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7.4.2 DES algorithm

DESisaFeiste cipher which processes plaintext blocks of n = 64 bits, producing 64-bit
ciphertext blocks (Figure 7.8). The effective size of the secret key K isk = 56 bits, more
precisely, the input key K is specified as a 64-bit key, 8 bits of which (bits 8, 16, ... ,64)
may be used as parity bits. The 256 keysimplement (at most) 2°¢ of the 264! possible bijec-
tionson 64-bit blocks. A widely held belief isthat the parity bits wereintroduced to reduce
the effective key size from 64 to 56 hits, to intentionally reduce the cost of exhaustive key
search by afactor of 256.

K K
56 plaintext P 56
ciphertext C
64 - key K 64 i
p—— DES ——C ¢ —+— DES [ —*™P

Figure 7.8: DESinput-output.

Full detailsof DESaregivenin Algorithm 7.82 and Figures 7.9 and 7.10. An overview
follows. Encryption proceedsin 16 stages or rounds. From theinput key K, sixteen 48-bit
subkeys K; are generated, onefor each round. Withineach round, 8fixed, carefully selected
6-to-4 bit substitution mappings (S-boxes) S;, collectively denoted S, are used. The 64-bit
plaintext is divided into 32-bit halves Ly and Ry. Each round is functionally equivalent,
taking 32-bit inputs L;_; and R;_; from the previous round and producing 32-bit outputs
L;and R; for1 < ¢ < 16, asfollows:

L = Ri; (74)
Ri = Li-1® f(Ri—1, K;), where f(R;—1, K;) = P(S(E(R;-1) ® K;))(7.5)

Here E isafixed expansion permutation mapping R;_; from 32 to 48 bits (all bitsare used
once; some are used twice). P is another fixed permutation on 32 bits. An initial bit per-
mutation (IP) precedesthe first round; following the last round, the left and right halves are
exchanged and, finally, the resulting string is bit-permuted by theinverse of IP. Decryption
involvesthe same key and al gorithm, but with subkeys applied to the internal roundsin the
reverse order (Note 7.84).

A smplified view isthat the right half of each round (after expanding the 32-bit input
to 8 characters of 6 bits each) carries out a key-dependent substitution on each of 8 charac-
ters, then uses a fixed bit transposition to redistribute the bits of the resulting charactersto
produce 32 output bits.

Algorithm 7.83 specifies how to compute the DES round keys K;, each of which con-
tains 48 bits of K. These operations make use of tables PC1 and PC2 of Table 7.4, which
are called permuted choice 1 and permuted choice 2. To begin, 8 bits (ks, k16, . . . , kes) Of
K arediscarded (by PC1). The remaining 56 bits are permuted and assigned to two 28-bit
variables C' and D; and then for 16 iterations, both C' and D are rotated either 1 or 2 bits,
and 48 hits (K;) are selected from the concatenated resullt.
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7.82 Algorithm Data Encryption Standard (DES)

INPUT: plaintext m; ... mg4; 64-bitkey K = k; ... kgy (includes 8 parity bits).
OUTPUT: 64-bit ciphertext block C = ¢; . .. cg4. (FOr decryption, see Note 7.84.)
1. (key schedule) Compute sixteen 48-bit round keys K; from K using Algorithm 7.83.
2. (Lo, Rg) < IP(myma...meq). (UseIP from Table 7.2 to permute hits; split the
result into |eft and rlght 32-hit haIV%LO = msgMsg ... Mg, Rg = msrmyg ... m7.)
3. (16 rounds) for 7 from 1 to 16, compute L; and R; using Equations (7.4) and (7.5)
above, computing f(R;—1, K;) = P(S(E(R;—1) @ K;)) asfollows:
(8 Expand R;_1 = ryirs .. .r32 from 32to 48 bitsusing E per Table 7.3:
T« E(Ri_l). (ThUST = T32T1T2 ... 7“327“1.)
(b) T + TOK,;. Represent T’ as eight 6-bit character strings: (Bi,... ,Bs) =
T'.
(C) T" (Sl (Bl), SQ(BQ), Ce Sg(Bg)) (Here Sl(Bl) maps B; = biby...bg
to the 4-bit entry in row r and column ¢ of S; in Table 7.8, page 260 where
r = 2-by + bg, and babsb,bs isthe radix-2 representation of 0 < ¢ < 15. Thus
S51(011011) yieldsr = 1, ¢ = 13, and output 5, i.e., binary 0101.)
(d) T «+ P(T"). (Use P per Teble7.3to permutethe 32 bitsof 7" = t1ts . . . t3a,
yleldlng tigl7 ... t25.)
4. biby...bgy < (ng, L16). (Exchangeflnal b|OCkSL16, Rlﬁ.)
5 C «+ IP‘l(b1b2 ...beyq). (Transposeusing IP~! from Table 7.2; C' = bygbs . . . bas.)

IP P!
58 |50 |42 |34 | 26| 18|10 | 2 40 | 8 |48 |16 | 56| 24 | 64 | 32
60 | 52 (44136 | 28| 20|12 | 4 39| 7|47 |15 |5 |23 |63]|31
62 | 54|46 |38 |30 |22 )|14|6 38| 6|46 |14 | 54|22 |62]| 30
64 |56 |48 |40 | 32| 24|16 |8 37| 5|45 |13 (53| 21|61 |29
57149 41| 33| 25| 17 911 36| 4|44 |12 52|20 | 60| 28
50151 (43|13 |27 19| 11|3 35 (3|43 11|51 |19 59| 27
61 |53 (45|37 29|21 |13|5 341242 |10 |50 | 18|58 | 26
63 | 55 4739 |31 |23|15 |7 33 (1] 41 9149 |17 | 57|25

Table 7.2: DESinitial permutation and inverse (IP and IP™1).

E P
32 1 2 3| 4 5 16 7120 |21
4| 5 6 7 8 9 29|12 | 28 | 17
8 9|10 11|12 | 13 1115|2326
12 | 13| 14| 15| 16 | 17 5|18 | 31| 10
16 | 17| 18|19 | 20 | 21 2 8|24 14
201211 22|23|24 |25 32| 27 3 9
24| 25|26 |27 | 28| 29 19 | 13 | 30 6
2829|3031 |32 1 2| 11| 4|25

Table 7.3: DESper-round functions: expansion E and permutation P.
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Figure 7.9: DES computation path.
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Figure 7.10: DESinner function f.

7.83 Algorithm DES key schedule

INPUT: 64-bitkey K = k; ... kg4 (including 8 odd-parity bits).
OUTPUT: sixteen 48-bitkeys K;, 1 < i < 16.
1. Definewv;, 1 < i < 16 asfollows: v; = 1fori € {1,2,9,16}; v; = 2 otherwise.
(These are | eft-shift values for 28-hit circular rotations below.)
2. T + PCL(K); represent T as 28-bit halves (Cy, Dy). (UsePClin Table 7.4 to select
bits from K: Co = ksrkag ... ksg, Do = keskss . .. k4)
3. For i from 1 to 16, compute K; asfollows: C; + (Ci—1 <> v;), D; < (D;j—1 +
v;), K; < PC2(C;, D;). (Use PC2in Table 7.4 to select 48 bits from the concatena
tionbby ... bse of C; and D;: K; = bigbi7...b3a. "<’ denotes | €eft circular Shlft)

If decryptionisdesigned asasimplevariation of the encryptionfunction, savingsresult
in hardware or software code size. DES achievesthis as outlined in Note 7.84.

7.84 Note (DESdecryption) DESdecryptionconsistsof theencryptionalgorithmwiththesame
key but reversed key schedule, using in order K6, K15, ... , K1 (see Note 7.85). This
works as follows (refer to Figure 7.9). The effect of IP~" is cancelled by IP in decryp-
tion, leaving (R16, L16); consider applying round 1 to thisinput. The operation on the left
half ylelds, rather than L()EBf(R(), Kl), now Rw@f(Lw, K16) which, since Lig = Rys
and Ry = L15®f(R15, K16), isequal to L15® f(Rys, K16)® f (Ris, K16) = L15. Thus
round 1 decryption yields (Rys, L15), i.€., inverting round 16. Note that the cancellation
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7.85

7.86

PC1 PC2
57 |49 | 41| 33| 25| 17 9 1417 | 11 | 24 1] 5
1|58 | 50|42 |34 |2 | 18 3| 28|15| 6|21] 10
43
52

10 21159 | 51 35 | 27 23| 19 | 12 4 | 26 8
19 | 11 3| 60 44 | 36 16 7127 | 20 | 13 2
above for C;; below for D; 41 | 52 | 31| 37 | 47 | 55
63 | 55| 47| 39| 31| 23| 15 30 |40 | 51| 45| 33| 48

7162|5446 | 3| 30| 22 44 | 49 | 39 | 56 | 34 | 53
14 6|61 |53|45 | 37| 29 46 | 42 | 50 | 36 | 29 | 32
21 | 13 5128|200 | 12 4

Table 7.4: DESkey schedule bit selections (PC1 and PC2).

of each round is independent of the definition of f and the specific value of K;; the swap-
ping of halves combined with the XOR processis inverted by the second application. The
remaining 15 rounds are likewise cancelled one by one in reverse order of application, due
to the reversed key schedule.

Note (DES decryption key schedule) Subkeys K1, ... , K16 may be generated by Algo-
rithm 7.83 and used in reverse order, or generated in reverse order directly asfollows. Note
that after K¢ is generated, the original values of the 28-bit registers C and D are restored
(each has rotated 28 hits). Consequently, and due to the choice of shift-values, modifying
Algorithm 7.83 as follows generates subkeysin order Ky, . .. , K;: replace the left-shifts
by right-shift rotates; change the shift value v, to 0.

Example (DEStest vectors) The plaintext “Now is the time for all ", represented as a
string of 8-bit hex characters (7-bit ASCII characters plus|eading O-bit), and encrypted us-
ing the DES key specified by the hex string K = 0123456789ABCDEF results in the
following plaintext/ciphertext:

P =4E6F772069732074 68652074696D6520 666F7220616C6C20

C = 3FA40E8A984D4815 6A271787AB8883F9 893D51EC4AB563B53. O

7.4.3 DES properties and strength

7.87

There are many desirable characteristics for block ciphers. Theseinclude: each bit of the
ciphertext should depend on all bitsof thekey and al bitsof the plaintext; there should beno
statistical relationship evident between plaintext and ciphertext; altering any single plain-
text or key bit should alter each ciphertext bit with probability %; and altering a ciphertext
bit should result in an unpredictable change to the recovered plaintext block. Empirically,
DES satisfies these basic objectives. Some known properties and anomalies of DES are
given below.

