
Computer Arithmetic Fundamentals Koç

Montgomery Multiplication

An efficient algorithm for computing R = a · b mod n where a, b, and n are k-bit
binary numbers, was introduced by P. L. Montgomery [5]. The algorithm is partic-
ularly suitable for implementation on general-purpose computers (signal processors
or microprocessors) which are capable of performing fast arithmetic modulo a power
of 2. The Montgomery reduction algorithm computes the resulting k-bit number R
without performing a division by the modulus n. Via an ingenious representation of
the residue class modulo n, this algorithm replaces division by n operation with divi-
sion by a power of 2. This operation is easily accomplished on a computer since the
numbers are represented in binary form. Assuming the modulus n is a k-bit number,
i.e., 2k−1 ≤ n < 2k, let r be 2k. The Montgomery reduction algorithm requires that r
and n be relatively prime, i.e., gcd(r, n) = gcd(2k, n) = 1. This requirement is satis-
fied if n is odd. In the following we summarize the basic idea behind the Montgomery
reduction algorithm.

Given an integer a < n, we define its n-residue with respect to r as

ā = a · r mod n .

It is straightforward to show that the set

{ i · r mod n | 0 ≤ i ≤ n− 1 }

is a complete residue system, i.e., it contains all numbers between 0 and n− 1. Also
there is a one-to-one correspondence between the numbers in the range 0 and n − 1
and the numbers in the above set. The Montgomery reduction algorithm exploits
this property by introducing a much faster multiplication routine which computes
the n-residue of the product of the two integers whose n-residues are given. Given
two n-residues ā and b̄, the Montgomery product is defined as the n-residue

R̄ = ā · b̄ · r−1 mod n

where r−1 is the inverse of r modulo n, i.e., it is the number with the property

r−1 · r = 1 mod n .

The resulting number R̄ is indeed the n-residue of the product

R = a · b mod n

since

R̄ = ā · b̄ · r−1 mod n

= a · r · b · r · r−1 mod n

= a · b · r mod n .

1



In order to describe the Montgomery reduction algorithm, we need an additional
quantity, n′, which is the integer with the property

r · r−1 − n · n′ = 1 .

The integers r−1 and n′ can both be computed by the extended Euclid algorithm.
The Montgomery product computation is given below:

function MonPro(ā, b̄)
Step 1. t := ā · b̄ mod r
Step 2. m := t · n′ mod r
Step 3. u := (ā · b̄+m · n)/r
Step 4. if u ≥ n then return u− n else return u

The most important feature of the Montgomery product algorithm is that the oper-
ations involved are multiplications modulo r and divisions by r, both of which are
intrinsically fast operations since r is a power 2. The MonPro algorithm can be used
to compute the product of a and b modulo n provided n is odd. The algorithm given
below achieves this purpose:

function ModMul(a, b, n) { n is an odd number }
Step 1. Compute n′ using the extended Euclid algorithm.
Step 2. ā := a · r mod n
Step 3. b̄ := b · r mod n
Step 4. x̄ := MonPro(ā, b̄)
Step 5. x := MonPro(x̄, 1)
Step 6. return x

Since the preprocessing operations (conversion from ordinary residue to n-residue,
computation of n′, and converting the result back to ordinary residue) are rather
time-consuming, it is not a good idea to use the Montgomery product computation
algorithm when a single modular multiplication is to be performed.

0.1 Montgomery Exponentiation

The Montgomery product algorithm is more suitable when several modular multipli-
cations with respect to the same modulus are needed. Such is the case when one needs
to compute modular exponentiation, i.e., the computation of ae mod n. Using one
of the addition chain algorithms given in Chapter 2, we replace the exponentiation
operation by a series of square and multiplication operations modulo n. This is where
the Montgomery product operation finds its best use. In the following we summarize
the modular exponentiation operation which makes use of the Montgomery product
function MonPro. The exponentiation algorithm uses the binary method.

