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Principle of Locality
n Programs access a small proportion of 

their address space at any time
n Temporal locality

n Items accessed recently are likely to be 
accessed again soon

n e.g., instructions in a loop, induction variables
n Spatial locality

n Items near those accessed recently are likely 
to be accessed soon

n E.g., sequential instruction access, array data

§5.1 Introduction



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Taking Advantage of Locality
n Memory hierarchy
n Store everything on disk
n Copy recently accessed (and nearby) 

items from disk to smaller DRAM memory
n Main memory

n Copy more recently accessed (and 
nearby) items from DRAM to smaller 
SRAM memory
n Cache memory attached to CPU
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Memory Hierarchy Levels
n Block (aka line): unit of copying

n May be multiple words

n If accessed data is present in 
upper level
n Hit: access satisfied by upper level

n Hit ratio: hits/accesses

n If accessed data is absent
n Miss: block copied from lower level

n Time taken: miss penalty
n Miss ratio: misses/accesses

= 1 – hit ratio
n Then accessed data supplied from 

upper level
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Memory Technology
n Static RAM (SRAM)

n 0.5ns – 2.5ns, $2000 – $5000 per GB
n Dynamic RAM (DRAM)

n 50ns – 70ns, $20 – $75 per GB
n Magnetic disk

n 5ms – 20ms, $0.20 – $2 per GB
n Ideal memory

n Access time of SRAM
n Capacity and cost/GB of disk

§5.2 M
em

ory Technologies



DRAM Technology
n Data stored as a charge in a capacitor

n Single transistor used to access the charge
n Must periodically be refreshed

n Read contents and write back
n Performed on a DRAM “row”
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Advanced DRAM Organization
n Bits in a DRAM are organized as a 

rectangular array
n DRAM accesses an entire row
n Burst mode: supply successive words from a 

row with reduced latency
n Double data rate (DDR) DRAM

n Transfer on rising and falling clock edges
n Quad data rate (QDR) DRAM

n Separate DDR inputs and outputs



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

DRAM Generations
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Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50



DRAM Performance Factors
n Row buffer

n Allows several words to be read and refreshed in 
parallel

n Synchronous DRAM
n Allows for consecutive accesses in bursts without 

needing to send each address
n Improves bandwidth

n DRAM banking
n Allows simultaneous access to multiple DRAMs
n Improves bandwidth
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Increasing Memory Bandwidth

n 4-word wide memory
n Miss penalty = 1 + 15 + 1 = 17 bus cycles
n Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

n 4-bank interleaved memory
n Miss penalty = 1 + 15 + 4×1 = 20 bus cycles
n Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle
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Flash Storage
n Nonvolatile semiconductor storage

n 100× – 1000× faster than disk
n Smaller, lower power, more robust
n But more $/GB (between disk and DRAM)

§6.4 Flash S
torage
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Flash Types
n NOR flash: bit cell like a NOR gate

n Random read/write access
n Used for instruction memory in embedded systems

n NAND flash: bit cell like a NAND gate
n Denser (bits/area), but block-at-a-time access
n Cheaper per GB
n Used for USB keys, media storage, …

n Flash bits wears out after 1000’s of accesses
n Not suitable for direct RAM or disk replacement
n Wear leveling: remap data to less used blocks
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Disk Storage
n Nonvolatile, rotating magnetic storage

§6.3 D
isk S

torage
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Disk Sectors and Access
n Each sector records

n Sector ID
n Data (512 bytes, 4096 bytes proposed)
n Error correcting code (ECC)

n Used to hide defects and recording errors
n Synchronization fields and gaps

n Access to a sector involves
n Queuing delay if other accesses are pending
n Seek: move the heads
n Rotational latency
n Data transfer
n Controller overhead
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Disk Access Example
n Given

n 512B sector, 15,000rpm, 4ms average seek 
time, 100MB/s transfer rate, 0.2ms controller 
overhead, idle disk

n Average read time
n 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

n If actual average seek time is 1ms
n Average read time = 3.2ms
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Disk Performance Issues
n Manufacturers quote average seek time

n Based on all possible seeks
n Locality and OS scheduling lead to smaller actual 

average seek times
n Smart disk controller allocate physical sectors on 

disk
n Present logical sector interface to host
n SCSI, ATA, SATA

n Disk drives include caches
n Prefetch sectors in anticipation of access
n Avoid seek and rotational delay



