Elementary Number Theory

Contents

- Number Sets
- GCD and Euclidean Algorithms
- Binary GCD Algorithm
- Modular Addition and Multiplication
- Multiplicative Inverse
- Modular Exponentiation

Number Sets

- We represent the set of integers as

$$
\mathcal{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- We denote the set of positive integers modulo n as $\mathcal{Z}_{n}=\{0,1, \ldots, n-1\}$
- Elements of \mathcal{Z}_{n} can be thought of as equivalency classes
- For $n \geq 2$, every integer in $a \in \mathcal{Z}$ maps into one of the elements $r \in \mathcal{Z}_{n}$ using the division law $a=q \cdot n+r$ which is represented as $a \equiv r(\bmod n)$

Number Sets

- Let $\mathcal{Z}_{5}=\{0,1,2,3,4\}$
- Therefore, 0 represents the infinite set of negative and positive integers: $0 \equiv\{\ldots,-15,-10,-5,0,5,10,15 \ldots\}$
- Similarly, 1 represents the infinite set of negative and positive integers: $1 \equiv\{\ldots,-14,-9,-4,1,6,11,16, \ldots\}$

Number Sets

- The symbol \mathcal{Z}_{n}^{*} represents the set of positive integers that are less than n and relatively prime to n
- If $a \in \mathcal{Z}_{n}^{*}$, then $\operatorname{gcd}(a, n)=1$
- When $n=p$ is prime, the set would be $\mathcal{Z}_{p}^{*}=\{1,2, \ldots, p-1\}$
- When n is not a prime, the number of elements that are less than n and relatively prime to n is given as $\phi(n)=\left|\mathcal{Z}_{n}^{*}\right|$
- Euler's Phi (totient) Function $\phi(n)$ is defined as the number of numbers in the range $[1, n-1]$ that are relatively prime to n

Greatest Common Divisor

- Given two positive integers a and b, their greatest common divisor (GCD) is denoted as $g=\operatorname{gcd}(a, b)$
- We can compute $\operatorname{gcd}(a, b)$ from the prime factorizations of a and b

$$
\begin{aligned}
a & =p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} \\
b & =p_{1}^{f_{1}} \cdot p_{2}^{f_{2}} \cdots p_{r}^{f_{r}}
\end{aligned}
$$

- Zero exponents are used to make the set of primes $p_{1}, p_{2}, \ldots, p_{r}$ the same for both a and b
- The GCD is computed as

$$
\operatorname{gcd}(a, b)=p_{1}^{\min \left(e_{1}, f_{1}\right)} \cdot p_{2}^{\min \left(e_{2}, f_{2}\right)} \cdots p_{r}^{\min \left(e_{r}, f_{r}\right)}
$$

- However, integer factorization algorithms require exponential time

GCD and Euclidean Algorithm

- The most commonly used algorithm for computing the greatest common divisor of two integers is the Euclidean algorithm
- The Euclidean algorithm is based the property

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-Q \cdot b)
$$

where Q is the integer division $Q=\lfloor a / b\rfloor$

- By applying this reduction rule repeatedly, the Euclidean algorithm obtains $\operatorname{gcd}(a, b)=\operatorname{gcd}(g, 0)=g$
- For example, to compute $\operatorname{gcd}(56,21)$, we perform the iterations

$$
\begin{array}{rlll}
\operatorname{gcd}(56,21) & \rightarrow\lfloor 56 / 21\rfloor=2 & \rightarrow & \operatorname{gcd}(21,56-2 \cdot 21) \\
\operatorname{gcd}(21,14) & \rightarrow\lfloor 21 / 14\rfloor=1 & \rightarrow & \operatorname{gcd}(14,21-1 \cdot 14) \\
\operatorname{gcd}(14,7) & \rightarrow\lfloor 14 / 7\rfloor=2 & \rightarrow & \operatorname{gcd}(7,14-2 \cdot 7) \\
\operatorname{gcd}(7,0) & =7 & &
\end{array}
$$

GCD and Euclidean Algorithm

- Given the positive integers a and b with $a>b$, the Euclidean algorithm computes the greatest common divisor g in $O(k)$ steps where k is the number of bits in a
function $\operatorname{EA}(a, b)$
Input: a, b with $a>b$
Output: $g=\operatorname{gcd}(a, b)$
1: while $b \neq 0$
2: $\quad Q \leftarrow a / b$
3: $\quad r \leftarrow a-Q \cdot b$
4: $\quad a \leftarrow b$
5: $\quad b \leftarrow r$
6: return a

