod m;) .

Step 2. Compute

vp = w (modmy) ,

V2 = (u2 - ’01)012 (HlOd mg) ,

vy = ((uz—wvi)c13 —va)coy  (mod my) |

vy = (- ((Up —v1)C1n — v2)Con =+ — Vp_1)Cn1mn  (mod my,) .
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Once the mixed-radix digits have been obtained, u is written in terms of these digits
and the moduli as

U = V1 + Vomy +v3mima + -+ 4+ VpyMiMo -+ - My_1 .

Computation of u using the above formula also requires O(n?) arithmetic operations.
We now define V;; for 0 < ¢ < j < n such that Vp; = u; for 1 <i<nand V,_y; =v;
for 1 <14 < n. These V;; for 0 <1i < j < n are the temporary values of v; resulting
from the operations in Step 2 of the mixed-radix conversion algorithm. This way, we
build a triangular table of values with diagonal entries v; = V;_;; for 0 <7 <n. The
entries of this table are named multiplied differences. For n = 4, it can be given as
follows:

Vor = w1 [ml]

Vo2 = U2 [mz] Vig = (V02 - Vo1)612 [m2]

Vos = ug [ms] Vis = (Vo3 — Vin)cas [ms]  Vag = (Vig — Vig)cas [ms]
[m4]

Voa = uq my

Here [m;] stands for modulo m;. The mixed-radix conversion algorithm computes the
terms V; ; for 1 <i < j < n by performing the following operations on single-precision
integer operands:

Cij = INVERSE(mmm])?

Vij = (‘/%—1,]‘ - Vz‘—l,z‘)Czj (mod mj) .
Theorem 2 Given the moduli my, mo, ..., m, and the remainders uy, us, . .., U, Such
that m; < W for1 < i < n, the mized-radiz number representation (vy,vs, ..., v,) of u

can be computed in O(n?) arithmetic steps with the mized-radiz conversion algorithm.

We note that the above theorems are true for the preconditioned Chinese re-
maindering as well. In this case the constants ¢; and ¢;; are precomputed for the
single-radix and the mixed-radix conversion algorithms, respectively.

Computation of the Inverse

The inverse z = a~! (mod m) is computed with Euclid’s extended algorithm (EEA).

Input: a,m € D, not both zero, D is an Euclidean domain.
Output: g, s,t such that g = s-a+t-m and g = ged(a, m).

procedure EEA(a,m, g, s,t)

begin
(90, 91) = (a,m)
(‘907 51) = (17 O)

Via = (Vo4 - Vo1)014 [m4] Vo = (V14 - ‘/12)024 [m4] Vay = (V24 - V23)C34 [m4]



while ¢g; # 0 do
begin
q=go div g
(90,91) = (91,90 — 91 - q)
(307 51) = (31, S0 — S1° Q)
(to,t1) = (t1,t0 —t1- q)
end
g=go;s=5s0;t=tp
end procedure

The following procedure uses EEA to compute the inverse.
Input: a,m € D.
Output: If ged(a,m) =1 then z = a™! (mod m).

procedure INVERSE(a, m, x)
begin
EEA(a,m,g,s,t)
if g=1then z =s
else PRINT (‘inverse does not exist’)
end procedure

An Example

We execute INVERSE(a, m,z) for a = 16 and m = 21 in order to compute 167"
(mod 21), i.e., to solve for = in

16-z=1 (mod 21) .

Procedure EEA computes the following tableau

iteration || g | go | g1 | So | s1 | to | t1
0 -116(21| 1] 0 |0
1 0j21j16 (0| 1 |10
2 17165 |1 |-1]0]1
3 3|51 (-1} 4 |1]|-3
4 51110 |4 |-21|-3]16

EEA thus returns g = 1, s = 4, and t = —3, with the property that
g=s-a+t-m .

Thus, we have
1=4-16+(-3)-21 .



Thus, INVERSE computes
r=16"=s5=4 (mod21) .

Verify:
16-4=64=1 (mod 21) .