(i) Complementation property

Fact Let E denote DES, and = the bitwise complement of z. Theny = Ex(x) implies
7 = Ex(T). That is, bitwise complementing both the key K and the plaintext « resultsin
complemented DES ciphertext.

Justification: Compare the first round output (see Figure 7.10) to (Lo, Ry) for the uncom-
plemented case. The combined effect of the plaintext and key being complemented results

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§7.4 DES 257

7.88

7.89

7.90

in the inputs to the XOR preceding the S-boxes (the expanded R;_; and subkey K;) both
being complemented; this double complementation cancels out in the XOR operation, re-
sulting in S-box inputs, and thus an overall result f(Ry, K1), as before. This quantity is
then XORed (Figure 7.9) to L (previously L), resultingin L; (rather than L;). The same
effect follows in the remaining rounds.

The complementation property isnormally of no help to acryptanalyst in known-plain-
text exhaustive key search. If an adversary has, for a fixed unknown key K, a chosen-
plaintext set of (z,y) data(Pr,C1), (P1,C2), then Cy = Ex (Py) impliesCy = Ew(Py).
Checking if the key K with plaintext P; yields either C; or Cy now rules out two keys
with one encryption operation, thus reducing the expected number of keys required before
success from 2°° to 2°4. Thisisnot a practical concern.

(i) Weak keys, semi-weak keys, and fixed points

If subkeys K to K¢ are equal, then the reversed and original schedules create identical
subkeys. K1 = K16, K2 = K;5, and so on. Consequently, the encryption and decryption
functions coincide. These are called weak keys (and also: palindromic keys).

Definition A DESweakkeyisakey K suchthat Ex (Ek (z)) = x foral z, i.e., defining
aninvolution. A pair of DES semi-weak keysisapair (K, K2) with Ex, (Ek,(z)) = .

Encryption with one key of a semi-weak pair operates as does decryption with the other.

Fact DES hasfour weak keysand six pairs of semi-weak keys.

Thefour DES weak keysarelisted in Table 7.5, along with corresponding 28-bit vari-
ables Cy and D, of Algorithm 7.83; here {0} represents j repetitions of bit 0. Since Cy
and Dy are all-zero or all-onebit vectors, and rotation of these has no effect, it follows that
all subkeys K; are equal and an involution results as noted above.

Thesix pairs of DES semi-weak keysarelisted in Table 7.6. Note their defining prop-
erty (Definition 7.88) occurs when subkeys K through K4 of thefirst key, respectively,
equal subkeys K16 through K of the second. Thisrequiresthat a 1-bit circular left-shift of
each of Cy and Dy, for thefirst 56-bit key resultsin the (Co, Dy) pair for the second 56-bit
key (see Note 7.84), and thereafter |eft-rotating C; and D; one or two bits for the first re-
sultsin the same value as right-rotating those for the second the same number of positions.
Thevaluesin Table 7.6 satisfy these conditions. Given any one 64-bit semi-weak key, its
paired semi-weak key may be obtained by splitting it into two halves and rotating each hal f
through 8 bits.

Fact Let E denote DES. For each of thefour DESweak keys K, thereexist 232 fixed points
of Ek,i.e, plaintextsz suchthat Fx (z) = . Similarly, four of thetwelve semi-weak keys
K each have 232 anti-fixed points, i.e., x such that E (z) = 7.

The four semi-weak keys of Fact 7.90 are in the upper portion of Table 7.6. Theseare
called anti-palindromic keys, since for these K; = K14, K2 = K15, and soon.

(ii) DES is not a group

For afixed DES key K, DES defines a permutation from {0, 1}%4 to {0, 1}%%. The set of
DES keys defines 2°6 such (potentially different) permutations. If this set of permutations
was closed under composition (i.e., given any two keys K1, K, thereexistsathird key K
suchthat Ex, () = Ex,(Ek, (x)) for dl z) then multiple encryption would be equivalent
to single encryption. Fact 7.91 states that thisis not the case for DES.
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7.91

7.92

wesk key (hexadecima) | Co | Do |
0101 0101 0101 0101 | {0}*® | {0}*®
FEFE FEFE FEFE FEFE | {1}*® | {1}*®
1F1F 1F1F OEOE OEOE | {0}*® | {1}*®
EOE0 EOEO F1F1 F1F1 | {1}*® | {0}*®

Table 7.5: Four DESweak keys.

| ¢ | Do | semi-weak key pair (hexadecimal) | G0 | Do |
{01}** [ {01}** |01FE O1FE 01FE O1FE, FEO1 FEO1 FEO1 FEO1 |{10}**|{10}**
{01}** [{10}** |1FEO 1FEO OEF1 OEF1, EO1F EO1F F10E F10E|{10}**|{01}**
{01}**| {0}*® |01EO0 O1EO 01F1 O1F1, EO01 E001 F101 F101 |{10}*| {0}*®
{01}**| {1}*® |1FFE 1FFE OEFE OEFE, FEL1F FE1F FEOE FEOE|{10}*| {1}*®
{0}*® | {01}**|011F 011F O10E 010E, 1F01 1F01 OEO1 OEO1| {0}*®|{10}**
{1}*® | {01}** | EOFE EOFE FA1FE F1FE, FEEO FEEO FEF1 FEF1| {1}*®|{10}*

Table 7.6: Sx pairs of DES semi-weak keys (one pair per line).

Fact The set of 256 permutations defined by the 256 DES keys is not closed under func-
tional composition. Moreover, alower bound on the size of the group generated by com-
posing this set of permutationsis 102499,

The lower bound in Fact 7.91 is important with respect to using DES for multiple en-
cryption. If the group generated by functional composition was too small, then multiple
encryption would be less secure than otherwise believed.

(iv) Linear and differential cryptanalysis of DES

Assuming that obtaining enormous numbers of known-plaintext pairs is feasible, linear
cryptanalysis provides the most powerful attack on DES to date; it is not, however, con-
sidered athreat to DESin practical environments. Linear cryptanalysisisalso possiblein a
ciphertext-only environment if someunderlying plaintext redundancy isknown (e.g., parity
bits or high-order 0-bitsin ASCII characters).

Differential cryptanalysisis one of the most general cryptanalytic toolsto date against
moderniterated block ciphers, including DES, Lucifer, and FEAL among many others. Itis,
however, primarily achosen-plaintext attack. Further information on linear and differential
cryptanalysisisgivenin §7.8.

Note (strength of DES) The complexity (see §7.2.1) of the best attacks currently known
against DESisgivenin Table 7.7; percentagesindicate success rate for specified attack pa-
rameters. The ‘processing complexity’ column provides only an estimate of the expected
cost (operation costs differ across the various attacks); for exhaustive search, the cost isin
DES operations. Regarding storage complexity, both linear and differential cryptanalysis
require only negligible storage in the sense that known or chosen texts can be processed
individually and discarded, but in a practical attack, storage for accumulated texts would
be required if ciphertext was acquired prior to commencing the attack.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§7.5 FEAL 259

attack method data complexity storage processing
known | chosen | complexity complexity
exhaustive precomputation | — 1 256 1 (table lookup)
exhaustive search 1 — negligible 255
linear cryptanalysis 213 (85%) — for texts 213
2% (10%) — for texts 250
differential cryptanalysis | — 247 for texts 217
255 — for texts 255

Table 7.7: DESstrength against various attacks.

7.93 Remark (practicality of attack models) To be meaningful, attack comparisons based on
different models(e.g., Table 7.7) must appropriately weigh the feasibility of extracting (ac-
quiring) enormous amounts of chosen (known) plaintexts, which is considerably more dif-
ficult to arrange than a comparable number of computing cycles on an adversary’sown ma-
chine. Exhaustive search with one known plaintext-ciphertext pair (for ciphertext-only, see
Example 7.28) and 2°° DES operationsis significantly morefeasiblein practice (e.g., using
highly parallelized custom hardware) than linear cryptanalysis (LC) requiring 243 known
pairs.

While exhaustive search, linear, and differential cryptanalysisallow recovery of aDES
key and, therefore, the entire plaintext, the attacks of Note 7.8, which becomefeasible once
about 232 ciphertexts are available, may be more efficient if the goal isto recover only part
of the text.

7.5 FEAL

The Fast Data Encipherment Algorithm (FEAL) isafamily of algorithmswhich has played
acritical role in the development and refinement of various advanced cryptanalytic tech-
niques, including linear and differentia cryptanalysis. FEAL-N maps 64-bit plaintext to
64-bit ciphertext blocks under a 64-bit secret key. Itisan N-round Feistel cipher similar to
DES(cf. Equations(7.4), (7.5)), but with afar simpler f-function, and augmented by initial
and final stages which XOR the two data halves as well as XOR subkeys directly onto the
data halves.

FEAL was designed for speed and simplicity, especially for software on 8-bit micro-
processors (e.g., chipcards). It uses byte-oriented operations (8-bit addition mod 256, 2-bit
left rotation, and X OR), avoids bit-permutations and table look-ups, and offers small code
size. Theinitial commercially proposed version with 4 rounds (FEAL-4), positioned as a
fast alternative to DES, was found to be considerably less secure than expected (see Ta
ble 7.10). FEAL-8 was similarly found to offer less security than planned. FEAL-16 or
FEAL-32 may yet offer security comparableto DES, but throughput decreases asthe num-
ber of roundsrises. Moreover, whereasthe speed of DESimplementations can beimproved
through very large lookup tables, this appears more difficult for FEAL.