GCD and Euclidean Algorithm Example

- Given $a=117$ and $b=45$, the Euclidean Algorithm computes

a	b	Q	r	new a	new b
117	45	2	27	45	27
45	27	1	18	27	18
27	18	1	9	18	9
18	9	2	0	9	0
$\mathbf{9}$	0				

- The EA function returns 9 since $\operatorname{gcd}(117,45)=9$

Extended Euclidean Algorithm

- Another important property of the GCD is that, if $\operatorname{gcd}(a, b)=g$, then there exists integers s and t such that

$$
s \cdot a+t \cdot b=g
$$

- We can compute s and t using the extended Euclidean algorithm by working back through the remainders in the Euclidean algorithm
- For example, to find $\operatorname{gcd}(833,301)=7$, we write

$$
\begin{aligned}
833-2 \cdot 301 & =231 \\
301-1 \cdot 231 & =70 \\
231-3 \cdot 70 & =21 \\
70-3 \cdot 21 & =7 \\
21-3 \cdot 7 & =0
\end{aligned}
$$

Extended Euclidean Algorithm

- Since $g=7$, we start with the 4 th equation and plug in the remainder value from the previous equation to this equation, and then move up

$$
\begin{aligned}
70-3 \cdot(231-3 \cdot 70) & =7 \\
10 \cdot 70-3 \cdot 231 & =7 \\
10 \cdot(301-1 \cdot 231)-3 \cdot 231 & =7 \\
10 \cdot 301-13 \cdot 231 & =7 \\
10 \cdot 301-13 \cdot(833-2 \cdot 301) & =7 \\
-13 \cdot 833+36 \cdot 301 & =7
\end{aligned}
$$

- Therefore, we find $s=-13$ and $t=36$
- This implies $g=s \cdot a+t \cdot b \Rightarrow 7=(-13) \cdot 833+36 \cdot 301$

Computation of Multiplicative Inverse

- The EEA allows us to compute the multiplicative inverse of an integer a modulo another integer n, if $\operatorname{gcd}(a, n)=1$
- The EEA obtains the identity $g=s \cdot a+t \cdot b$ which implies

$$
\begin{aligned}
s \cdot a+t \cdot n & =1 \\
s \cdot a & =1 \quad(\bmod n) \\
a^{-1} & =s(\bmod n)
\end{aligned}
$$

For example, $\operatorname{gcd}(23,25)=1$, and the extended Euclidean algorithm returns $s=12$ and $t=11$, such that

$$
1=12 \cdot 23-11 \cdot 25
$$

therefore $23^{-1}=12(\bmod 25)$

Fermat's Little Theorem

- Theorem: If p is prime and $\operatorname{gcd}(a, p)=1$, then $a^{p-1}=1(\bmod p)$
- For example, $p=7$ and $a=2$, we have $a^{p-1}=2^{6}=64=1(\bmod 7)$
- FLT can be used to compute the multiplicative inverse if the modulus is a prime number

$$
a^{-1}=a^{p-2} \quad(\bmod p)
$$

since $a^{-1} \cdot a=a^{p-2} \cdot a=a^{p-1}=1 \bmod p$

- The converse of the FLT is not true: If $a^{n-1}=1(\bmod n)$ and $\operatorname{gcd}(a, n)=1$, then n may or may not be a prime.
- Example: $\operatorname{gcd}(2,341)=1$ and $2^{340}=1(\bmod 341)$, but 341 is not prime: $341=11 \cdot 31$

Euler's Phi Function

- Euler's Phi (totient) Function $\phi(n)$ is defined as the number of numbers in the range $[1, n-1]$ that are relatively prime to n
- Let $n=7$, then $\phi(7)=6$ since for all $a \in[1,6]$, we have $\operatorname{gcd}(a, 7)=1$
- If p is a prime, $\phi(p)=p-1$
- For a positive power of prime, we have $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$
- If n and m are relatively prime, then $\phi(n \cdot m)=\phi(n) \cdot \phi(m)$
- If all prime factors of n is known, then $\phi(n)$ is easily computed:

$$
\phi(n)=n \cdot \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

Euler's Theorem

- Theorem: If $\operatorname{gcd}(a, n)=1$, then $a^{\phi(n)}=1(\bmod n)$
- Example: $n=15$ and $a=2$, we have $2^{\phi(15)}=2^{8}=256=1 \bmod 15$
- Euler's theorem can be used to compute the multiplicative inverse for any modulus:

$$
a^{-1}=a^{\phi(n)-1} \quad(\bmod n)
$$

however, this requires the computation of the $\phi(n)$ and therefore the factorization of n

