
Chapter 3
Arithmetic for Computers

Chapter 3 — Arithmetic for Computers — 2

Arithmetic for Computers
n Operations on integers

n Addition and subtraction
n Multiplication and division
n Dealing with overflow

n Floating-point real numbers
n Representation and operations

§3.1 Introduction

Chapter 3 — Arithmetic for Computers — 3

Integer Addition
n Example: 7 + 6

§3.2 Addition and Subtraction

n Overflow if result out of range
n Adding +ve and –ve operands, no overflow
n Adding two +ve operands

n Overflow if result sign is 1
n Adding two –ve operands

n Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 4

Integer Subtraction
n Add negation of second operand
n Example: 7 – 6 = 7 + (–6)

+7: 0000 0000 … 0000 0111
–6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

n Overflow if result out of range
n Subtracting two +ve or two –ve operands, no overflow
n Subtracting +ve from –ve operand

n Overflow if result sign is 0
n Subtracting –ve from +ve operand

n Overflow if result sign is 1

Chapter 3 — Arithmetic for Computers — 5

Dealing with Overflow
n Some languages (e.g., C) ignore overflow

n Use MIPS addu, addui, subu instructions
n Other languages (e.g., Ada, Fortran)

require raising an exception
n Use MIPS add, addi, sub instructions
n On overflow, invoke exception handler

n Save PC in exception program counter (EPC)
register

n Jump to predefined handler address
n mfc0 (move from coprocessor reg) instruction can

retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers — 6

Arithmetic for Multimedia
n Graphics and media processing operates

on vectors of 8-bit and 16-bit data
n Use 64-bit adder, with partitioned carry chain

n Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
n SIMD (single-instruction, multiple-data)

n Saturating operations
n On overflow, result is largest representable

value
n c.f. 2s-complement modulo arithmetic

n E.g., clipping in audio, saturation in video

Chapter 3 — Arithmetic for Computers — 7

Multiplication
n Start with long-multiplication approach

1000
× 1001

1000
0000
0000
1000
1001000

Length of product is
the sum of operand
lengths

multiplicand

multiplier

product

§3.3 M
ultiplication

Chapter 3 — Arithmetic for Computers — 8

Multiplication Hardware

Initially 0

Chapter 3 — Arithmetic for Computers — 9

Optimized Multiplier
n Perform steps in parallel: add/shift

n One cycle per partial-product addition
n That’s ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — 10

Faster Multiplier
n Uses multiple adders

n Cost/performance tradeoff

n Can be pipelined
n Several multiplication performed in parallel

Chapter 3 — Arithmetic for Computers — 11

MIPS Multiplication
n Two 32-bit registers for product

n HI: most-significant 32 bits
n LO: least-significant 32-bits

n Instructions
n mult rs, rt / multu rs, rt

n 64-bit product in HI/LO
n mfhi rd / mflo rd

n Move from HI/LO to rd
n Can test HI value to see if product overflows 32 bits

n mul rd, rs, rt

n Least-significant 32 bits of product –> rd

Chapter 3 — Arithmetic for Computers — 12

Division
n Check for 0 divisor
n Long division approach

n If divisor ≤ dividend bits
n 1 bit in quotient, subtract

n Otherwise
n 0 bit in quotient, bring down next

dividend bit

n Restoring division
n Do the subtract, and if remainder

goes < 0, add divisor back

n Signed division
n Divide using absolute values
n Adjust sign of quotient and remainder

as required

1001
1000 1001010

-1000
10
101
1010
-1000

10

n-bit operands yield n-bit
quotient and remainder

quotient

dividend

remainder

divisor

§3.4 D
ivision

Chapter 3 — Arithmetic for Computers — 13

Division Hardware

Initially dividend

Initially divisor
in left half

Chapter 3 — Arithmetic for Computers — 14

Optimized Divider

n One cycle per partial-remainder subtraction
n Looks a lot like a multiplier!

n Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 15

Faster Division
n Can’t use parallel hardware as in multiplier

n Subtraction is conditional on sign of remainder
n Faster dividers (e.g. SRT devision)

generate multiple quotient bits per step
n Still require multiple steps

Chapter 3 — Arithmetic for Computers — 16

MIPS Division
n Use HI/LO registers for result

n HI: 32-bit remainder
n LO: 32-bit quotient

n Instructions
n div rs, rt / divu rs, rt

n No overflow or divide-by-0 checking
n Software must perform checks if required

n Use mfhi, mflo to access result

Chapter 3 — Arithmetic for Computers — 17

Floating Point
n Representation for non-integral numbers

n Including very small and very large numbers

n Like scientific notation
n –2.34 × 1056

n +0.002 × 10–4

n +987.02 × 109

n In binary
n ±1.xxxxxxx2 × 2yyyy

n Types float and double in C

normalized

not normalized

§3.5 Floating P
oint

Chapter 3 — Arithmetic for Computers — 18

Floating Point Standard
n Defined by IEEE Std 754-1985
n Developed in response to divergence of

representations
n Portability issues for scientific code

n Now almost universally adopted
n Two representations

n Single precision (32-bit)
n Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 19

IEEE Floating-Point Format

n S: sign bit (0 Þ non-negative, 1 Þ negative)
n Normalize significand: 1.0 ≤ |significand| < 2.0

n Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

n Significand is Fraction with the “1.” restored
n Exponent: excess representation: actual exponent + Bias

n Ensures exponent is unsigned
n Single: Bias = 127; Double: Bias = 1023

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x -´+´-=

Chapter 3 — Arithmetic for Computers — 20

Single-Precision Range
n Exponents 00000000 and 11111111 reserved
n Smallest value

n Exponent: 00000001
Þ actual exponent = 1 – 127 = –126

n Fraction: 000…00 Þ significand = 1.0
n ±1.0 × 2–126 ≈ ±1.2 × 10–38

n Largest value
n exponent: 11111110
Þ actual exponent = 254 – 127 = +127

n Fraction: 111…11 Þ significand ≈ 2.0
n ±2.0 × 2+127 ≈ ±3.4 × 10+38

Chapter 3 — Arithmetic for Computers — 21

Double-Precision Range
n Exponents 0000…00 and 1111…11 reserved
n Smallest value

n Exponent: 00000000001
Þ actual exponent = 1 – 1023 = –1022

n Fraction: 000…00 Þ significand = 1.0
n ±1.0 × 2–1022 ≈ ±2.2 × 10–308

n Largest value
n Exponent: 11111111110
Þ actual exponent = 2046 – 1023 = +1023

n Fraction: 111…11 Þ significand ≈ 2.0
n ±2.0 × 2+1023 ≈ ±1.8 × 10+308

Chapter 3 — Arithmetic for Computers — 22

Floating-Point Precision
n Relative precision

n all fraction bits are significant
n Single: approx 2–23

n Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal
digits of precision

n Double: approx 2–52

n Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal
digits of precision

Chapter 3 — Arithmetic for Computers — 23

Floating-Point Example
n Represent –0.75

n –0.75 = (–1)1 × 1.12 × 2–1

n S = 1
n Fraction = 1000…002

n Exponent = –1 + Bias
n Single: –1 + 127 = 126 = 011111102

n Double: –1 + 1023 = 1022 = 011111111102

n Single: 1011111101000…00
n Double: 1011111111101000…00

Chapter 3 — Arithmetic for Computers — 24

Floating-Point Example
n What number is represented by the single-

precision float
11000000101000…00
n S = 1
n Fraction = 01000…002
n Fxponent = 100000012 = 129

n x = (–1)1 × (1 + 012) × 2(129 – 127)

= (–1) × 1.25 × 22

= –5.0

Chapter 3 — Arithmetic for Computers — 27

Floating-Point Addition
n Consider a 4-digit decimal example

n 9.999 × 101 + 1.610 × 10–1

n 1. Align decimal points
n Shift number with smaller exponent
n 9.999 × 101 + 0.016 × 101

n 2. Add significands
n 9.999 × 101 + 0.016 × 101 = 10.015 × 101

n 3. Normalize result & check for over/underflow
n 1.0015 × 102

n 4. Round and renormalize if necessary
n 1.002 × 102

Chapter 3 — Arithmetic for Computers — 28

Floating-Point Addition
n Now consider a 4-digit binary example

n 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)
n 1. Align binary points

n Shift number with smaller exponent
n 1.0002 × 2–1 + –0.1112 × 2–1

n 2. Add significands
n 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

n 3. Normalize result & check for over/underflow
n 1.0002 × 2–4, with no over/underflow

n 4. Round and renormalize if necessary
n 1.0002 × 2–4 (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 29