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Cache Memory
n Cache memory

n The level of the memory hierarchy closest to 
the CPU

n Given accesses X1, …, Xn–1, Xn

§5.3 The B
asics of C

aches

n How do we know if 
the data is present?

n Where do we look?
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Direct Mapped Cache
n Location determined by address
n Direct mapped: only one choice

n (Block address) modulo (#Blocks in cache)

n #Blocks is a 
power of 2

n Use low-order 
address bits
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Tags and Valid Bits
n How do we know which particular block is 

stored in a cache location?
n Store block address as well as the data
n Actually, only need the high-order bits
n Called the tag

n What if there is no data in a location?
n Valid bit: 1 = present, 0 = not present
n Initially 0
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Cache Example
n 8-blocks, 1 word/block, direct mapped
n Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N
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Cache Example

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110
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Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010
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Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011

16 10 000 Hit 000
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Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10 Mem[10010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss 010
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Address Subdivision
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Example: Larger Block Size
n 64 blocks, 16 bytes/block

n To what block number does address 1200 
map?

n Block address = 1200/16 = 75
n Block number = 75 modulo 64 = 11

Tag Index Offset
03491031

4 bits6 bits22 bits

koc
Highlight

koc
Highlight
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Block Size Considerations
n Larger blocks should reduce miss rate

n Due to spatial locality
n But in a fixed-sized cache

n Larger blocks => fewer of them
n More competition => increased miss rate

n Larger blocks => pollution
n Larger miss penalty

n Can override benefit of reduced miss rate
n Early restart and critical-word-first can help
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Cache Misses
n On cache hit, CPU proceeds normally
n On cache miss

n Stall the CPU pipeline
n Fetch block from next level of hierarchy
n Instruction cache miss

n Restart instruction fetch
n Data cache miss

n Complete data access
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Write-Through
n On data-write hit, could just update the block in 

cache
n But then cache and memory would be inconsistent

n Write through: also update memory
n But makes writes take longer

n e.g., if base CPI = 1, 10% of instructions are stores, 
write to memory takes 100 cycles

n Effective CPI = 1 + 0.1×100 = 11

n Solution: write buffer
n Holds data waiting to be written to memory
n CPU continues immediately

n Only stalls on write if write buffer is already full
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Write-Back
n Alternative: On data-write hit, just update 

the block in cache
n Keep track of whether each block is dirty

n When a dirty block is replaced
n Write it back to memory
n Can use a write buffer to allow replacing block 

to be read first
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Write Allocation
n What should happen on a write miss?
n Alternatives for write-through

n Allocate on miss: fetch the block
n Write around: don’t fetch the block

n Since programs often write a whole block before 
reading it (e.g., initialization)

n For write-back
n Usually fetch the block
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Example: Intrinsity FastMATH
n Embedded MIPS processor

n 12-stage pipeline
n Instruction and data access on each cycle

n Split cache: separate I-cache and D-cache
n Each 16KB: 256 blocks × 16 words/block
n D-cache: write-through or write-back

n SPEC2000 miss rates
n I-cache: 0.4%
n D-cache: 11.4%
n Weighted average: 3.2%
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Example: Intrinsity FastMATH
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Main Memory Supporting Caches
n Use DRAMs for main memory

n Fixed width (e.g., 1 word)
n Connected by fixed-width clocked bus

n Bus clock is typically slower than CPU clock

n Example cache block read
n 1 bus cycle for address transfer
n 15 bus cycles per DRAM access
n 1 bus cycle per data transfer

n For 4-word block, 1-word-wide DRAM
n Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
n Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle
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Measuring Cache Performance
n Components of CPU time

n Program execution cycles
n Includes cache hit time

n Memory stall cycles
n Mainly from cache misses

n With simplifying assumptions:

§5.4 M
easuring and Im

proving C
ache P

erform
ance

penalty Miss
nInstructio

Misses
Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cycles stallMemory 

××=

××=
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Cache Performance Example
n Given

n I-cache miss rate = 2%
n D-cache miss rate = 4%
n Miss penalty = 100 cycles
n Base CPI (ideal cache) = 2
n Load & stores are 36% of instructions

n Miss cycles per instruction
n I-cache: 0.02 × 100 = 2
n D-cache: 0.36 × 0.04 × 100 = 1.44

n Actual CPI = 2 + 2 + 1.44 = 5.44
n Ideal CPU is 5.44/2 =2.72 times faster
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Average Access Time
n Hit time is also important for performance
n Average memory access time (AMAT)

