Elementary Number Theory

ttp://koclab.org Çetin Kaya Koç Winter 2020 1/2

Contents

- Number Sets
- GCD and Euclidean Algorithms
- Binary GCD Algorithm
- Modular Addition and Multiplication
- Multiplicative Inverse
- Modular Exponentiation

Number Sets

- We represent the set of integers as $\mathcal{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- We denote the set of positive integers modulo n as $\mathcal{Z}_n = \{0, 1, \dots, n-1\}$
- Elements of \mathcal{Z}_n can be thought of as equivalency classes
- For $n \ge 2$, every integer in $a \in \mathcal{Z}$ maps into one of the elements $r \in \mathcal{Z}_n$ using the division law $a = q \cdot n + r$ which is represented as $a \equiv r \pmod{n}$

◀□▶◀酃▶◀臺▶◀臺▶ 臺 쒸९♡

http://koclab.org Çetin Kaya Koç Winter 2020

Number Sets

- Let $\mathcal{Z}_5 = \{0, 1, 2, 3, 4\}$
- Therefore, 0 represents the infinite set of negative and positive integers: $0 \equiv \{..., -15, -10, -5, 0, 5, 10, 15...\}$
- Similarly, 1 represents the infinite set of negative and positive integers: $1 \equiv \{..., -14, -9, -4, 1, 6, 11, 16, ...\}$

(ロ) (레) (필) (필) (필) (필) (연Q)

http://koclab.org

Number Sets

- The symbol \mathbb{Z}_n^* represents the set of positive integers that are less than n and relatively prime to n
- If $a \in \mathcal{Z}_n^*$, then $\gcd(a,n) = 1$
- When n=p is prime, the set would be $\mathcal{Z}_p^*=\{1,2,\ldots,p-1\}$
- When n is not a prime, the number of elements that are less than n and relatively prime to n is given as $\phi(n) = |\mathcal{Z}_n^*|$
- Euler's Phi (totient) Function $\phi(n)$ is defined as the number of numbers in the range [1, n-1] that are relatively prime to n

◆ロト→御ト→重ト→重ト ■ めの@

http://koclab.org Çetin Kaya Koç

Greatest Common Divisor

- Given two positive integers a and b, their greatest common divisor (GCD) is denoted as $g = \gcd(a, b)$
- We can compute gcd(a, b) from the prime factorizations of a and b

$$a = p_1^{e_1} \cdot p_2^{e_2} \cdots p_r^{e_r}$$

 $b = p_1^{f_1} \cdot p_2^{f_2} \cdots p_r^{f_r}$

- Zero exponents are used to make the set of primes p_1, p_2, \dots, p_r the same for both a and b
- The GCD is computed as

$$\gcd(a,b)=p_1^{\min(e_1,f_1)}\cdot p_2^{\min(e_2,f_2)}\cdots p_r^{\min(e_r,f_r)}$$

However, integer factorization algorithms require exponential time

attp://koclab.org Cetin Kaya Koc Winter 2020 6/21

GCD and Euclidean Algorithm

- The most commonly used algorithm for computing the greatest common divisor of two integers is the Euclidean algorithm
- The Euclidean algorithm is based the property

$$\gcd(a,b)=\gcd(b,a-Q\cdot b)$$

where Q is the integer division Q = |a/b|

- By applying this reduction rule repeatedly, the Euclidean algorithm obtains gcd(a, b) = gcd(g, 0) = g
- For example, to compute gcd(56, 21), we perform the iterations

$$\begin{array}{llll} \gcd(56,21) & \rightarrow & \lfloor 56/21 \rfloor = 2 & \rightarrow & \gcd(21,56-2\cdot21) \\ \gcd(21,14) & \rightarrow & \lfloor 21/14 \rfloor = 1 & \rightarrow & \gcd(14,21-1\cdot14) \\ \gcd(14,7) & \rightarrow & \lfloor 14/7 \rfloor = 2 & \rightarrow & \gcd(7,14-2\cdot7) \\ \gcd(7,0) & = & 7 \end{array}$$

Winter 2020

Cetin Kaya Koc

GCD and Euclidean Algorithm

• Given the positive integers a and b with a > b, the Euclidean algorithm computes the greatest common divisor g in O(k) steps where k is the number of bits in a

```
function EA(a, b)
Input: a, b with a > b
Output: g = \gcd(a, b)
    while b \neq 0
2:
         Q \leftarrow a/b
3:
         r \leftarrow a - Q \cdot b
4: a \leftarrow b
5:
   b \leftarrow r
6:
```

return a

GCD and Euclidean Algorithm Example

• Given a = 117 and b = 45, the Euclidean Algorithm computes

а	b	Q	r	new a	new b
117	45	2	27	45	27
45	27	1	18	27	18
27	18	1	9	18	9
18	9	2	0	9	0
9	0				