Algorithm 7.94 specifiesFEAL-8. The f-function f(A,Y") mapsan input pair of 32 x
16 bits to a 32-bit output. Within the f function, two byte-oriented data substitutions (S-
boxes) Sy and S; are each used twice; each maps a pair of 8-bit inputs to an 8-bit output
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row column number
O] T[] [ 2] [ BT[] [3] ] [6] [ [7] [[ BT [0 ] [x0] [ [11] ][ [12] [ [13] ] [14] | [15]
1
[0] [14] 4]713] 1 2J15]1a] 8] 3]10] 6| 12][ 5] 9] o] 7
1] O(15| 7| 44/ 14| 2|13| 1||10| 6| 12 1 9 5 3 8
2] 41 1(14| 8|/ 13| 6| 2|11} 15| 12 9 7 3| 10 5 0
3] 15| 12| 8| 2 4| 9| 1| 7 5/ 11 3| 14 10 0 6| 13
Sa
[0] 15| 1| 8| 14 6(11| 3| 4 9| 7 2| 13 12 0 5/ 10
1] 3|13| 4| 71|15 2| 8|14 12| O 1| 10 6 9 11 5
2] 0(14| 7|11/ 10| 4|13| 1 5| 8| 12 6 9 3 2| 15
(3] 13| 8|10| 1 3(15| 4| 2| 11| 6 7| 12 0 5| 14 9
S3
[0] 10| 0| 9| 14 6| 3|15| 5 1|13| 12 7 11 4 2 8
1] 13| 7| 0| 9 3| 4| 6|10 2| 8 5| 14 12 1| 15 1
2] 13| 6| 4| 9 8(15| 3| Ofl11]| 1 2| 12 5| 10| 14 7
(3] 1110|113 O 6| 9| 8| 7 4(15| 14 3 11 5 2| 12
S
[0] 7(13(14| 3 0| 6| 9|10 1| 2 8 5 11| 12 4| 15
1] 13| 8|11 5 6|15 O 3 4| 7 2|1 12 1| 10| 14 9
2] 10 6| 9| O||12| 11| 7|13|/ 15| 1 3| 14 5 2 8 4
3] 3(15| 0| 6|/ 10| 1|13| 8 9| 4 5| 11 12 7 2| 14
Ss
[0] 2112 4| 1 71101 11| 6 8| 5 3| 15 13 0| 14 9
1] 14| 11| 2| 12 41 7113| 1 5| 0| 15| 10 3 9 8 6
2] 4| 2| 1|11|/10(13| 7| 8| 15| 9| 12 5 6 3 0| 14
(3] 1| 8|12 7 1(14| 2| 13 6| 15 0 9 10 4 5 3
Se
[0] 12| 1|10| 15 9| 2| 6| 8 0] 13 3 4 14 7 5| 11
1] 10| 15| 4| 2 71121 9| 5 6| 1| 13| 14 0| 11 3 8
2] 9114 |15| 5 2| 8|12 3 71 0 4| 10 1| 13| 11 6
(3] 4| 3| 2|12 9| 515|110 11| 14 1 7 6 0 8| 13
Sz
[0] 4111| 2|14/ 15| 0| 8|13 3|12 9 7 5| 10 6 1
1] 13| 0| 11| 7 41 9| 1(10( 14| 3 5| 12 2| 15 8 6
2] 1 4| 11| 13| 12| 3| 7|14 10| 15 6 8 0 5 9 2
3] 6(11|13| 8 1| 4|10 7 9| 5 0| 15 14 2 3| 12
Ss
[0] 13| 2| 8| 4 6|15 11| 1|/10| 9 3| 14 5 0| 12 7
1] 1115| 13| 8| 10| 3| 7| 4|/ 12| 5 6| 11 0| 14 9 2
2] || 7|11| 4| 1| 9|12|214| 2|| o| 6| 10| 13| 15| 3| 5| 8
(3] 21 114 7 4110| 8(13| 15| 12 9 0 3 5 6| 11

Table 7.8: DES Shoxes.
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7.94

7.95

7.96

(see Table 7.9). Sy and S; add asingle bit d € {0, 1} to 8-bit arguments z and y, ignore
the carry out of the top bit, and left rotate the result 2 bits (ROT2):

Sa(z,y) = ROT2(x + y + d mod 256) (7.6)

The key schedule uses a function fx (A, B) similar to the f-function (see Table 7.9; A;,
B;,Y;, t;, and U; are 8-bit variables), mapping two 32-bit inputs to a 32-bit output.

| [ U f(AY) [U« fx(AB) |

t = (Ao®A1)®Yo | AoDA:

to = (A20A43)BY1 | A2dA3

U1 = Sl(tl,tg) Sl(tl,tQ@BO)
Us = || So(tz,U1) So(t2, U1®B1)
Uo = || So(Ao,Un) So(Ao, U1®Bs)
Us = || S1(43,U2) S1(Asz, U2 Bs)

Table 7.9: Output U = (U, U1, U, Us) for FEAL functions f, fx (Algorithm 7.94).

Asthe operationsof 2-bit rotation and XOR are both linear, the only nonlinear elemen-
tary operationin FEAL is addition mod 256.

Algorithm Fast Data Encipherment Algorithm (FEAL-8)

INPUT: 64-bit pIaintext M = mi...Me4, 64-bit key K = kl . k64.
OUTPUT: 64-hit ciphertext block C = ¢; . .. cg4. (For decryption, see Note 7.96.)
1. (key schedule) Compute sixteen 16-bit subkeys K; from K using Algorithm 7.95.
2. Define My, = m; - --mgo, Mg = ms3 - - Mmgg4.
3. (Lo, Ro) + (My, Mg) @ ((Ks, Ko), (K10, K11)). (XORinitial subkeys.)
4. Ry + Ry Ly.
5. Forifromlto8do: L; + R;_1, R; < Li—l@f(Ri—ly Ki—l)- (USE Table 7.9 for
f(A, Y) with A = R,_1= (AQ,Al,AQ,A3) andY = K, 1= (%,Yi))
Lg + Ls®Rsg.
(Rg,Lg) — (Rg, Lg) (&) ((Klg,K13), (K14, K15)). (XOR fina subkeys.)
8. C «+ (Rs, Lg). (Notethe order of the final blocksis exchanged.)

N o

Algorithm FEAL-8 key schedule

INPUT: 64-hitkey K = ky ... kga.
OUTPUT: 256-bit extended key (16-bit subkeys K;, 0 < i < 15).
1. (initidize) U2 « 0, UCY «— Ey ... k3o, U ks ... kes.
2. U (Up, U1, Us, Us) for 8-bit U;. Compute Ky, ... , K15 asi runsfrom 1to 8:
(@ U « fx(U2 Ul-Dguti-3)), (fx isdefined in Table 7.9, where A and
B denote 4-byte vectors (Ao, A1, Az, A3), (Bo, B1, B2, Bs).)
(b) Kaio = (Up,Un), Koi1 = (Us,Us), UD « U.

Note (FEAL decryption) Decryption may be achieved using Algorithm 7.94 with the same
key K and ciphertext C = (Rsg, Lg) asthe plaintext input M, but with the key schedule
reversed. Morespecifically, subkeys(( K12, K13), (K14, K15)) areusedfor theinitial XOR
(step 3), ((Ks, Ky), (K10, K11)) for the final XOR (step 7), and the round keys are used
from K; back to K (step 5). Thisisdirectly analogousto decryptionfor DES (Note 7.84).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



262

Ch. 7 Block Ciphers

7.97

7.98

7.99

7.100

Note (FEAL-N) FEAL with 64-bit key can be generalizedto N-rounds, N even. N = 27
isrecommended; x = 3 yields FEAL-8 (Algorithm 7.94). FEAL-N uses N + 8 sixteen-bit
subkeys: Ky,...,Ky_1, respectively, inround i; Ky, ..., Kn43 for theinitia XOR,;
and K44, ... Kn47 for the final XOR. The key schedule of Algorithm 7.95 is directly
generalized to compute keys K through K7 asi runsfrom 1 to (N/2) + 4.

Note (FEAL-NX) Extending FEAL-N to use a 128-bit key results in FEAL-NX, with al-
tered key schedule as follows. The key is split into 64-bit halves (K, Kg). K is parti-
tioned into 32-bit halves (K g1, Kg2). For1 < i < (N/2) + 4, define Q; = Kri®Kgo
fori = 1mod3; Q; = Krifori = 2mod 3; and Q; = Kpge fori = 0 mod 3.
The second argument (U~ D @U(—3)) to fx in step 2aof Algorithm 7.95 is replaced by
U-DeUl-3)aQ,. For Kr = 0, FEAL-NX matches FEAL-N with K, as the 64-bit
FEAL-N key K.

Example (FEAL test vectors) For hex plaintext A/ = 00000000 00000000 and hex
key K = 01234567 89ABCDEF, Algorithm 7.95 generates subkeys (Ko, ..., K7) =
DF3BCA36 F17ClAEC 45A5B9C7 26EBAD25, (Kg,...,Ki5) = 8B2AECBY
AC509D4C 22CD479B ABD50CB5. Algorithm 7.94 generates FEAL-8 ciphertext C' =
CEEF2C86 F2490752. For FEAL-16, the corresponding ciphertext is C’ = 3ADEOD2A
D84DOB6F; for FEAL-32, C” = 69BOFAE6 DDED6BOB. For 128-bit key (K, Kr)
with K = Kr = K as above, M has corresponding FEAL-8X ciphertext C" =
92BEB65D0E9382FB. O

Note (strengthof FEAL) Table 7.10 givesvarious published attackson FEAL; LCand DC
denote linear and differential cryptanalysis, and times are on common personal computers
or workstations.

attack data complexity storage processing
method known | chosen complexity complexity
FEAL-4—-LC 5 — 30K bytes 6 minutes
FEAL-6-LC 100 — 100K bytes 40 minutes
FEAL-8—-LC | 2* 10 minutes
FEAL-8—DC 27 pairs | 280K bytes 2 minutes
FEAL-16—-DC — 229 pairs 230 operations
FEAL-24—-DC — 245 pairs 216 operations
FEAL-32—-DC — 26 pairs 267 operations

Table 7.10: FEAL strength against various attacks.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§7.6 IDEA 263

7.6 IDEA

The cipher named IDEA (International Data Encryption Algorithm) encrypts 64-bit plain-
text to 64-hit ciphertext blocks, using a 128-bit input key K. Based in part on a novel
generalization of the Feistel structure, it consists of 8 computationally identical roundsfol-
lowed by an output transformation (see Figure 7.11). Round r usessix 16-bit subkeys K’ Z.(’“) ,
1 < < 6, totransform a64-hit input X into an output of four 16-bit blocks, which arein-
put to the next round. The round 8 output enters the output transformation, employing four
additional subkeys ng), 1 < ¢ < 4 to producethefina ciphertext Y = (Y1, Ys, Y3, Ya).
All subkeys are derived from K.