n AMAT = Hit time + Miss rate × Miss penalty
n Example

n CPU with 1ns clock, hit time = 1 cycle, miss 
penalty = 20 cycles, I-cache miss rate = 5%

n AMAT = 1 + 0.05 × 20 = 2ns
n 2 cycles per instruction
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Performance Summary
n When CPU performance increased

n Miss penalty becomes more significant
n Decreasing base CPI

n Greater proportion of time spent on memory 
stalls

n Increasing clock rate
n Memory stalls account for more CPU cycles

n Can’t neglect cache behavior when 
evaluating system performance
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Associative Caches
n Fully associative

n Allow a given block to go in any cache entry
n Requires all entries to be searched at once
n Comparator per entry (expensive)

n n-way set associative
n Each set contains n entries
n Block number determines which set

n (Block number) modulo (#Sets in cache)
n Search all entries in a given set at once
n n comparators (less expensive)
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Associative Cache Example
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Spectrum of Associativity
n For a cache with 8 entries
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Associativity Example
n Compare 4-block caches

n Direct mapped, 2-way set associative,
fully associative

n Block access sequence: 0, 8, 0, 6, 8

n Direct mapped
Block 

address
Cache 
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]
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Associativity Example
n 2-way set associative

Block 
address

Cache 
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

n Fully associative
Block 

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]
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How Much Associativity
n Increased associativity decreases miss 

rate
n But with diminishing returns

n Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
n 1-way: 10.3%
n 2-way: 8.6%
n 4-way: 8.3%
n 8-way: 8.1%
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Set Associative Cache Organization
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Replacement Policy
n Direct mapped: no choice
n Set associative

n Prefer non-valid entry, if there is one
n Otherwise, choose among entries in the set

n Least-recently used (LRU)
n Choose the one unused for the longest time

n Simple for 2-way, manageable for 4-way, too hard 
beyond that

n Random
n Gives approximately the same performance 

as LRU for high associativity
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Multilevel Caches
n Primary cache attached to CPU

n Small, but fast
n Level-2 cache services misses from 

primary cache
n Larger, slower, but still faster than main 

memory
n Main memory services L-2 cache misses
n Some high-end systems include L-3 cache
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Multilevel Cache Example
n Given

n CPU base CPI = 1, clock rate = 4GHz
n Miss rate/instruction = 2%
n Main memory access time = 100ns

n With just primary cache
n Miss penalty = 100ns/0.25ns = 400 cycles
n Effective CPI = 1 + 0.02 × 400 = 9
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Example (cont.)
n Now add L-2 cache

n Access time = 5ns
n Global miss rate to main memory = 0.5%

n Primary miss with L-2 hit
n Penalty = 5ns/0.25ns = 20 cycles

n Primary miss with L-2 miss
n Extra penalty = 500 cycles

n CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
n Performance ratio = 9/3.4 = 2.6
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Multilevel Cache Considerations
n Primary cache

n Focus on minimal hit time
n L-2 cache

n Focus on low miss rate to avoid main memory 
access

n Hit time has less overall impact
n Results

n L-1 cache usually smaller than a single cache
n L-1 block size smaller than L-2 block size
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Interactions with Advanced CPUs

n Out-of-order CPUs can execute 
instructions during cache miss
n Pending store stays in load/store unit
n Dependent instructions wait in reservation 

stations
n Independent instructions continue

n Effect of miss depends on program data 
flow
n Much harder to analyse
n Use system simulation
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Interactions with Software
n Misses depend on 

memory access 
patterns
n Algorithm behavior
n Compiler 

optimization for 
memory access



Software Optimization via Blocking

n Goal:  maximize accesses to data before it 
is replaced

n Consider inner loops of DGEMM:

for (int j = 0; j < n; ++j)

{

double cij = C[i+j*n];

for( int k = 0; k < n; k++ )

cij += A[i+k*n] * B[k+j*n];

C[i+j*n] = cij;

}
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DGEMM Access Pattern
n C, A, and B arrays
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older accesses

new accesses



Cache Blocked DGEMM
1 #define BLOCKSIZE 32

2 void do_block (int n, int si, int sj, int sk, double *A, double
3 *B, double *C)

4 {
5  for (int i = si; i < si+BLOCKSIZE; ++i)

6   for (int j = sj; j < sj+BLOCKSIZE; ++j)

7   {
8    double cij = C[i+j*n];/* cij = C[i][j] */

9    for( int k = sk; k < sk+BLOCKSIZE; k++ )
10    cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */

11   C[i+j*n] = cij;/* C[i][j] = cij */
12  }

13 }
14 void dgemm (int n, double* A, double* B, double* C)

15 {

16  for ( int sj = 0; sj < n; sj += BLOCKSIZE )
17   for ( int si = 0; si < n; si += BLOCKSIZE )

18    for ( int sk = 0; sk < n; sk += BLOCKSIZE )
19     do_block(n, si, sj, sk, A, B, C);

20 }
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Blocked DGEMM Access Pattern
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Unoptimized Blocked



Chapter 6 — Storage and Other I/O Topics — 58

Dependability

n Fault: failure of a 
component
n May or may not lead 

to system failure

Service accomplishment
Service delivered

as specified

Service interruption
Deviation from

specified service

FailureRestoration

§5.5 D
ependable M

em
ory H

ierarchy
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Dependability Measures
n Reliability: mean time to failure (MTTF)
n Service interruption: mean time to repair (MTTR)
n Mean time between failures

n MTBF = MTTF + MTTR
n Availability = MTTF / (MTTF + MTTR)
n Improving Availability

n Increase MTTF: fault avoidance, fault tolerance, fault 
forecasting

n Reduce MTTR: improved tools and processes for 
diagnosis and repair



The Hamming SEC Code
n Hamming distance

n Number of bits that are different between two 
bit patterns

n Minimum distance = 2 provides single bit 
error detection
n E.g. parity code

n Minimum distance = 3 provides single 
error correction, 2 bit error detection
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Encoding SEC
n To calculate Hamming code:

n Number bits from 1 on the left
n All bit positions that are a power 2 are parity 

bits
n Each parity bit checks certain data bits:
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Decoding SEC
n Value of parity bits indicates which bits are 

in error
n Use numbering from encoding procedure
n E.g.

n Parity bits = 0000 indicates no error
n Parity bits = 1010 indicates bit 10 was flipped
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SEC/DEC Code
n Add an additional parity bit for the whole word 

(pn)
n Make Hamming distance = 4
n Decoding:

n Let H = SEC parity bits
n H even, pn even, no error
n H odd, pn odd, correctable single bit error
n H even, pn odd, error in pn bit
n H odd, pn even, double error occurred

n Note:  ECC DRAM uses SEC/DEC with 8 bits 
protecting each 64 bits
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Virtual Machines
n Host computer emulates guest operating system 

and machine resources
n Improved isolation of multiple guests
n Avoids security and reliability problems
n Aids sharing of resources

n Virtualization has some performance impact
n Feasible with modern high-performance comptuers

n Examples
n IBM VM/370 (1970s technology!)
n VMWare
n Microsoft Virtual PC

§5.6 V
irtual M

achines
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Virtual Machine Monitor
n Maps virtual resources to physical 

resources
n Memory, I/O devices, CPUs

n Guest code runs on native machine in user 
mode
n Traps to VMM on privileged instructions and 

access to protected resources
n Guest OS may be different from host OS
n VMM handles real I/O devices

n Emulates generic virtual I/O devices for guest



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66

Example: Timer Virtualization
n In native machine, on timer interrupt

n OS suspends current process, handles 
interrupt, selects and resumes next process

n With Virtual Machine Monitor
n VMM suspends current VM, handles interrupt, 

selects and resumes next VM
n If a VM requires timer interrupts

n VMM emulates a virtual timer
n Emulates interrupt for VM when physical timer 

interrupt occurs
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Instruction Set Support
n User and System modes
n Privileged instructions only available in 

system mode
n Trap to system if executed in user mode

n All physical resources only accessible 
using privileged instructions
n Including page tables, interrupt controls, I/O 

registers
n Renaissance of virtualization support

n Current ISAs (e.g., x86) adapting
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Virtual Memory
n Use main memory as a “cache” for 

secondary (disk) storage
n Managed jointly by CPU hardware and the 

operating system (OS)
n Programs share main memory

n Each gets a private virtual address space 
holding its frequently used code and data

n Protected from other programs
n CPU and OS translate virtual addresses to 

physical addresses
n VM “block” is called a page
n VM translation “miss” is called a page fault

§5.7 V
irtual M

em
ory
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Address Translation
n Fixed-size pages (e.g., 4K)