2



function ModExp(a, e, n) { n is an odd number }
Step 1. Compute n′ using the extended Euclid algorithm.
Step 2. ā := a · r mod n
Step 3. x̄ := 1 · r mod n
Step 4. for i = k − 1 down to 0 do
Step 5. x̄ := MonPro(x̄, x̄)
Step 6. if ei = 1 then x̄ := MonPro(ā, x̄)
Step 7. x := MonPro(x̄, 1)
Step 8. return x

Thus, we start with the ordinary residue a and obtain its n-residue ā using a
division-like operation, which can be achieved, for example, by a series of shift and
subtract operations. Additionally, Steps 2 and 3 require divisions. However, once
the preprocessing has been completed, the inner-loop of the binary exponentiation
method uses the Montgomery product operations which performs only multiplications
modulo 2k and divisions by 2k. When the binary method finishes, we obtain the n-
residue x̄ of the quantity x = ae mod n. The ordinary residue number is obtained
from the n-residue by executing the MonPro function with arguments x̄ and 1. This
easily shown to be correct since

x̄ = x · r mod n

immediately implies that

x = x̄ · r−1 mod n = x̄ · 1 · r−1 mod n := MonPro(x̄, 1) .

The resulting algorithm is quite fast as was demonstrated by many researchers and
engineers who have implemented it. However, the above algorithm can be refined
and made more efficient, particularly when the numbers involved are multi-precision
integers.

0.2 An Example of Exponentiation

Here we show how to compute x = 710 mod 13 using the Montgomery exponentiation
algorithm.

• Since n = 13, we take r = 24 = 16 > n.

• Computation of n′:

Using the extended Euclid algorithm, we determine that 16 · 9 − 13 · 11 = 1,
thus, r−1 = 9 and n′ = 11.

• Computation of M̄ :

Since M = 7, we have M̄ := M · r (mod n) = 7 · 16 (mod 13) = 8.

3



• Computation of x̄ for x = 1:

We have x̄ := x · r (mod n) = 1 · 16 (mod 13) = 3.

• Steps 5 and 6 of the ModExp routine:

ei Step 5 Step 6

1 MonPro(3, 3) = 3 MonPro(8, 3) = 8
0 MonPro(8, 8) = 4
1 MonPro(4, 4) = 1 MonPro(8, 1) = 7
0 MonPro(7, 7) = 12

◦ Computation of MonPro(3, 3) = 3:
t := 3 · 3 = 9
m := 9 · 11 (mod 16) = 3
u := (9 + 3 · 13)/16 = 48/16 = 3

◦ Computation of MonPro(8, 3) = 8:
t := 8 · 3 = 24
m := 24 · 11 (mod 16) = 8
u := (24 + 8 · 13)/16 = 128/16 = 8

◦ Computation of MonPro(8, 8) = 4:
t := 8 · 8 = 64
m := 64 · 11 (mod 16) = 0
u := (64 + 0 · 13)/16 = 64/16 = 4

◦ Computation of MonPro(4, 4) = 1:
t := 4 · 4 = 16
m := 16 · 11 (mod 16) = 0
u := (16 + 0 · 13)/16 = 16/16 = 1

◦ Computation of MonPro(8, 1) = 7:
t := 8 · 1 = 8
m := 8 · 11 (mod 16) = 8
u := (8 + 8 · 13)/16 = 112/16 = 7

◦ Computation of MonPro(7, 7) = 12:
t := 7 · 7 = 49
m := 49 · 11 (mod 16) = 11
u := (49 + 11 · 13)/16 = 192/16 = 12

• Step 7 of the ModExp routine: x = MonPro(12, 1) = 4
t := 12 · 1 = 12
m := 12 · 11 (mod 16) = 4
u := (12 + 4 · 13)/16 = 64/16 = 4

Thus, we obtain x = 4 as the result of the operation 710 mod 13.

