Shift Cipher

Shift Cipher

• Input/output: $\{a, b, \dots, z\}$ with encoding $\{0, 1, \dots, 25\}$

а	b	с	d	е	f	g	h	i	j	k		Ι	m		n	0
0	1	2	3	4	5	6	7	8	9	10		11	12		13	14
р	0	1	r	S	t		u	v	W	' :	x	у	:	z]	
15	1	6	17	18	1	9	20	21	22	2 2	3	24	1 2	25]	

- Encryption function: $E_k(x) = x + k \pmod{26}$ Decryption function: $D_k(y) = y - k \pmod{26}$
- The encryption or decryption key: $k \in \{0, 1, 2, \dots, 25\}$
- Key space size: 26 (or 25, if you do not count k = 0)
- Caesar cipher: Shift cipher with a constant encryption key k = 3

Shift Cipher

• For
$$k = 15$$
, hello is encrypted as wtaad since
 $E_{15}(h) = E_{15}(7) = 7 + 15 = 22 \pmod{26} \rightarrow w$
 $E_{15}(e) = E_{15}(4) = 4 + 15 = 19 \pmod{26} \rightarrow t$
 $E_{15}(1) = E_{15}(11) = 11 + 15 = 26 = 0 \pmod{26} \rightarrow a$
 $E_{15}(o) = E_{15}(14) = 14 + 15 = 29 = 3 \pmod{26} \rightarrow d$
• For $k = 12$, eqqw is decrypted as seek since
 $D_{12}(e) = D_{12}(4) = 4 - 12 = -8 = 18 \pmod{26} \rightarrow s$

 $D_{12}(\mathbf{q}) = D_{12}(16) = 16 - 12 = 4 \pmod{26} \rightarrow \mathbf{e}$ $D_{12}(\mathbf{w}) = D_{12}(22) = 22 - 12 = 10 \pmod{26} \rightarrow \mathbf{k}$

Cryptanalysis of Shift Cipher

Ciphertext only (CO)

- Exhaustive key search: a paragraph of ciphertext (in order to avoid ambiguity)
- Frequency analysis: a paragraph of ciphertext (in order to get statistically reliable frequency count)
- Known plaintext (KP): a single plaintext/ciphertext pair
- Chosen plaintext (CP): a single plaintext/ciphertext pair
- Chosen text (CT): a single plaintext/ciphertext pair

Exhaustive Key Search

- Given an encrypted text: vnnc vn jc ljsn jc oxda vv
- Decrypt the text with all possible keys:

 $\underline{k=1}$ ummb um ib kirm ib nwcz xu $\underline{k=2}$

tlla tl ha jhql ha mvby wt

 $\xrightarrow{k=8}$ nffu nf bu dbkf bu gpvs qn

- $\xrightarrow{k=9}$ meet me at caje at four pm
- A short encrypted text may have several "meaningful" decryptions:

vnnc	$\xrightarrow{k=9}$	meet
vnnc	$\stackrel{k=25}{\longrightarrow}$	wood

For a sufficiently long encrypted text, there will not be ambiguity •

. . .

Frequency Analysis

- The most frequently occurring ciphertext is the encryption of the most frequently occurring plaintext
- In English: that would be the letter e, followed up by letters t and a

_etter frequ	iencies (perc	entages) ir	n English
--------------	---------------	-------------	-----------

а	b	с	d	е		f	g		h	i	i	
8.2	1.5	2.8	4.3	12.7		2.2	2.0) 6.1		1 7.0		0.2
k	I	m	n	0	F	p	q	r		S	t	
0.8	4.0	2.4	6.7	7.5	1	.9	0.1	6.0		6.3).1
u	v	W	х	у		z						
2.8	1.0	2.3	0.1	2.0	0	.1						

• Compute the ciphertext letter frequencies, and find the most frequently occurring the letter: this must be the ciptertext for the letter e

The future is in the details

When creating iPhone 4, Apple designers and engineers didn't start with a clean sheet of paper. They started with three years of experience designing and building the phones that redefined what a phone can do. iPhone 4 is the result of everything they've learned so far. And it's all contained in a beautiful enclosure a mere 9.3 millimeters thin, making iPhone 4 the world's thinnest smartphone.