A dominant design concept in IDEA is mixing operations from three different alge-
braic groups of 2™ elements. The corresponding group operations on sub-blocksa and b of
bitlengthn = 16 are bitwise XOR: a®b; additionmod 2™: (a4 b) AND Ox FFFF, denoted
aHb; and (modified) multiplicationmod 2™ +1, with 0 € Zy» associated with 2™ € Zon 44:

a®b (see Note 7.104).
pla'ntext (Xl, Xo, X3, X4)
X1 X2 subkeys Kf” for round r X3 Xa
16 16 16 16
Kgl) K‘(Ll)
16 16
round 1
~ ] roundr
(2<r<8)
output
K K K| transformation
16 16

Y1 Y2 ciphertext (Y1, Y2, Y3, Y4) Ys Y,
P bitwise XOR
FH addition mod 216
(® multiplication mod 21 + 1 (with 0 interpreted as 21)

Figure 7.11: IDEA computation path.
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7.101 Algorithm IDEA encryption

INPUT: 64-bit pIaintext M =m1...mg4, 128-bit key K =Fk...kis.
OUTPUT: 64-hit ciphertext block Y = (Y7, Ya, Y3, Y4). (For decryption, see Note 7.103.)
1. (key schedule) Compute 16-bit subkeys KY), . ,Ké’") forrounds1 < r < 8, and
ng), e ,Kig) for the output transformation, using Algorithm 7.102.
2. (Xl,XQ,X3,X4) — (m1 ...Myg, M7 ...M32,1TM33 ...1M48, M49 . . .m64),
where X; isa 16-bit data store.
3. For round r from 1 to 8 do:
@ X1« X10K", X, + X,0K, Xy X, BKS), X3+ X5 B K.
(b) to < Kér)@(Xl@Xg), t1 Ké”@(to H (XQ@X4)), to < to Ht1.
(©) X1+ X10t1, Xy <+ Xyu®ty, a + Xo®ta, Xo +— X301, X3 « a.
4. (output transformation) V1 + X10K?,V; « X40K\V, Vs « X3 BKY, Y3 «
X, BKY.

7.102 Algorithm IDEA key schedule (encryption)

INPUT: 128-hit key K=kFk... k‘lgg.

OUTPUT: 52 16-hit key sub-blocks K’ 1.(’“) for 8 roundsr and the output transformation.
1. Order thesubkeys KV .. k(" k@ k.. k®  Kk® k© K.
2. Partition K into eight 16-bit blocks; assign these directly to the first 8 subkeys.

3. Do thefollowing until all 52 subkeys are assigned: cyclic shift K left 25 bits; parti-
tion the result into 8 blocks; assign these blocks to the next 8 subkeys.

The key schedule of Algorithm 7.102 may be converted into a table which lists, for
each of the 52 keys blocks, which 16 (consecutive) bits of theinput key K formiit.

7.103 Note (IDEA decryption) Decryption is achieved using Algorithm 7.101 with the cipher-
text Y provided as input M, and the same encryption key K, but the following change
to the key schedule. First use K to derive al encryption subkeys K i(r); from these com-
pute the decryption subkeys K ’1(.”) per Table 7.11; thenuse K ’1(.’“) inplaceof K f” in Algo-
rithm 7.101. In Table 7.11, — K; denotes the additive inverse (mod 216) of K;: theinteger
u = (2'% — K;) AND OxFFFF,0 < u < 2! — 1. K; ! denotesthe multiplicativeinverse
(mod 216 + 1) of K;, dsoin{0,1,...,2'6 — 1}, derivable by the Extended Euclidean al-
gorithm (Algorithm 2.107), which oninputsa > b > 0 returnsintegers x and y such that
ar + by = ged(a,b). Usnga = 2% + 1 and b = K, theged is always 1 (except for
K; = 0, addressed separately) and thus K; ' = y, or 216 4-1 + y if y < 0. When K; = 0,
thisinput is mapped to 216 (sincetheinverseis defined by K; 0K, * = 1; see Note 7.104)
and (21¢)~! = 216 jsthen defined to give K, * = 0.

7.104 Note (definition of ®) In IDEA, a®b corresponds to a (modified) multiplication, modulo
216+1, of unsigned 16-bitintegersa and b, where0 € Z1s isassociated with 216 € Z316
asfollows:? ifa = 0 orb = 0, replace it by 216 (whichis= —1 mod 2'6 + 1) prior to
modular multiplication; and if the result is 216, replace this by 0. Thus, ® maps two 16-
bit inputsto a 16-bit output. Pseudo-codefor @ is as follows (cf. Note 7.105, for ordinary

2Thus the operands of ® are from aset of cardinality 216 (Zy16 ) asarethose of @ and .
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7.105

7.106

7.107

ondr | K0 | &9 [ &9 | &9 [ KD [ KT
r—1 (Kflofr))_l _K2(107r) _Kélofr) Kilofr) 1 K5(97r) Kf(s97r)

9 <r< 8 (Kflofr))_l _K?()lofr) _Kélofr) Kilofr))_l K5(97r) Ké97r)
r=9 (K£1O—T)),1 _K2(10—'r) _K?()lo—T) (Kilo—r)),l _ _

Table 7.11: IDEA decryption subkeys K’ ET) derived from encryption subkeys K.

multiplication mod 216 + 1), for ¢ a 32-bit unsigned integer: if (a = 0) r «+ (0x10001
— b) (since 216p = —b), esaif (b = 0) r + (0x10001 — a) (by Similar reasoning), else
{c < ab;r < ((¢c AND OXFFFF) — (¢ >> 16));if (r < 0) r + (0x10001 + )}, with
return value (r AND OxFFFF) in all 3 cases.

Note (implementing ab mod 2™+ 1) Multiplication mod 216 + 1 may beefficiently imple-
mented asfollows, for 0 < a,b < 2% (cf. §14.3.4). Letc = ab = ¢ - 2% 4+ ¢y - 216 + ¢,
wherecy € {0,1} and 0 < ¢z, cx < 2. Tocompute ¢’ = ¢ mod (216 + 1), first obtain
cr, and ¢y by standard multiplication. For a = b = 26, notethat ¢y = 1, ¢, = ¢y = 0,
andc¢’ = (—1)(—1) = 1,since 2'® = —1 mod (26 + 1); otherwise, co = 0. Consequently,
d =cp—cy+ecoifer > cuy,whiled =cp —cy + (21 + 1) if ¢, < cy (sincethen
—216 < cr, —cyg < 0).

Example (IDEAtest vectors) Sampledatafor IDEA encryption of 64-bit plaintext M us-
ing 128-bitkey K isgivenin Table7.12. All entriesare 16-bit valuesdisplayed in hexadeci-
mal. Table 7.13 details the corresponding decryption of the resulting 64-bit ciphertext C

under the same key K. O

128-bitkey K = (1,2,3,4,5,6,7,8) 64-bit plaintext M = (0, 1,2, 3)
r K7 kP KV kP KV KD x| x| x| X
1]/ 0001 | 0002 | 0003 | 0004 | 0005 | 0006 || 00O | 00f5 | 010a | 0105
2 || 0007 | 0008 | 0400 | 0600 | 0800 | 0200 || 222f | 21b5 | f45e | €959
3 || 0c00 | 0e00 | 1000 | 0200 | 0010 | 0014 || Of 86 | 39be | 8ee8 | 1173
4|/ 0018 | 001c | 0020 | 0004 | 0008 | 000c || 57df | ac58 | c65b | badd
5 || 2800 | 3000 | 3800 | 4000 | 0800 | 1000 || 8e81 | badc | f77f | 3ada
6 || 1800 | 2000 | 0070 | 0080 | 0010 | 0020 || 6942 | 9409 | e21b | 1c64
7 || 0030 | 0040 | 0050 | 0060 | 0000 | 2000 || 99d0 | c7f 6 | 5331 | 620e
8 || 4000 | 6000 | 8000 | a000 | cO00 | €001 || 0a24 | 0098 | ec6b | 4925
9|/ 0080 | 00c0 | 0100 | 0140 | —| — | 11fb | ed2b | 0198 | 6de5

Table 7.12: IDEA encryption sample: round subkeys and ciphertext (X1, X2, X3, X4).

Note (security of IDEA) For the full 8-round IDEA, other than attacks on weak keys (see
page 279), no published attack is better than exhaustive search on the 128-hit key space.
The security of IDEA currently appears bounded only by the weaknesses arising from the
relatively small (compared to its keylength) blocklength of 64 bits.
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K =(1,2,3,4,5,6,7,8) C = (11f b,ed2b,0198,6de5)
Klg'r) K/gr) K/:())'r) K/A(lr) K/gr) K/ér) X, X, X X,
fe0l | ff40 | ff0OO | 659a | cO00 | e001 || d98d | d331 | 27f6 | 82b8
fffd | 8000 | a000 | cccc | 0000 | 2000 || bc4d | e26b | 9449 | a576
ab56 | ffbO | ffcO | 52ab | 0010 | 0020 || Oaa4 | f 7ef | da9c | 24e3
554b | ff90 | e000 | fe01 | 0800 | 1000 || ca46 | fe5b | dc58 | 116d
332d | ¢800 | dO0OO | fffd | 0008 | 000c || 748f | 8f 08 | 39da | 45cc
4aab | ffeO | ffed4 | cOO1l | 0010 | 0014 || 3266 | 045e | 2f b5 | b02e
aa9%6 | f000 | f200 | ff81 | 0800 | 0a00 || 0690 | 0O50a | 00fd | 1dfa
4925 | fc00 | fff8 | 552b | 0005 | 0006 || 0000 | 0005 | 0003 | 000c
0001 |fffe | fffd | cO01 — — || 0000 | 0001 | 0002 | 0003

© O~NOOUHAWNBRT

Table 7.13: IDEA decryption sample: round subkeys and variables (X1, X2, X3, X4).