FP Adder Hardware
n Much more complex than integer adder
n Doing it in one clock cycle would take too

long
n Much longer than integer operations
n Slower clock would penalize all instructions

n FP adder usually takes several cycles
n Can be pipelined

Chapter 3 — Arithmetic for Computers — 30

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Chapter 3 — Arithmetic for Computers — 33

FP Arithmetic Hardware
n FP multiplier is of similar complexity to FP

adder
n But uses a multiplier for significands instead of

an adder
n FP arithmetic hardware usually does

n Addition, subtraction, multiplication, division,
reciprocal, square-root

n FP « integer conversion
n Operations usually takes several cycles

n Can be pipelined

Chapter 3 — Arithmetic for Computers — 34

FP Instructions in MIPS
n FP hardware is coprocessor 1

n Adjunct processor that extends the ISA

n Separate FP registers

n 32 single-precision: $f0, $f1, … $f31

n Paired for double-precision: $f0/$f1, $f2/$f3, …

n Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s

n FP instructions operate only on FP registers

n Programs generally don’t do integer ops on FP data,
or vice versa

n More registers with minimal code-size impact

n FP load and store instructions

n lwc1, ldc1, swc1, sdc1
n e.g., ldc1 $f8, 32($sp)

Chapter 3 — Arithmetic for Computers — 35

FP Instructions in MIPS
n Single-precision arithmetic

n add.s, sub.s, mul.s, div.s
n e.g., add.s $f0, $f1, $f6

n Double-precision arithmetic
n add.d, sub.d, mul.d, div.d

n e.g., mul.d $f4, $f4, $f6
n Single- and double-precision comparison

n c.xx.s, c.xx.d (xx is eq, lt, le, …)
n Sets or clears FP condition-code bit

n e.g. c.lt.s $f3, $f4
n Branch on FP condition code true or false

n bc1t, bc1f
n e.g., bc1t TargetLabel

Chapter 3 — Arithmetic for Computers — 36

FP Example: °F to °C
n C code:
float f2c (float fahr) {
return ((5.0/9.0)*(fahr - 32.0));

}

n fahr in $f12, result in $f0, literals in global memory
space

n Compiled MIPS code:
f2c: lwc1 $f16, const5($gp)

lwc2 $f18, const9($gp)
div.s $f16, $f16, $f18
lwc1 $f18, const32($gp)
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
jr $ra

Chapter 3 — Arithmetic for Computers — 37

FP Example: Array Multiplication
n X = X + Y × Z

n All 32 × 32 matrices, 64-bit double-precision elements
n C code:
void mm (double x[][],

double y[][], double z[][]) {
int i, j, k;
for (i = 0; i! = 32; i = i + 1)
for (j = 0; j! = 32; j = j + 1)
for (k = 0; k! = 32; k = k + 1)
x[i][j] = x[i][j]

+ y[i][k] * z[k][j];
}

n Addresses of x, y, z in $a0, $a1, $a2, and
i, j, k in $s0, $s1, $s2

Chapter 3 — Arithmetic for Computers — 38

FP Example: Array Multiplication
n MIPS code:

li $t1, 32 # $t1 = 32 (row size/loop end)

li $s0, 0 # i = 0; initialize 1st for loop

L1: li $s1, 0 # j = 0; restart 2nd for loop

L2: li $s2, 0 # k = 0; restart 3rd for loop

sll $t2, $s0, 5 # $t2 = i * 32 (size of row of x)

addu $t2, $t2, $s1 # $t2 = i * size(row) + j

sll $t2, $t2, 3 # $t2 = byte offset of [i][j]

addu $t2, $a0, $t2 # $t2 = byte address of x[i][j]

l.d $f4, 0($t2) # $f4 = 8 bytes of x[i][j]

L3: sll $t0, $s2, 5 # $t0 = k * 32 (size of row of z)

addu $t0, $t0, $s1 # $t0 = k * size(row) + j

sll $t0, $t0, 3 # $t0 = byte offset of [k][j]

addu $t0, $a2, $t0 # $t0 = byte address of z[k][j]

l.d $f16, 0($t0) # $f16 = 8 bytes of z[k][j]