Frequency: $\frac{54}{435} \approx 12.4\%$

The future is in the details

When creating iPhone 4, Apple designers and engineers didn't start with a clean sheet of paper. They started with three years of experience designing and building the phones that redefined what a phone can do. iPhone 4 is the result of everything they've learned so far. And it's all contained in a beautiful enclosure a mere 9.3 millimeters thin, making iPhone 4 the world's thinnest smartphone.

Frequency: $\frac{23}{435} \approx 5.3\%$

Occurrences of Letter t

The future is in the details

When creating iPhone 4, Apple designers and engineers didn't start with a clean sheet of paper. They started with three years of experience designing and building the phones that redefined what a phone can do. iPhone 4 is the result of everything they've learned so far. And it's all contained in a beautiful enclosure a mere 9.3 millimeters thin, making iPhone 4 the world's thinnest smartphone.

Frequency: $\frac{30}{435} \approx 6.9\%$

The novel "Gadsby" by E. V. Wright is written as a lipogram^{*}; it has 50,000 words in it without a single occurrence of the letter e

"A Void", translated from the original French "La Disparition" (The Disappearance), is a 300-page lipogrammatic novel, written in 1969 by Georges Perec, entirely without using the letter e (except for the author's name)

Cover of the English translation of La Disparition

However, the probability of occurrence for such texts is very low

* A lipogram (leipográmmatos: leaving out a letter) is a kind of constrained writing or word game consisting of writing paragraphs in which a particular letter or group of letters is avoided

Frequency Analysis

- Given the short ciphertext: tbxqebo fp dobxq ebob
- Frequency analysis finds the most frequently occurring letter as b
- The letter b (most probably) is the ciphertext for the letter e

$$E_k(e) = b$$

 $E_k(4) = 4 + k = 1 \pmod{26}$
 $k = 1 - 4 = -3 = 23 \pmod{26}$

• Indeed, if we decrypt the encrypted text using the key k = 23, we obtain: tbxqebo fp dobxq ebob $\xrightarrow{k=23}$ weather is great here

Known Plaintext Scenario

• Given a (any) single plaintext/ciphertext pair (x, y), we have

$$E_k(x) = x + k = y \pmod{26}$$

$$k = y - x \pmod{26}$$

• Consider the encrypted message: zrrg zr ng bhe frperg ybpngvba and the plaintext/ciphertext pair: $m \to z$

$$E_k(\mathbf{m}) = \mathbf{z}$$

 $E_k(12) = 12 + k = 25 \pmod{26}$
 $k = 25 - 12 = 13 \pmod{26}$

We find the key as k = 13; indeed this key decrypts the message $\stackrel{k=13}{\longrightarrow}$ meet me at our secret location

Chosen Plaintext Scenario

Since the cryptanalyst gets to choose the plaintext, and obtains the ciphertext, she/he can select the pair (x, y) such that x = a

$$E_k(a) = 0 + k = y \pmod{26}$$

 $k = y \pmod{26}$

- In other words, the key is equal to the encoding of the letter that is the ciphertext for a
- Using the previous encrypted text: zrrg zr ng bhe frperg ybpngvba
- We ask and obtain the ciphertext for a, which is given as n
- Since the encoding of n is 13, we obtain the key as k = 13

Chosen Ciphertext Scenario

• Similarly, if we can choose the ciphertext y in the pair (x, y), and obtain the plaintext x, all we have to do is to solve for the linear congruence

$$E_k(x) = x + k = y \pmod{26}$$

to obtain the key as

$$k = y - x \pmod{26}$$

- In fact the difficulty of obtaining the key for all three scenarios: KP, CP, CT is about the same: Obtain a single plaintext/ciphertext and solve for the key in the above linear congruence
- Therefore, we conclude that the shift cipher is very weak

Cryptanalysis of the Shift Cipher

- The number of keys is very small: 26 (or 25)
- Ciphertext only attack succeeds by performing 26 (or 25) decryptions of a not-so-short encrypted message (in order to avoid ambiguity)
- Known plaintext attack succeeds if we obtain a single pair (x, y) of plaintext and ciphertext; we solve for the linear congruence:

$$k = y - x \pmod{26}$$

• Similarly, the chosen text attack succeeds if we obtain a single pair (x, y) of plaintext and ciphertext; we use the above equation to obtain the key