7.7 SAFER, RC5, and other block ciphers

7.7.1 SAFER

SAFER K-64 (Secure And Fast Encryption Routine, with 64-bit key) is an iterated block
cipher with 64-bit plaintext and ciphertext blocks. It consistsof r identical roundsfollowed
by an output transformation. The original recommendation of 6 rounds was followed by a
recommendation to adopt adlightly modified key schedule (yielding SAFER SK-64, which
should be used rather than SAFER K-64 — see Note 7.110) and to use 8 rounds (maximum
r = 10). Both key schedules expand the 64-bit external key into 2r 4 1 subkeyseach of 64-
bits (two for each round plus one for the output transformation). SAFER consists entirely
of simple byte operations, aside from byte-rotationsin the key schedule; it is thus suitable
for processors with small word size such as chipcards (cf. FEAL).

Details of SAFER K-64 are given in Algorithm 7.108 and Figure 7.12 (see also page
280 regarding SAFER K-128 and SAFER SK-128). The XOR-addition stage beginning
each round (identical to the output transformation) XORs bytes 1, 4, 5, and 8 of the (first)
round subkey with the respective round input bytes, and respectively adds (mod 256) there-
maining 4 subkey bytesto the others. The X OR and addition (mod 256) operationsareinter-
changed in the subsequent addition-X OR stage. The S-boxes are an invertible byte-to-byte
substitution using onefixed 8-bit bijection (see Note 7.111). A linear transformation f (the
Pseudo-Hadamard Transform) used in the 3-level linear layer was specially constructed for
rapid diffusion. Theintroduction of additivekey biasesin the key schedule eliminatesweak
keys(cf. DES, IDEA). In contrast to Feistel-like and many other ciphers, in SAFER the op-
erationsused for encryption differ from thosefor decryption (see Note 7.113). SAFER may
be viewed as an SP network (Definition 7.79).

Algorithm 7.108 uses the following definitions (L, R denote left, right 8-bit inputs):

1. f(L,R)=(2L+ R, L + R). Addition hereismod 256 (also denoted by H);
2. tables S and Siny, and the constant table for key biases B;[j] as per Note 7.111.
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X1 X2 X3 X4 X5 X6 X7 Xg  64-bit plaintext

%Kl[l ..... 8]

19))
95
|
19))
|
19))
[9))
195
|
195
|
19))

M)
T
M
T
FanY
%
FanY
%
M
T
s
¥
K=o

round 1 E| D S

%

 FJLs JLsr Js ]
INNENN o (R o R O BT

round 4
@<i<r)

L]
L]
L]
— 8
output
transformation s
Y1

Figure 7.12: SAFER K-64 computation path (r rounds).

< Korp1[l,..8]

(;<<—@<— oo w—|

Y, Ys 64-bit ciphertext

P bitwise XOR
FH addition mod 28
flz,y) = (2zBy,z8By)
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7.108 Algorithm SAFER K-64 encryption (r rounds)

INPUT: r, 6 < r < 10; 64-bit plaintext M = m; - - - mgg and key K = ky - - - kg4.
OUTPUT: 64-hit ciphertext block Y = (Y3, ..., Ys). (For decryption, see Note 7.113.)
1. Compute 64-bit subkeys K1, ... , Ko,4+1 by Algorithm 7.109 with inputs K and r.
2. (Xl,XQ,... ,Xg) — (ml---mg, mg:---Migy --- , m57---m64).
3. For i from 1 to r do: (XOR-addition, S-box, addition-XOR, and 3 linear layers)
(@ Forj=1,4,5,8X; + X, @ Ko 1[7].
Forj=2,3,6,7: X]‘ — Xj H Kgifl[j].
(b) Forj=1,4,5,8: X]‘ — S[X]] Forj=2,3,6,7: X]‘ — Sinv[Xj]-
(C) Forj = 1,4,5,8: Xj — Xj HﬂKQz[]] Forj = 2,3,6,7: Xj — Xj D KQZ[]]
(d) Forj =1,3,5,T: (Xj,Xj+1) — f(Xj,Xj+1).
(e) (YLYQ) A f(X17X3)1 (Y37Y21) A f(X57X7)’
(Y5,Ys) < f(X2, X4), (Y7,Y5) < f(Xe, Xs).
For j from1to8do: X; «+ Y;.
(f) (Y717Yv2) — f(X17X3)1 (Y37Y21) — f(X5,X7),
(YB,Y@) < f(XQ,X4), (Y7,Yé) < f(Xg,Xg).
For j from1to8do: X; < Y;. (Thismimicsthe previous step.)
4. (output transformation):
Forj = 1,4,5,8: Y} — Xj D K2T+1[j]. Forj = 2,3,6,7: Y} — Xj HHK2T+1[j].

7.109 Algorithm SAFER K-64 key schedule

INPUT: 64-hitkey K = ky - - - kg4; number of rounds.
OUTPUT: 64-hit subkeys K1, ..., Kor1. K;[j] isbyte j of K; (numbered left to right).
1. Let RJi] denote an 8-hit data store and let B; ;] denote byte j of B; (Note 7.111).
2. (R[1],R[2],... ,R[8]) = (k1 ---ks, ko---kig, ..., k57"~ Kea)-
3. (Ki[1], K1]2],...,K1[8]) « (R[1], R[2],... , R[8]).
4. Forifrom2to2r + 1 do: (rotate key bytesleft 3 bits, then add in the bias)
(8 Forjfrom1lto8do: R[j] + (R[j] < 3).
(b) For j from 1to8do: K;[j] + R[j] B B;[j]. (See Note 7.110.)

7.110 Note (SAFER SK-64 — strengthened key schedule) An improved key schedule for Algo-
rithm 7.108, resulting in SAFER SK-64, involves three changes as follows. (i) After ini-
tializing the R[i] in step 1 of Algorithm 7.109, set R[9] < R[1]®R[2]®--- ®R[8]. (ii)
Change the upper bound on the loop index in step 4afrom 8 to 9. (iii) Replace theiterated
lineinstep 4bby: K;[j] < R[((i +j —2) mod 9) + 1] B B;[j]. Thus, key bytes1,...,8
of R[-] areused for K;; bytes2,... 9 for K5; bytes3,...9,1for K3, etc. Hereand origi-
nally, B denotes addition mod 256. No attack against SAFER SK-64 better than exhaustive
key search is known.

7.111 Note (Shoxesand key biasesin SAFER) The S-box, inverse S-box, and key biasesfor Al-
gorithm 7.108 are constant tables as follows. g < 45. S[0] « 1, Siny[1] < 0. for  from
1to255do: ¢t « g - S[i — 1] mod 257, S[i] < t, Sinv[t] < i. Findly, S[128] « 0,
Sinv[0] < 128. (Since g generates Z5..., S[i] isabijectionon {0,1,...,255}. (Note that
g*?® = 256 (mod 257), and associating 256 with 0 makes .S a mapping with 8-bit input
and output.) The additive key biases are 8-bit constants used in the key schedule (Algo-
rithm 7.109), intended to behave as random numbers, and defined B;[j] = S[S[9i+7]] for ¢
from2to2r+1andj from1to8. For example: By = (22,115, 59,30, 142,112,189, 134)
and B3 = (143,41, 221, 4,128,222, 231, 49).
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7.112

7.113

7.114

Remark (S-box mapping) The S-box of Note 7.111 is based on the function S(z) = ¢*
mod 257 usingaprimitiveelement g = 45 € Zss7. Thismappingisnonlinear with respect
to both Z,57 arithmetic and the vector space of 8-tuplesover IF; under the XOR operation.
Theinverse S-box is based on the base-g logarithm function.

Note (SAFER K-64 decryption) For decryption of Algorithm 7.108, the same key K and
subkeys K; are used as for encryption. Each encryption step is undone in reverse order,
from last to first. Begin with an input transformation (X OR-subtraction stage) with key
K4,41 toundothe output transformation, replacing modular addition with subtraction. Fol-
low with r decryption rounds using keys K, through K (two-per-round), inverting each
round in turn. Each starts with a 3-stage inverse linear layer using finy (L, R) = (L —
R, 2R — L), with subtraction here mod 256, in a 3-step sequence defined as follows (to
invert the byte-permutations between encryption stages):

Level 1 (forj =1,3,5, 7) (Xj, Xj+1) — finv(Xj7 Xj+1).

Levels2 and 3 (each): (Y1, Y2) < finv(X1, X5), (Y3,Ys) < finv(X2, X6),

(Y5, Y5) ¢ finv(X3, X7), (Yr,Ys) < finv(Xa, Xs); for j from1to 8 do: X; « Y;.

A subtraction-X OR stage follows (replace modular addition with subtraction), then an in-
verse substitution stage (exchange S and S—!), and an X OR-subtraction stage.

Example (SAFERtest vectors) Using 6-round SAFER K-64 (Algorithm 7.108) on the 64-
bit plaintext M = (1,2,3,4,5,6,7,8) withthekey K = (8,7,6,5,4,3,2,1) resultsin
the ciphertext C' = (200, 242, 156, 221, 135, 120, 62, 217), written as 8 bytes in decimal.
Using 6-round SAFER SK-64 (Note 7.110) on the plaintext M above with thekey K =
(1,2,3,4,5,6,7,8) resultsin the ciphertext C' = (95, 206, 155,162, 5,132,56,199). O

7.7.2 RC5

The RC5 block cipher hasaword-oriented architecturefor variableword sizesw = 16, 32,
or 64 bits. It hasan extremely compact description, and issuitable for hardware or software.
The number of roundsr and the key byte-length b are also variable. It is successively more
completely identified as RC5—w, RC5—w/r, and RC5—w/r/b. RC5-32/12/16 is considered
acommon choice of parameters; » = 12 roundsare recommended for RC5-32, andr = 16
for RC5-64.