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

Page Fault Penalty
n On page fault, the page must be fetched 

from disk
n Takes millions of clock cycles
n Handled by OS code

n Try to minimize page fault rate
n Fully associative placement
n Smart replacement algorithms
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Page Tables
n Stores placement information

n Array of page table entries, indexed by virtual 
page number

n Page table register in CPU points to page 
table in physical memory

n If page is present in memory
n PTE stores the physical page number
n Plus other status bits (referenced, dirty, …)

n If page is not present
n PTE can refer to location in swap space on 

disk
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Translation Using a Page Table
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Mapping Pages to Storage



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

Replacement and Writes
n To reduce page fault rate, prefer least-

recently used (LRU) replacement
n Reference bit (aka use bit) in PTE set to 1 on 

access to page
n Periodically cleared to 0 by OS
n A page with reference bit = 0 has not been 

used recently
n Disk writes take millions of cycles

n Block at once, not individual locations
n Write through is impractical
n Use write-back
n Dirty bit in PTE set when page is written
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Fast Translation Using a TLB
n Address translation would appear to require 

extra memory references
n One to access the PTE
n Then the actual memory access

n But access to page tables has good locality
n So use a fast cache of PTEs within the CPU
n Called a Translation Look-aside Buffer (TLB)
n Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 

cycles for miss, 0.01%–1% miss rate
n Misses could be handled by hardware or software
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Fast Translation Using a TLB
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TLB Misses
n If page is in memory

n Load the PTE from memory and retry
n Could be handled in hardware

n Can get complex for more complicated page table 
structures

n Or in software
n Raise a special exception, with optimized handler

n If page is not in memory (page fault)
n OS handles fetching the page and updating 

the page table
n Then restart the faulting instruction
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TLB Miss Handler
n TLB miss indicates

n Page present, but PTE not in TLB
n Page not preset

n Must recognize TLB miss before 
destination register overwritten
n Raise exception

n Handler copies PTE from memory to TLB
n Then restarts instruction
n If page not present, page fault will occur
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Page Fault Handler
n Use faulting virtual address to find PTE
n Locate page on disk
n Choose page to replace

n If dirty, write to disk first
n Read page into memory and update page 

table
n Make process runnable again

n Restart from faulting instruction
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TLB and Cache Interaction
n If cache tag uses 

physical address
n Need to translate 

before cache lookup

n Alternative: use virtual 
address tag
n Complications due to 

aliasing
n Different virtual 

addresses for shared 
physical address
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Memory Protection
n Different tasks can share parts of their 

virtual address spaces
n But need to protect against errant access
n Requires OS assistance

n Hardware support for OS protection
n Privileged supervisor mode (aka kernel mode)
n Privileged instructions
n Page tables and other state information only 

accessible in supervisor mode
n System call exception (e.g., syscall in MIPS)
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The Memory Hierarchy

n Common principles apply at all levels of 
the memory hierarchy
n Based on notions of caching

n At each level in the hierarchy
n Block placement
n Finding a block
n Replacement on a miss
n Write policy

§5.8 A C
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The BIG Picture
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Block Placement
n Determined by associativity

n Direct mapped (1-way associative)
n One choice for placement

n n-way set associative
n n choices within a set

n Fully associative
n Any location

n Higher associativity reduces miss rate
n Increases complexity, cost, and access time
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Finding a Block

n Hardware caches
n Reduce comparisons to reduce cost

n Virtual memory
n Full table lookup makes full associativity feasible
n Benefit in reduced miss rate

Associativity Location method Tag comparisons
Direct mapped Index 1
n-way set 
associative

Set index, then search 
entries within the set

n

Fully associative Search all entries #entries
Full lookup table 0
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Replacement
n Choice of entry to replace on a miss

n Least recently used (LRU)
n Complex and costly hardware for high associativity

n Random
n Close to LRU, easier to implement

n Virtual memory
n LRU approximation with hardware support
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Write Policy
n Write-through

n Update both upper and lower levels
n Simplifies replacement, but may require write 

buffer
n Write-back

n Update upper level only
n Update lower level when block is replaced
n Need to keep more state

n Virtual memory
n Only write-back is feasible, given disk write 

latency 
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Sources of Misses
n Compulsory misses (aka cold start misses)

n First access to a block
n Capacity misses

n Due to finite cache size
n A replaced block is later accessed again

n Conflict misses (aka collision misses)
n In a non-fully associative cache
n Due to competition for entries in a set
n Would not occur in a fully associative cache of 

the same total size
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Cache Design Trade-offs