• The EA function returns 9 since gcd(117, 45) = 9

◆□▶★御▶★恵▶★恵▶ ■ 釣९@

http://koclab.org

Extended Euclidean Algorithm

• Another important property of the GCD is that, if gcd(a, b) = g, then there exists integers s and t such that

$$s \cdot a + t \cdot b = g$$

- We can compute s and t using the extended Euclidean algorithm by working back through the remainders in the Euclidean algorithm
- For example, to find gcd(833, 301) = 7, we write

$$833 - 2 \cdot 301 = 231$$

$$301 - 1 \cdot 231 = 70$$

$$231 - 3 \cdot 70 = 21$$

$$70 - 3 \cdot 21 = 7$$

$$21 - 3 \cdot 7 = 0$$

4 L P 4 E P 4 E P 5 Y) (P

10/21

Extended Euclidean Algorithm

• Since g = 7, we start with the 4th equation and plug in the remainder value from the previous equation to this equation, and then move up

$$70 - 3 \cdot (231 - 3 \cdot 70) = 7$$

$$10 \cdot 70 - 3 \cdot 231 = 7$$

$$10 \cdot (301 - 1 \cdot 231) - 3 \cdot 231 = 7$$

$$10 \cdot 301 - 13 \cdot 231 = 7$$

$$10 \cdot 301 - 13 \cdot (833 - 2 \cdot 301) = 7$$

$$-13 \cdot 833 + 36 \cdot 301 = 7$$

- Therefore, we find s = -13 and t = 36
- This implies $g = s \cdot a + t \cdot b \Rightarrow 7 = (-13) \cdot 833 + 36 \cdot 301$

4 L P 4 E P

Winter 2020

Computation of Multiplicative Inverse

- The EEA allows us to compute the multiplicative inverse of an integer a modulo another integer n, if gcd(a, n) = 1
- The EEA obtains the identity $g = s \cdot a + t \cdot b$ which implies

$$s \cdot a + t \cdot n = 1$$

 $s \cdot a = 1 \pmod{n}$
 $a^{-1} = s \pmod{n}$

For example, gcd(23, 25) = 1, and the extended Euclidean algorithm returns s = 12 and t = 11, such that

$$1=12\cdot 23-11\cdot 25$$

therefore $23^{-1} = 12 \pmod{25}$

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ゆ

http://koclab.org Çetin Kaya Koç Winter 2020

Fermat's Little Theorem

- Theorem: If p is prime and gcd(a, p) = 1, then $a^{p-1} = 1 \pmod{p}$
- For example, p = 7 and a = 2, we have $a^{p-1} = 2^6 = 64 = 1 \pmod{7}$
- FLT can be used to compute the multiplicative inverse if the modulus is a prime number

$$a^{-1} = a^{p-2} \pmod{p}$$

- since $a^{-1} \cdot a = a^{p-2} \cdot a = a^{p-1} = 1 \mod p$
- The converse of the FLT is not true: If $a^{n-1} = 1 \pmod{n}$ and gcd(a, n) = 1, then n may or may not be a prime.
- Example: gcd(2,341) = 1 and $2^{340} = 1 \pmod{341}$, but 341 is not prime: $341 = 11 \cdot 31$

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

http://koclab.org Çetin Kaya Koç

Euler's Phi Function

- Euler's Phi (totient) Function $\phi(n)$ is defined as the number of numbers in the range [1, n-1] that are relatively prime to n
- Let n=7, then $\phi(7)=6$ since for all $a\in[1,6]$, we have $\gcd(a,7)=1$
- If p is a prime, $\phi(p) = p 1$
- For a positive power of prime, we have $\phi(p^k) = p^k p^{k-1}$
- If n and m are relatively prime, then $\phi(n \cdot m) = \phi(n) \cdot \phi(m)$
- If all prime factors of n is known, then $\phi(n)$ is easily computed:

$$\phi(n) = n \cdot \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

◆ロト ◆回ト ◆ 直ト ◆ 直 ・ りへ ○

attp://koclab.org Cetin Kaya Koç Winter 2020 1

Euler's Theorem

- Theorem: If gcd(a, n) = 1, then $a^{\phi(n)} = 1 \pmod{n}$
- Example: n = 15 and a = 2, we have $2^{\phi(15)} = 2^8 = 256 = 1 \mod 15$
- Euler's theorem can be used to compute the multiplicative inverse for any modulus:

$$a^{-1} = a^{\phi(n)-1} \pmod{n}$$

however, this requires the computation of the $\phi(n)$ and therefore the factorization of n