…

Chapter 3 — Arithmetic for Computers — 39

FP Example: Array Multiplication
…

sll $t0, $s0, 5 # $t0 = i*32 (size of row of y)

addu $t0, $t0, $s2 # $t0 = i*size(row) + k

sll $t0, $t0, 3 # $t0 = byte offset of [i][k]

addu $t0, $a1, $t0 # $t0 = byte address of y[i][k]

l.d $f18, 0($t0) # $f18 = 8 bytes of y[i][k]

mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j]

add.d $f4, $f4, $f16 # f4=x[i][j] + y[i][k]*z[k][j]

addiu $s2, $s2, 1 # $k k + 1

bne $s2, $t1, L3 # if (k != 32) go to L3

s.d $f4, 0($t2) # x[i][j] = $f4

addiu $s1, $s1, 1 # $j = j + 1

bne $s1, $t1, L2 # if (j != 32) go to L2

addiu $s0, $s0, 1 # $i = i + 1

bne $s0, $t1, L1 # if (i != 32) go to L1

Chapter 3 — Arithmetic for Computers — 40

Accurate Arithmetic
n IEEE Std 754 specifies additional rounding

control
n Extra bits of precision (guard, round, sticky)
n Choice of rounding modes
n Allows programmer to fine-tune numerical behavior of

a computation
n Not all FP units implement all options

n Most programming languages and FP libraries just
use defaults

n Trade-off between hardware complexity,
performance, and market requirements

Subword Parallellism
n Graphics and audio applications can take

advantage of performing simultaneous
operations on short vectors
n Example: 128-bit adder:

n Sixteen 8-bit adds
n Eight 16-bit adds
n Four 32-bit adds

n Also called data-level parallelism, vector
parallelism, or Single Instruction, Multiple
Data (SIMD)

Chapter 3 — Arithmetic for Computers — 41

§3.6 Parallelism
 and C

om
puter Arithm

etic: Subw
ord Parallelism

Chapter 3 — Arithmetic for Computers — 42

x86 FP Architecture
n Originally based on 8087 FP coprocessor

n 8 × 80-bit extended-precision registers
n Used as a push-down stack
n Registers indexed from TOS: ST(0), ST(1), …

n FP values are 32-bit or 64 in memory
n Converted on load/store of memory operand
n Integer operands can also be converted

on load/store
n Very difficult to generate and optimize code

n Result: poor FP performance

§3.7 R
eal Stuff: Stream

ing SIM
D

 Extensions and AVX in x86

Chapter 3 — Arithmetic for Computers — 43

x86 FP Instructions

n Optional variations
n I: integer operand
n P: pop operand from stack
n R: reverse operand order
n But not all combinations allowed

Data transfer Arithmetic Compare Transcendental
FILD mem/ST(i)

FISTP mem/ST(i)

FLDPI

FLD1

FLDZ

FIADDP mem/ST(i)

FISUBRP mem/ST(i)
FIMULP mem/ST(i)
FIDIVRP mem/ST(i)

FSQRT

FABS

FRNDINT

FICOMP

FIUCOMP

FSTSW AX/mem

FPATAN

F2XMI

FCOS

FPTAN

FPREM

FPSIN

FYL2X

Chapter 3 — Arithmetic for Computers — 44

Streaming SIMD Extension 2 (SSE2)
n Adds 4 × 128-bit registers

n Extended to 8 registers in AMD64/EM64T
n Can be used for multiple FP operands

n 2 × 64-bit double precision
n 4 × 32-bit double precision
n Instructions operate on them simultaneously

n Single-Instruction Multiple-Data

Matrix Multiply
n Unoptimized code:

1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
4. for (int j = 0; j < n; ++j)
5. {
6. double cij = C[i+j*n]; /* cij = C[i][j] */
7. for(int k = 0; k < n; k++)
8. cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
9. C[i+j*n] = cij; /* C[i][j] = cij */
10. }
11. }

Chapter 3 — Arithmetic for Computers — 45

§3.8 G
oing Faster: Subw

ord Parallelism
 and M

atrix M
ultiply

Matrix Multiply
n x86 assembly code:
1. vmovsd (%r10),%xmm0 # Load 1 element of C into %xmm0
2. mov %rsi,%rcx # register %rcx = %rsi
3. xor %eax,%eax # register %eax = 0
4. vmovsd (%rcx),%xmm1 # Load 1 element of B into %xmm1
5. add %r9,%rcx # register %rcx = %rcx + %r9
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
element of A
7. add $0x1,%rax # register %rax = %rax + 1
8. cmp %eax,%edi # compare %eax to %edi
9. vaddsd %xmm1,%xmm0,%xmm0 # Add %xmm1, %xmm0
10. jg 30 <dgemm+0x30> # jump if %eax > %edi
11. add $0x1,%r11d # register %r11 = %r11 + 1
12. vmovsd %xmm0,(%r10) # Store %xmm0 into C element