Design change Effect on miss rate Negative performance 
effect

Increase cache size Decrease capacity 
misses

May increase access 
time

Increase associativity Decrease conflict 
misses

May increase access 
time

Increase block size Decrease compulsory 
misses

Increases miss 
penalty. For very large 
block size, may 
increase miss rate 
due to pollution.
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Cache Control
n Example cache characteristics

n Direct-mapped, write-back, write allocate
n Block size: 4 words (16 bytes)
n Cache size: 16 KB (1024 blocks)
n 32-bit byte addresses
n Valid bit and dirty bit per block
n Blocking cache

n CPU waits until access is complete

§5.9 U
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Tag Index Offset
03491031

4 bits10 bits18 bits
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Interface Signals

CacheCPU Memory

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles 
per access
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Finite State Machines
n Use an FSM to 

sequence control steps
n Set of states, transition 

on each clock edge
n State values are binary 

encoded
n Current state stored in a 

register
n Next state

= fn (current state,
current inputs)

n Control output signals
= fo (current state)
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Cache Controller FSM

Could 
partition into 

separate 
states to 

reduce clock 
cycle time
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Cache Coherence Problem
n Suppose two CPU cores share a physical 

address space
n Write-through caches

§5.10 P
arallelism

 and M
em

ory H
ierarchies: C

ache C
oherence

Time 
step

Event CPU A’s 
cache

CPU B’s 
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1
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Coherence Defined
n Informally: Reads return most recently 

written value
n Formally:

n P writes X; P reads X (no intervening writes)
Þ read returns written value

n P1 writes X; P2 reads X (sufficiently later)
Þ read returns written value

n c.f. CPU B reading X after step 3 in example
n P1 writes X, P2 writes X
Þ all processors see writes in the same order

n End up with the same final value for X
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Cache Coherence Protocols
n Operations performed by caches in 

multiprocessors to ensure coherence
n Migration of data to local caches

n Reduces bandwidth for shared memory
n Replication of read-shared data

n Reduces contention for access
n Snooping protocols

n Each cache monitors bus reads/writes
n Directory-based protocols

n Caches and memory record sharing status of 
blocks in a directory
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Invalidating Snooping Protocols
n Cache gets exclusive access to a block 

when it is to be written
n Broadcasts an invalidate message on the bus
n Subsequent read in another cache misses

n Owning cache supplies updated value

CPU activity Bus activity CPU A’s 
cache

CPU B’s 
cache

Memory

0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X Invalidate for X 1 0
CPU B read X Cache miss for X 1 1 1
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Memory Consistency
n When are writes seen by other processors

n “Seen” means a read returns the written value
n Can’t be instantaneously

n Assumptions
n A write completes only when all processors have seen 

it
n A processor does not reorder writes with other 

accesses
n Consequence

n P writes X then writes Y
Þ all processors that see new Y also see new X

n Processors can reorder reads, but not writes
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Multilevel On-Chip Caches
§5.13 The A
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2-Level TLB Organization
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Supporting Multiple Issue
n Both have multi-banked caches that allow 

multiple accesses per cycle assuming no 
bank conflicts

n Core i7 cache optimizations
n Return requested word first
n Non-blocking cache

n Hit under miss
n Miss under miss

n Data prefetching



DGEMM
n Combine cache blocking and subword 

parallelism
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Pitfalls
n Byte vs. word addressing

n Example: 32-byte direct-mapped cache,
4-byte blocks

n Byte 36 maps to block 1
n Word 36 maps to block 4

n Ignoring memory system effects when 
writing or generating code
n Example: iterating over rows vs. columns of 

arrays
n Large strides result in poor locality

§5.15 Fallacies and P
itfalls
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Pitfalls
n In multiprocessor with shared L2 or L3 

cache
n Less associativity than cores results in conflict 

misses
n More cores Þ need to increase associativity

n Using AMAT to evaluate performance of 
out-of-order processors
n Ignores effect of non-blocked accesses
n Instead, evaluate performance by simulation
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Pitfalls
n Extending address range using segments

n E.g., Intel 80286
n But a segment is not always big enough
n Makes address arithmetic complicated

n Implementing a VMM on an ISA not 
designed for virtualization
n E.g., non-privileged instructions accessing 

hardware resources
n Either extend ISA, or require guest OS not to 

use problematic instructions
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Concluding Remarks
n Fast memories are small, large memories are 

slow
n We really want fast, large memories L
n Caching gives this illusion J

n Principle of locality
n Programs use a small part of their memory space 

frequently
n Memory hierarchy

n L1 cache « L2 cache « … « DRAM memory
« disk

n Memory system design is critical for 
multiprocessors
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