• To compute 23^{-1} mod 25, we need $\phi(25) = \phi(5^2) = 5^2 - 5^1 = 20$, and therefore,

$$23^{-1} = 23^{20-1} = 23^{19} = 12 \pmod{25}$$

ttp://koclab.org Çetin Kaya Koç Winter 2020 15/21

Representing Numbers mod n

- The elements of \mathcal{Z}_n can be represented in two distinct ways: the Least Positive (LP) representation the Least Magnitude (LM) representation
- The **Least Positive** representation uses $\mathcal{Z}_n = \{0, 1, 2, \dots, n-1\}$
- Example: the least positive representation mod 10 $\mathcal{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Example: the least positive representation mod 11 $\mathcal{Z}_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ かへの

http://koclab.org Çetin Kaya Koç

16/21

Representing Numbers mod n

- The **Least Magnitude** representation for n is odd $\mathcal{Z}_n = \{-(n-1)/2, \dots, -2, -1, 0, 1, 2, \dots, (n-1)/2\}$
- Example: the least magnitude representation mod 11 $\mathcal{Z}_{11} = \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$
- The **Least Magnitude** representation for n is even Either: $\mathcal{Z}_n = \{-n/2+1,\ldots,-2,-1,0,1,2,\ldots,n/2\}$ Or: $\mathcal{Z}_n = \{-n/2,\ldots,-2,-1,0,1,2,\ldots,n/2-1\}$
- Example: the least magnitude representation mod 10 Either: $\mathcal{Z}_{10} = \{-4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$ Or: $\mathcal{Z}_{10} = \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4\}$
- The LM property: a is LM mod n if $|a| \leq |n-a|$

http://koclab.org Cetin Kaya Koc Winter 2020 17/21

Modular Arithmetic Operations

- Given a positive odd n, how does one compute modular additions, subtractions, multiplications, and exponentiations?
- $s = a + b \pmod{n}$ is computed in two steps: 1) add, 2) reduce
- If a, b < n to start with, then the reduction step requires a subtraction

if
$$s > n$$
, then $s = s - n$

- $s = a b \pmod{n}$ is computed similarly: 1) subtract, 2) reduce
- The least positive representation is often preferred
- The least positive representation uses unsigned arithmetic
- Negative numbers are brought to the range [0, n-1]

◆ロト ◆回ト ◆ 直ト ◆ 直 ・ りへ ○

http://koclab.org Çetin Kaya Koç

Modular Multiplication

- Modular Multiplication $a \cdot b \pmod{n}$ can be computed in two steps:
 - Multiplication step: $c \leftarrow a \cdot b$
 - Reduction step: $r \leftarrow c \mod n$
- ullet The reduction step may require division by n to obtain the remainder

$$a \cdot b = c = Q \cdot n + r$$

- However, we do not need the quotient!
- The division by *n* is an expensive operation
- The Montgomery Multiplication: A new algorithm for performing modular multiplication that does not require division by *n*

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ か Q ○

19/21

http://koclab.org Çetin Kaya Koç Winter 2020

Modular Exponentiation

- The computation of $b = a^e \pmod{n}$: Perform the steps of the exponentiation a^e , reducing numbers at each step mod n
- Reduction is required, otherwise a^e doubles in size at each size
- Exponentiation algorithms: binary method, m-ary methods, sliding windows, power tree method, factor method
- The binary method is the most commonly used algorithm
- The binary method uses the binary expansion of the exponent $e=(e_{k-1}e_{k-2}\cdots e_1e_0)$, and performs squaring and multiplication operations at each step

◀□▶◀酃▶◀臺▶◀臺▶ 臺 쒸९♡

http://koclab.org Çetin Kaya Koç

20/21

Modular Exponentiation with Binary Method

• Given the inputs a, n, and $e = (e_{k-1}e_{k-2}\cdots e_1e_0)_2$, the binary method computes $b = a^e \pmod{n}$ as follows

1: **if**
$$e_{k-1} = 1$$
 then $b \leftarrow a$ **else** $b \leftarrow 1$

2: **for**
$$i = k - 2$$
 downto 0

2a:
$$b \leftarrow b \cdot b \pmod{n}$$

2b: **if**
$$e_i = 1$$
 then $b \leftarrow b \cdot a \pmod{n}$

3: **return** *b*

$$e = (1\ 10111) = 55$$

•
$$k = 6$$

•
$$e_5 = 1 \Rightarrow b \leftarrow a$$

uttp://koclab.org Çetin Kaya Koç Winter 2020 21/21