Algorithm 7.115 specifies RC5. Plaintext and ciphertext are blocks of bitlength 2w.
Each of r rounds updates both w-bit datahalves, using 2 subkeysin an input transformation
and 2 morefor each round. The only operationsused, all on w-bit words, are addition mod
2" (H), XOR (@), and rotations (left «<— and right —). The XOR operationislinear, while
the addition may be considered nonlinear depending on the metric for linearity. The data-
dependent rotationsfeatured in RC5 are the main nonlinear operation used: = «+— y denotes
cyclically shifting aw-bit word left y bits; the rotation-count y may be reduced mod w (the
low-order lg(w) bits of y suffice). The key schedule expands a key of b bytesinto 2r + 2
subkeys K; of w bits each. Regarding packing/unpacking bytes into words, the byte-order
is little-endian: for w = 32, thefirst plaintext byte goes in the low-order end of A, the
fourthin A’s high-order end, the fifth in B’slow order end, and so on.
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7.115 Algorithm RC5 encryption (w-bit wordsize, r rounds, b-byte key)
INPUT: 2w-bit plaintext M = (A, B); r; key K = K[0] ... K[b—1].
OUTPUT: 2w-hit ciphertext C'. (For decryption, see Note 7.117.)
1. Compute 2r + 2 subkeys Ky, . .. , Ko7 by Algorithm 7.116 from inputs K and r.
2. A« AHK,, B+ BH K;. (Useaddition modulo 2%.)
3. Forifromltordo: A< ((A®B) < B)BKy;, B+ ((B®A) <= A)BKazi11.
4. TheoutputisC < (A, B).

7.116 Algorithm RCS5 key schedule

INPUT: word bitsize w; number of roundsr; b-bytekey K[0] ... K[b— 1].
OUTPUT: subkeys K, . .. , Kor11 (Where K; isw bits).

1. Letu = w/8 (number of bytes per word) and ¢ = [b/w] (number of words K fills).
Pad K on theright with zero-bytesif necessary to achieve a byte-count divisible by
u(ie, K[j] < 0forb<j<c-u—1). ForifromOtoc—1do: L; « %) 2%
Kl[i-u+ j] (i.e, fill L; low-order to high-order byte using each byte of K [-]7 once).

2. Ko+ P,; forifrom1to2r+1do: K; + K; 1 HQ,. (UseTable7.14.)

3.0+ 0,5+ 0,4+ 0,B+« 0,t <« max(c,2r + 2). For s from 1 to 3¢ do:

(a) K; + (KZBHAEB) 3, A+ K;, i+ i+ 1mod (2T+2)
() L; + (L,BABB)«+ (ABEB), B+ Lj, j+ j+1modec.
4. Theoutputis Ko, K1, ..., K2-11. (The L; are not used.)

7.117 Note (RC5 decryption) Decryption uses the Algorithm 7.115 subkeys, operating on ci-
phertext C' = (A, B) as follows (subtraction is mod 2, denoted B). For ¢ from » down
toldo: B «+ ((BHKsji41) — A)®A, A + ((AB Ksy;) — B)®B. Findly M +
(AB Ky, BHK,).

w: 16 32 64
Py : B7E1 | B7E15163 | B7E15162 8AED2AGB
Quw : || 9E37 | 9E3779B9 | 9E3779B9 7F4A7Cl15

Table 7.14: RC5 magic constants (given as hex strings).

7.118 Example (RC5-32/12/16 test vectors) For the hexadecimal plaintext M/ = 65C178B2
84D197CCandkey K =5269F149 D41BA015 2497574D 7F153125, RC5 with
w = 32,r =12, and b = 16 generates ciphertext C = EB44E415 DA319824. O

7.7.3 Other block ciphers

LOKI'91 (and earlier, LOKI’ 89) was proposed asa DES alternativewith alarger 64-bit key,
amatching 64-bit blocksize, and 16 rounds. It differsfrom DES mainly in key-scheduling
and the f-function. The f-function of each round uses four identical 12-to-8 bit S-boxes,

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§7.8 Notes and further references 271

4 input bits of which select one of 16 functions, each of which implements exponentia-
tion with afixed exponent in a different representation of GF(28). While no significant ex-
ploitable weaknesses have been found in LOKI’ 91 when used for encryption, related-key
attacks (see page 281) are viewed as a certificational weakness.

Khufu and Khafre are DES-like cipherswhich were proposed as fast software-oriented
aternativesto DES. They have 64-bit blocks, 8 x 32 bit S-boxes, and a variable number
of rounds (typicaly 16, 24, or 32). Khufu keys may be up to 512 hits. Khafre keys have
bitlength that is a multiple of 64 (64 and 128-bit keys are typical); 64 key bits are XORed
onto the data block before thefirst and thereafter following every 8 rounds. Whereasa DES
round involves eight 6-to-4 bit S-boxes, one round of Khufu involves a single 8-to-32 bit
table look-up, with a different S-box for every 8 rounds. The S-boxes are generated pseu-
dorandomly from the user key. Khafre uses fixed S-boxes generated pseudorandomly from
aninitial S-box constructed from random numbers published by the RAND corporationin
1955. Under the best currently known attacks, 16-round Khufu and 24-round Khafre are
each more difficult to break than DES.

7.8 Notes and further references

§7.1

§7.2

The extensive and particularly readable survey by Diffie and Hellman [347], providing a
broad introduction to cryptography especially noteworthy for its treatment of Hagelin and
rotor machines and the valuable annotated bibliography circa 1979, is a source for much
of the material in §7.2, §7.3, and §7.4 herein. Aside from the appearance of DES [396] in
the mid 1970s and FEAL [884] later in the 1980s, prior to 1990 few fully-specified seri-
ous symmetric block cipher proposalswere widely available or discussed. (See Chapter 15
for Pohlig and Hellman's 1978 discrete exponentiation cipher.) With the increasing feasi-
bility of exhaustive search on 56-bit DES keys, the period 1990-1995 resulted in a large
number of proposals, beginning with PES [728], the preliminary version of IDEA [730].
The Fast Software Encryption workshops(Cambridge, U.K., Dec. 1993; L euven, Belgium,
Dec. 1994; and again Cambridge, Feb. 1996) were amajor stimulus and forum for new pro-
posals.

Themost significant cryptanal ytic advancesover the 1990-1995 period were Matsui’slinear
cryptanalysis[796, 795], and the differential cryptanalysis of Biham and Shamir [138] (see
also [134, 139]). Extensions of these included the differential-linear analysis by Langford
and Hellman [741], and thetruncated differential analysis of Knudsen [686]. For additional
background on linear cryptanalysis, see Biham [132]; see also Matsui and Yamagishi [ 798]
for apreliminary version of the method. Additional background on differential cryptanal-
ysisis provided by many authorsincluding Lai [726], Lai, Massey, and Murphy [730], and
Coppersmith [271]; although moreefficient 6-round attacks are known, Stinson [1178] pro-
vides detailed examples of attacks on 3-round and 6-round DES. Regarding both linear and
differentia cryptanaysis, see also Knudsen [684] and Kaliski and Yin [656].

Lai [726, Chapter 2] providesan excellent conciseintroductionto block ciphers, including a
lucid discussion of design principles(recommendedfor al block cipher designers). Regard-
ing text dictionary and matching ciphertext attacks (Note 7.8), see Coppersmith, Johnson,
and Matyas [278]. Rivest and Sherman [1061] provide a unified framework for random-
ized encryption (Definition 7.3); acommon example is the use of random “salt” appended
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to passwords prior to password encryption in some operating systems (§10.2.3). Fact 7.91is
due to Shannon [1121], whose contributions are many (see below).

Thefour basic modes of operation (including k-bit OFB feedback) were originally defined
specifically for DESin 1980 by FIPS81[398] andin 1983 by ANSI X3.106[34], while SO
8732 [578] and ISO/IEC 10116 [604], respectively, defined these modes for general 64-bit
and general n-bit block ciphers, mandating n-bit OFB feedback (seealso Chapter 15). Bras-
sard [192] givesaconcise summary of modesof operation; Daviesand Price[308] providea
comprehensivediscussion, including OFB cycling (Note 7.24; see also Jueneman [643] and
Davies and Parkin [307]), and amethod for encrypting incomplete CBC final blocks with-
out data expansion, which isimportant if plaintext must be encrypted and returned into its
original store. See Voydock and Kent [1225] for additional requirementson IV's. Recom-
mendingr = s for maximum strength, | SO/IEC 10116 [604] specifiesthe CFB variation of
Example 7.19, and provides extensive discussion of properties of the various modes. The
counter mode (Example 7.23) was suggested by Diffie and Hellman [347].

The 1977 exhaustive DES key search machine (Example 7.27) proposed by Diffieand Hell-
man [346] contained 106 DES chips, with estimated cost US$20 million (1977 technology)
and 12-hour expected search time; Diffie later revised the estimate upwards one order of
magnitudein aBNR Inc. report (US$50 million machine, 2-day expected search time, 1980
technology). Diffie and Hellman noted the feasibility of a ciphertext-only attack (Exam-
ple 7.28), and that attempting to preclude exhaustive search by changing DES keys more
frequently, at best, doubles the expected search time before success.

Subsequently Wiener [1241] provided agate-level designfor aUS$1 million machine (1993
technology) using 57 600 DES chips with expected success in 3.5 hours. Each chip con-
tains 16 pipelined stages, each stage completing in one clock tick at 50 MHz; a chip with
full pipeline completes akey test every 20 nanoseconds, providing amachine 57 600 x 50
times faster than the 1142 years noted in FIPS 74 [397] as the time required to check 2°°
keysif onekey can betested each microsecond. Comparablekey search machines of equiv-
alent cost by Eberle [362] and Wayner [1231] are, respectively, 55 and 200 times slower,
although the former does not require a chip design, and the latter uses a general-purpose
machine. Wiener also noted adaptations of the ECB known-plaintext attack to other 64-bit
modes (CBC, OFB, CFB) and 1-bit and 8-bit CFB.

Even and Goldreich [376] discuss the unicity distance of cascade ciphers under known-
plaintext attack (Fact 7.35), present a generalized time-memory meet-in-the-middle trade-
off (Note 7.38), and give several other concise results on cascades, including that under
reasonable assumptions, the number of permutationsrealizable by a cascade of L random
cipher stages is, with high probability, 25%.

Diffie and Hellman [346] noted the meet-in-the-middle attack on double encryption (Fact
7.33), motivating their recommendation that multiple encipherment, if used, should be at
least three-fold; Hoffman [558] credits them with suggesting E-E-E triple encryption with
three independent keys. Merkle's June 1979 thesis [850] explains the attack on two-key
triple-encryption of Fact 7.39 (see aso Merkle and Hellman [858]), and after noting Tuch-
man’sproposal of two-key E-D-E triple encryptionin aJune 1978 conferencetalk (National
Computer Conference, Anaheim, CA; see also [1199]), recommended that E-D-E be used
with three independent keys: Ex3(Exs(Ex1(x))). Thetwo-key E-D-E idea, adopted in
ANSI X9.17[37] and I SO 8732 [578], was reportedly conceived circaApril 1977 by Tuch-
man’s colleagues, Matyas and Meyer. The attack of Fact 7.40 is due to van Oorschot and
Wiener [1206]. See Coppersmith, Johnson, and Matyas [278] for a proposed construction
for atriple-DES algorithm. Other techniques intended to extend the strength of DES in-
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§7.3

cludethe DESX proposal of Rivest asanalyzed by Kilian and Rogaway [672], and thework
of Biham and Biryukov [133].