Chapter 3 — Arithmetic for Computers — 46

§3.8 G
oing Faster: Subw

ord Parallelism
 and M

atrix M
ultiply

Matrix Multiply
n Optimized C code:
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=4)
5. for (int j = 0; j < n; j++) {
6. __m256d c0 = _mm256_load_pd(C+i+j*n); /* c0 = C[i][j]
*/
7. for(int k = 0; k < n; k++)
8. c0 = _mm256_add_pd(c0, /* c0 += A[i][k]*B[k][j] */
9. _mm256_mul_pd(_mm256_load_pd(A+i+k*n),
10. _mm256_broadcast_sd(B+k+j*n)));
11. _mm256_store_pd(C+i+j*n, c0); /* C[i][j] = c0 */
12. }
13. }

Chapter 3 — Arithmetic for Computers — 47

§3.8 G
oing Faster: Subw

ord Parallelism
 and M

atrix M
ultiply

Matrix Multiply
n Optimized x86 assembly code:
1. vmovapd (%r11),%ymm0 # Load 4 elements of C into %ymm0
2. mov %rbx,%rcx # register %rcx = %rbx
3. xor %eax,%eax # register %eax = 0
4. vbroadcastsd (%rax,%r8,1),%ymm1 # Make 4 copies of B element
5. add $0x8,%rax # register %rax = %rax + 8
6. vmulpd (%rcx),%ymm1,%ymm1 # Parallel mul %ymm1,4 A elements
7. add %r9,%rcx # register %rcx = %rcx + %r9
8. cmp %r10,%rax # compare %r10 to %rax
9. vaddpd %ymm1,%ymm0,%ymm0 # Parallel add %ymm1, %ymm0
10. jne 50 <dgemm+0x50> # jump if not %r10 != %rax
11. add $0x1,%esi # register % esi = % esi + 1
12. vmovapd %ymm0,(%r11) # Store %ymm0 into 4 C elements

Chapter 3 — Arithmetic for Computers — 48

§3.8 G
oing Faster: Subw

ord Parallelism
 and M

atrix M
ultiply

Chapter 3 — Arithmetic for Computers — 49

Right Shift and Division
n Left shift by i places multiplies an integer

by 2i

n Right shift divides by 2i?
n Only for unsigned integers

n For signed integers
n Arithmetic right shift: replicate the sign bit
n e.g., –5 / 4

n 111110112 >> 2 = 111111102 = –2
n Rounds toward –∞

n c.f. 111110112 >>> 2 = 001111102 = +62

§3.9 Fallacies and P
itfalls

Chapter 3 — Arithmetic for Computers — 50

Associativity
n Parallel programs may interleave

operations in unexpected orders
n Assumptions of associativity may fail

(x+y)+z x+(y+z)
x -1.50E+38 -1.50E+38
y 1.50E+38
z 1.0 1.0

1.00E+00 0.00E+00

0.00E+00
1.50E+38

n Need to validate parallel programs under
varying degrees of parallelism

Chapter 3 — Arithmetic for Computers — 51

Who Cares About FP Accuracy?
n Important for scientific code

n But for everyday consumer use?
n “My bank balance is out by 0.0002¢!” L

n The Intel Pentium FDIV bug
n The market expects accuracy
n See Colwell, The Pentium Chronicles

Chapter 3 — Arithmetic for Computers — 52

Concluding Remarks
n Bits have no inherent meaning

n Interpretation depends on the instructions
applied

n Computer representations of numbers
n Finite range and precision
n Need to account for this in programs

§3.9 C
oncluding R

em
arks

Chapter 3 — Arithmetic for Computers — 53

Concluding Remarks
n ISAs support arithmetic

n Signed and unsigned integers
n Floating-point approximation to reals

n Bounded range and precision
n Operations can overflow and underflow

n MIPS ISA
n Core instructions: 54 most frequently used

n 100% of SPECINT, 97% of SPECFP
n Other instructions: less frequent