- To compute $23^{-1} \bmod 25$, we need $\phi(25)=\phi\left(5^{2}\right)=5^{2}-5^{1}=20$, and therefore,

$$
23^{-1}=23^{20-1}=23^{19}=12 \quad(\bmod 25)
$$

Representing Numbers mod n

- The elements of \mathcal{Z}_{n} can be represented in two distinct ways: the Least Positive (LP) representation the Least Magnitude (LM) representation
- The Least Positive representation uses $\mathcal{Z}_{n}=\{0,1,2, \ldots, n-1\}$
- Example: the least positive representation mod 10 $\mathcal{Z}_{10}=\{0,1,2,3,4,5,6,7,8,9\}$
- Example: the least positive representation mod 11 $\mathcal{Z}_{11}=\{0,1,2,3,4,5,6,7,8,9,10\}$

Representing Numbers mod n

- The Least Magnitude representation for n is odd $\mathcal{Z}_{n}=\{-(n-1) / 2, \ldots,-2,-1,0,1,2, \ldots,(n-1) / 2\}$
- Example: the least magnitude representation mod 11 $\mathcal{Z}_{11}=\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$
- The Least Magnitude representation for n is even Either: $\mathcal{Z}_{n}=\{-n / 2+1, \ldots,-2,-1,0,1,2, \ldots, n / 2\}$ Or: $\mathcal{Z}_{n}=\{-n / 2, \ldots,-2,-1,0,1,2, \ldots, n / 2-1\}$
- Example: the least magnitude representation mod 10

Either: $\mathcal{Z}_{10}=\{-4,-3,-2,-1,0,1,2,3,4,5\}$
Or: $\mathcal{Z}_{10}=\{-5,-4,-3,-2,-1,0,1,2,3,4\}$

- The LM property: a is LM mod n if $|a| \leq|n-a|$

Modular Arithmetic Operations

- Given a positive odd n, how does one compute modular additions, subtractions, multiplications, and exponentiations?
- $s=a+b(\bmod n)$ is computed in two steps: 1$)$ add, 2$)$ reduce
- If $a, b<n$ to start with, then the reduction step requires a subtraction

$$
\text { if } s>n \text {, then } s=s-n
$$

- $s=a-b(\bmod n)$ is computed similarly: 1$)$ subtract, 2$)$ reduce
- The least positive representation is often preferred
- The least positive representation uses unsigned arithmetic
- Negative numbers are brought to the range $[0, n-1]$

Modular Multiplication

- Modular Multiplication $a \cdot b(\bmod n)$ can be computed in two steps:
- Multiplication step: $c \leftarrow a \cdot b$
- Reduction step: $r \leftarrow c \bmod n$
- The reduction step may require division by n to obtain the remainder

$$
a \cdot b=c=Q \cdot n+r
$$

- However, we do not need the quotient!
- The division by n is an expensive operation
- The Montgomery Multiplication: A new algorithm for performing modular multiplication that does not require division by n

Modular Exponentiation

- The computation of $b=a^{e}(\bmod n)$: Perform the steps of the exponentiation a^{e}, reducing numbers at each step mod n
- Reduction is required, otherwise a^{e} doubles in size at each size
- Exponentiation algorithms: binary method, m-ary methods, sliding windows, power tree method, factor method
- The binary method is the most commonly used algorithm
- The binary method uses the binary expansion of the exponent $e=\left(e_{k-1} e_{k-2} \cdots e_{1} e_{0}\right)$, and performs squaring and multiplication operations at each step

Modular Exponentiation with Binary Method

- Given the inputs a, n, and $e=\left(e_{k-1} e_{k-2} \cdots e_{1} e_{0}\right)_{2}$, the binary method computes $b=a^{e}(\bmod n)$ as follows

1: if $e_{k-1}=1$ then $b \leftarrow a$ else $b \leftarrow 1$
2: for $i=k-2$ downto 0
2a: $\quad b \leftarrow b \cdot b(\bmod n)$
2b: \quad if $e_{i}=1$ then $b \leftarrow b \cdot a(\bmod n)$
3: return b

- $e=(110111)=55$
- $k=6$
- $e_{5}=1 \Rightarrow b \leftarrow a$

$i \rightarrow$	4	3	2	1	0
$e_{i} \rightarrow$	1	0	1	1	1
Step 2a	a^{2}	a^{6}	a^{12}	a^{26}	a^{54}
Step 2b	a^{3}	a^{6}	a^{13}	a^{27}	a^{55}