Hellman [549] proposes atime-memory tradeoff for exhaustive key search on acipher with
N = 2™ ciphertextsrequiring achosen-plaintext attack, O(N?2/3) timeand O(N2/3) space
after an O(IN') precomputation; search time can be reduced somewhat by use of Rivest's
suggestion of distinguished points (see Denning [326, p.100]). Kusuda and Matsumoto
[722] recently extended this analysis. Fiat and Naor [393] pursue time-memory tradeoffs
for more general functions. Amirazizi and Hellman [25] note that time-memory tradeoff
with constant time-memory product offers no asymptotic cost advantage over exhaustive
search; they examine tradeoffs between time, memory, and parallél processing, and using
standard parallelization techniques, propose under asimplified model a search machine ar-
chitecture for which doubling the machine budget (cost) increases the solution rate four-
fold. Thisapproach may be applied to exhaustive key search on double-encryption, as can
the parallel collision search technique of van Oorschot and Wiener [1207, 1208]; see also
Quisguater and Delescaille [1017, 1018].

Regarding Note 7.41, see Biham [131] (and earlier [130]) as well as Coppersmith, John-
son, and Matyas[278]. Biham’'sanalysison DES and FEAL showsthat, in many cases, the
use of intermediate data as feedback into an intermediate stage reduces security. 15 years
earlier, reflecting on his chosen-plaintext attack on two-key triple-encryption, Merkle[850,
p.149] noted “multiple encryption with any cryptographic system is liable to be much less
secure than a system designed originally for the longer key”.

Maurer and Massey [822] formalize Fact 7.42, where “break” means recovering plaintext
from ciphertext (under aknown-plaintext attack) or recovering the key; theresultshold also
for chosen-plaintext and chosen-ciphertext attack. They illustrate, however, that the ear-
lier result and commonly-held belief proven by Even and Goldreich [376] — that a cascade
is as strong as any of its component ciphers — requires the important qualifying (and non-
practical) assumption that an adversary will not exploit statistics of the underlying plaintext;
thus, the intuitive result is untrue for most practical ciphertext-only attacks.

Kahn [648] is the definitive historical reference for classical ciphers and machines up to
1967, including much of §7.3 and the notes below. The selection of classical ciphers pre-
sented largely follows Shannon’slucid 1949 paper [1121]. Standard referencesfor classical
cryptanalysisinclude Friedman [423], Gaines[436], and Sinkov [1152]. Morerecent books
providing expository material on classical ciphers, machines, and cryptanalytic examples
include Beker and Piper [84], Meyer and Matyas [859], Denning [326], and Davies and
Price [308].

Polyalphabetic ciphers were invented circa 1467 by the Florentine architect Alberti, who
devised a cipher disk with a larger outer and smaller inner wheel, respectively indexed by
plaintext and ciphertext characters. Letter alignments defined a simple substitution, modi-
fied by rotating the disk after enciphering afew words. Thefirst printed book on cryptogra-
phy, Polygraphia, written in 1508 by the German monk Trithemius and published in 1518,
containsthefirst tableau — a square table on 24 characterslisting all shift substitutionsfor a
fixed ordering of plaintext alphabet characters. Tableau rowswere used sequentially to sub-
stitute one plaintext character each for 24 |etters, where-after the same tableau or one based
on adifferent al phabet ordering was used. 1n 1553 Belaso (from Lombardy) suggested us-
ing an easily changed key (and key-phrases as memory aids) to define the fixed a phabetic
(shift) substitutionsin a polyal phabetic substitution. The 1563 book of Porta (from Naples)
noted the ordering of tableau |etters may define arbitrary substitutions (vs. ssimply shifted
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alphabets).

Various polyal phabetic auto-key ciphers, wherein the key changes with each message (the
alteration depending on the message), were explored in the 16th century, most significantly
by the Frenchman B. de Vigenere. His 1586 book Traicté des Chiffres proposed the com-
bined use of amixed tableau (mixed al phabet on both the tableau top and side) and an auto-
keying technique (cf. Example 7.61). A single character served as a priming key to select
the tableau row for the first character substitution, where-after the ith plaintext character
determined the alphabet (tableau row) for substituting the next. The far less secure simple
Vigenére cipher (Definition 7.53) is incorrectly attributed to Vigenere.

The Playfair cipher (Example 7.51), popularized by L. Playfair in England circa 1854 and
invented by the British scientist C. Wheatstone, was used asaBritish field cipher [648, p.6].
J. Mauborgne (see a'so the Vernam and PURPLE ciphers below) is credited in 1914 with
the first known solution of this digram cipher.

The Jefferson cylinder was designed by American statesman T. Jefferson, circa 1790-1800.
In 1817, fellow American D. Wadsworth introduced the principle of plaintext and cipher-
text alphabetsof different lengths. Hisdisk (cf. Alberti above) implemented acipher similar
to Trithemius' polyal phabetic substitution, but wherein the various al phabets were brought
into play irregularly in a plaintext-dependent manner, foreshadowing both the polyal pha-
betic ciphers of later 20th century rotor machines, and the concept of chaining. The inner
disk had 26 |etterswhile the outer had an additional 7 digits; onefull revolution of thelarger
caused the smaller to advance 7 charactersinto its second revolution. Thedriving disk was
alwaysturned in the same clockwise sense; when the character reveal ed through an aperture
inthe plaintext disk matched the next plaintext character, that visible through a correspond-
ing ciphertext aperture indicated the resulting ciphertext. In 1867, Wheatstone displayed
an independently devised similar device thereafter called the Wheatstone disc, receiving
greater attention although less secure (having disks of respectively 26 and 27 characters,
the extra character a plaintext space).

Vernam [1222] recorded hisideafor telegraph encryptionin 1917; apatent filed in Septem-
ber 1918 wasissued July 1919. Vernam’sdevice combined astream of plaintext (5-bit Bau-
dot coded) characters, viaX OR, with akeystream of 5-bit (key) values, resulting in the Ver-
nam cipher (aterm often used for related techniques). This, thefirst polyal phabetic substi-
tution automated using electrical impulses, had period equal to the length of the key stream,;
each 5-bit key value determined one of 32 fixed mono-al phabetic substitutions. Credit for
the actual one-time system goesto J. Mauborgne (U.S. Army) who, after seeing Vernam's
device with arepeated tape, realized that use of arandom, non-repeated key improved se-
curity. While Vernam'’s device was a commercial failure, a related German system engi-
neered by W. Kunze, R. Schauffler, and E. Langlotz was put into practice circa 1921-1923
for German diplomatic communications; their encryption system, which involved manu-
ally adding akey string to decimal-coded plaintext, was secured by using as the numerical
key a random non-repeating decimal digit stream — the original one-time pad. Pads of 50
numbered sheetswere used, each with 48 five-digit groups; no padswere repeated aside for
one identical pad for a communicating partner, and no sheet was to be used twice; sheets
were destroyed once used. The Vernam cipher proper, when used as aone-time system, in-
volvesonly 32 a phabets, but provides more security than rotor machineswith afar greater
number of al phabets becausethe latter eventually repeat, whereasthereistotal randomness
(for each plaintext character) in selecting among the 32 Vernam alphabets.

The matrix cipher of Example 7.52 was proposed in 1929 by Hill [557], providing a practi-
cal method for polygraphic substitution, albeit alinear transformati on susceptibleto known-
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plaintext attack. Hill also recognized that using an invol ution asthe encryption mapping al-
lowed the same function to provide decryption. Recent contributions on homophonic sub-
stitution include Gunther [529] and Jendal, Kuhn, and Massey [636].

Among the unrivalled cryptanalytic contributions of the Russian-born American Friedman
is his 1920 Riverbank Publication no.22 [426] on cryptanalysis using the index of coinci-
dence. Friedman coined theterm cryptanalysisin 1920, using it in his 1923 book Elements
of Cryptanalysis[425], a 1944 expansion of which, Military Cryptanalysis [423], remains
highly recommended. The method of Kasiski (from West Prussia) was originally published
in 1863; see Kahn [648, pp.208-213] for adetailed example. Thediscussion on IC and MR
followsthat of Denning[326], itself based on Sinkov [1152]. Fact 7.75 followsfrom astan-
dard expectation computation weighted by «,, or «, depending on whether the second of a
pair of randomly selected ciphertext charactersis from the same ciphertext al phabet or one
of thet — 1 remaining alphabets. The valuesin Table 7.1 are from Kahn [648], and vary
somewhat over time as languages evolve.

Friedman teaches how to cryptanalyze running-key ciphersin his (circa 1918) Riverbank
Publication no.16, Methods for the Solution of Running-Key Ciphers; the two basic tech-
niguesare outlined by Diffieand Hellman [347]. Thefirstisaprobableword attack wherein
an attacker guesses an (e.g., 10 character) word hopefully present in underlying text, and
subtracts that word (mod 26) from all possible starting locationsin the ciphertext in hopes
of finding a recognizable 10-character result, where-after the guessed word (as either par-
tial running-key or plaintext) might be extended using context. Probable-word attacks also
apply to polyalphabetic substitution. The second technique is based on the fact that each
ciphertext letter ¢ results from apair of plaintext/running-key letters (m;, m}), and is most
likely to result from such pairswherein both m; and m/ are high-frequency characters; one
isolates the highest-probability pairs for each such ciphertext character value ¢, makestrial
assumptions, and attemptsto extend apparently successful guesses by similarly decrypting
adjacent ciphertext characters; see Denning [326, p.83] for a partial example. Diffie and
Hellman [347] note Fact 7.59 as an obvious method that is little-used (modern ciphers be-
ing more convenient); their suggestion that use of four iterative running keysisunbreakable
follows from English being 75% redundant. They also briefly summarize various scram+
bling techniques (encryption via analog rather than digital methods), noting that analog
scramblers are sometimes used in practice due to lower bandwidth and cost requirements,
although such known techniques appear rel atively insecure (possibly an inherent character-
istic) and their use is waning as digital networks become prevalent.