1 The Case of Even Modulus

Since the existence of r−1 and n′ requires that n and r be relatively prime, we cannot
use the Montgomery product algorithm when this rule is not satisfied. We take
r = 2k since arithmetic operations are based on binary arithmetic modulo 2w where
w is the word-size of the computer. In case of single-precision integers, we take k = w.
However, when the numbers are large, we choose k to be an integer multiple of w.
Since r = 2k, the Montgomery modular exponentiation algorithm requires that

gcd(r, n) = gcd(2k, n) = 1

4



which is satisfied if and only if n is odd. We now describe a simple technique [2] which
can be used whenever one needs to compute modular exponentiation with respect to
an even modulus. Let n be factored such that

n = q · 2j

where q is an odd integer. This can easily be accomplished by shifting the even number
n to the right until its least-significant bit becomes one. Then, by the application of
the Chinese remainder theorem, the computation of

x = ae mod n

is broken into two independent parts such that

x1 = ae mod q ,

x2 = ae mod 2j .

The final result x has the property

x = x1 mod q ,

x = x2 mod 2j ,

and can be found using one of the Chinese remainder algorithms: The single-radix
conversion algorithm or the mixed-radix conversion algorithm [6, 1, 4]. The compu-
tation of x1 can be performed using the ModExp algorithm since q is odd. Meanwhile
the computation of x2 can be performed even more easily since it involves arithmetic
modulo 2j. There is however some overhead involved due to the introduction of the
Chinese remainder theorem. According to the mixed-radix conversion algorithm, the
number whose residues are x1 and x2 modulo q and 2j, respectively, is equal to

x = x1 + q · y

where
y = (x2 − x1) · q−1 mod 2j .

The inverse q−1 mod 2j exists since q is odd. It can be computed using a simplified
Euclidean algorithm. We thus have the following algorithm:

function EvenModExp(a, e, n) { n is an even number }
1. Shift n to the right obtain the factorization n = q · 2j.
2. Compute x1 := ae mod q using ModExp routine above.
3. Compute x2 := ae mod 2j using the binary method and modulo 2j arithmetic.
4. Compute q−1 mod 2j and y := (x2 − x1) · q−1 mod 2j.
5. Compute x := x1 + q · y and return x.

5



1.1 An Example of Even Modulus Case

The computation of ae mod n for a = 375, e = 249, and n = 388 is illustrated below.

Step 1. n = 388 = (110000100)2 = (11000001)2 × 22 = 97 × 22. Thus, q = 97 and
j = 2.

Step 2. Compute x1 = ae mod q by calling ModExp with parameters a = 375, e =
249, and q = 97. We must remark, however, that we can reduce a and e modulo
q and φ(q), respectively. The latter is possible if we know the factorization of q.
Such knowledge is not necessary but would further decrease the computation
time of the ModExp routine. Assuming we do not know the factorization of q,
we only reduce a to obtain

a mod q = 375 mod 97 = 84

and call the ModExp routine with parameters (84, 249, 97). Since q is odd, the
ModExp routine successfully computes the result as x1 = 78.

Step 3. Compute x2 = ae mod 2j by calling an exponentiation routine based on the
binary method and modulo 2j arithmetic. Before calling such routine we should
reduce the parameters as

a mod 2j = 375 mod 4 = 3
e mod φ(2j) = 249 mod 2 = 1

In this case, we are able to reduce the exponent since we know that φ(2j) = 2j−1.
Thus, we call the exponentiation routine with the parameters (3, 1, 4). The
routine computes the result as x2 = 3.

Step 4. Using the extended Euclidean algorithm, compute

q−1 mod 2j = 97−1 mod 4 = 1 .

Now compute

y = (x2 − x1) · q−1 mod 2j

= (3− 78) · 1 mod 4

= 1 .

Step 5. Compute and return the final result

x = x1 + q · y = 78 + 97 · 1 = 175 .

6



References

[1] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms,
volume 2. Addison-Wesley, Second edition, 1981.

[2] Ç. K. Koç. Montgomery reduction with even modulus. IEE Proceedings - Com-
puters and Digital Techniques, 141(5):314–316, September 1994.

[3] Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing Montgomery
multiplication algorithms. IEEE Micro, 16(3):26–33, June 1996.

[4] J. D. Lipson. Elements of Algebra and Algebraic Computing. Addison-Wesley,
1981.

[5] P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, April 1985.

[6] N. S. Szabo and R. I. Tanaka. Residue Arithmetic and its Applications to Com-
puter Technology. McGraw-Hill, 1967.

7