Denning [326] tabulates digramsinto high, medium, low, and rare classes. Konheim [705,
p.24] provides transition probabilities p(¢|s), the probability that the next letter is¢ given
that the current character is s in English text, in a table also presented by H. van Tilborg
[1210]. Single-letter distributions in plaintext languages other than English are given by
Davies and Price [308]. The letter frequenciesin Figure 7.5, which should be interpreted
only asan estimate, were derived by Meyer and Matyas[859] using excerptstotaling 4 mil-
lion characters from the 1964 publication: W. Francis, A Sandard Sample of Present-Day
Edited American English for Use with Digital Computers, Linguistics Dept., Brown Uni-
versity, Providence, Rhode Idland, USA. Figure 7.6 is based on data from Konheim [705,
p.19] giving an estimated probability distribution of 2-gramsin English, derived from a
sample of size 67 320 digrams.

See Shannon [1122] and Cover and King [285] regarding redundancy and Fact 7.67. While
not proven in any concrete manner, Fact 7.68 is noted by Friedman [424] and generally
accepted. Unicity distance was defined by Shannon [1121]. Related issues are discussed in
detail in various appendices of Meyer and Matyas [859]. Fact 7.71 and the random cipher

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



276

Ch. 7 Block Ciphers

§7.4

model are due to Shannon [1121]; see also Hellman [548].

Diffieand Hellman [347] give an instructive overview of rotor machines (see also Denning
[326]), and notetheir usein World War |1 by the Americansin their highest level system, the
British, and the Germans (Enigma); they also give Fact 7.63 and the number of characters
required under ciphertext-only and known-plaintext attacks (Note 7.66). Beker and Piper
[84] provide technical details of the Hagelin M-209, as does Kahn [648, pp.427-431] who
notes its remarkable compactness and weight: 3.25 x 5.5 x 7 inches and 6 |b. (including
case); seealso Barker [74], Morris[906], and Rivest [1053]. Daviesand Price [308] briefly
discussthe Enigma, noting it was cryptanalyzed during World Wer |1 in Poland, France, and
thenin the U.K. (Bletchley Park); see also Konheim [705].

The Japanese PURPLE cipher, used during World War 11, wasapolyal phabetic cipher crypt-
analyzed August 1940 [648, p.18-23] by Friedman’s team in the U.S. Signal Intelligence
Service, under (Chief Signal Officer) Mauborgne. The earlier RED cipher used two rotor
arrays; preceding it, the ORANGE system implemented a vowels-to-vowels, consonants-
to-consonants cipher using sets of rotors.

The concept of fractionation, related to product ciphers, is noted by Feistel [387], Shannon
[1121], and Kahn [648, p.344] who identifiesthisideain an early product cipher, the WWI
German ADFGVX field cipher. As an example, an encryption function might operate on
ablock of ¢ = 8 plaintext characters in three stages as follows: the first substitutes two
symbolsfor each individual character; the second transposes (mixes) the substituted sym-
bolsamong themselves; the third re-groupsadj acent resulting symbol s and maps them back
to the plaintext alphabet. The action of the transposition on partial (rather than complete)
characters contributes to the strength of the principle.

Shannon [1121, §5 and §23-26] explored the idea of the product of two ciphers, noted the
principles of confusion and diffusion (Remark 1.36), and introduced the idea of a mixing
transformation F' (suggesting a preliminary transposition followed by a sequence of alter-
nating substitution and simple linear operations), and combining ciphersin aproduct using
an intervening transformation F'. Transposition and substitution, respectively, rest on the
principlesof diffusion and confusion. Harpes, Kramer, and Massey [541] discussagenera
model for iterated block ciphers (cf. Definition 7.80).

The name Lucifer is associated with two very different algorithms. The first is an SP net-
work described by Feistel [387], which employs (bitwise nonlinear) 4 x 4 invertible S-
boxes; the second, closely related to DES (albeit significantly weaker), is described by
Smith [1160] (see also Sorkin [1165]). Principles related to both are discussed by Feis-
tel, Notz, and Smith [388]; both are analyzed by Biham and Shamir [138], and the latter in
greater detail by Ben-Aroya and Biham [108] whose extension of differential cryptanaly-
sis alows, using 23¢ chosen plaintexts and complexity, attack on 55% of the key spacein
Smith’s Lucifer — till infeasible in practice, but illustrating inferiority to DES despite the
longer 128-hit key.

Feistel’s product cipher Lucifer [387], instantiated by a blocksize n = 128, consists of an
unspecified number of alternating substitution and permutation (transposition) stages, using
afixed (unpublished) n-bit permutation P and 32 parallel identical S-boxes each effecting
amapping Sy or S; (fixed but unpublished bijections on {0, 1}*), depending on the value
of one key bit; the unpublished key schedule requires 32-bits per S-box stage. Each stage
operateson al n bits; decryptionis by stage-wiseinversion of P and S;.

The structure of so-called Feistel ciphers (Definition 7.81) was first introduced in the Lu-
cifer agorithm of Smith [1160], the direct predecessor of DES. This 16-round algorithm
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with 128-bit key operates on alternating half-blocks of a 128-bit message block withasim-
plified f function based on two published invertible4 x 4 bit S-boxes Sy and S; (cf. above).
Feistel, Notz, and Smith [388] discuss both the abstract Feistel cipher structure (suggesting
itsuse with non-invertible S-boxes) and SP networksbased on invertible (distinct) S-boxes.
Suggestions for SP networks include the use of single key bits to select one of two map-
pings(afixed bijection or itsinverse) from both S-boxesand permutation boxes; decryption
then usesareversed key schedulewith complemented key. They also noted the multi-round
avalanche effect of changing a single input bit, subsequently pursued by Kam and Davida
[659] inrelationto SP networksand S-boxes having acompl eteness property: for every pair
of bit positionsi, j, there must exist at least two input blocks x, y which differ only in bit 4
and whose outputsdifferin at least bit 7. Moresimply, afunctionis completeif each output
bit dependson al input bits. Webster and Tavares[1233] proposed the more stringent strict
avalanchecriterion: whenever one input bit is changed, every output bit must change with
probability 1/2.

DESresulted from IBM’ssubmissionto the 1974 U.S. National Bureau of Standards(NBS)
solicitation for encryption algorithms for the protection of computer data. The original
specification is the 1977 U.S. Federa Information Processing Standards Publication 46
[396], reprintedinitsentirety as Appendix A in Meyer and Matyas[859]. DESishow spec-
ified in FIPS 462, which succeeded FIPS 46—1; the same cipher is defined in the American
standard ANSI X3.92[33] and referredto asthe Data Encryption Algorithm (DEA). Differ-
ences between FIPS 46/46-1 and ANSI X3.92 included the following: these earlier FIPS
required that DES be implemented in hardware and that the parity bits be used for parity;
ANSI X3.92 specifiesthat the parity bits may be used for parity. Although no purposewas
stated by the DES designersfor the permutationsIPand |P~1, Preneel et al. [1008] provided
some evidence of their cryptographic value in the CFB mode.

FIPS 81[398] specifies the common modes of operation. Davies and Price [308] provide a
comprehensivediscussion of both DES and modesof operation; seeal so Diffieand Hellman
[347], and the extensive treatment of Meyer and Matyas [859]. The survey of Smid and
Branstad [1156] discusses DES, itshistory, and itsusein the U.S. government. Test vectors
for various modes of DES, including the ECB vectors of Example 7.86, may be found in
ANS| X3.106 [34]. Regarding exhaustive cryptanalysisof DES and related issues, see also
the notes under §7.2.

The 1981 publication FIPS 74 [397] notesthat DES is not (generally) commutative under
two keys, and summarizes weak and semi-weak keys using the term dual keys to include
both (weak keys being self-dual); see a'so Davies[303] and Davies and Price [308]. Cop-
persmith [268] noted Fact 7.90; Moore and Simmons [900] pursue weak and semi-weak
DES keys and related phenomenamore rigorously.

The 56-bit keylength of DES was criticized from the outset as being too small (e.g., see
Diffieand Hellman[346], and p.272 above). Claimswhich have repeatedly arisen and been
denied (e.g., see Tuchman [1199]) over the past 20 years regarding built-in weaknesses of
DES (e.g., trap-door S-boxes) remain un-substantiated. Fact 7.91issignificantinthat if the
permutation group were closed under composition, DES would fall to a known-plaintext
attack requiring 228 steps — see Kaliski, Rivest, and Sherman [654], whose cycling exper-
iments provided strong evidence against this. Campbell and Wiener [229] prove the fact
conclusively (and give the stated lower bound), through their own cycling experiments uti-
lizing collision key search and an idea outlined earlier by Coppersmith [268] for establish-
ing alower bound on the group size; they attribute to Coppersmith the same result (in un-
published work), which may a so be deduced from the cycle lengths published by Moore
and Simmons [901].
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Countless papers have analyzed various properties of DES; Davies and Price [308, pp.73-
75] provide a partial summary to 1987. Subsequent to the discovery of differential crypt-
analysis(DC) by Biham and Shamir, Coppersmith [271] explainshow DESwas specifically
designed 15 years earlier to counter DC, citing national security concernsregarding the de-
sign team publishing neither the attack nor design criteria; then givesthe (relevant) design
criteria— some already noted by others, e.g., see Hellman et al. [552] — for DES S-boxes
and the permutation P, explaining how these preclude DC. Coppersmith notes elements of
DC were present in the work of den Boer [322], followed shortly by Murphy [913]. DES
was not, however, specifically designed to precludelinear cryptanalysis(LC); Matsui [797]
illustrates the order of the 8 DES S-boxes, while a strong (but not optimal) choice against
DC, isrelatively weak against LC, and that DES can be strengthened (vs. DC and LC) by
carefully re-arranging these. Despite Remark 7.93, a DES key has actually been recovered
by Matsui [795] using L C under experimental conditions (using 243 known-plaintext pairs
from randomly generated plaintexts, and 24 complexity running twelve 99 MHz machines
over 50 days); such aresult remainsto be published for exhaustive search or DC.

Ben-Aroyaand Biham [108] notethat often suggestionsto redesign DES, some based on de-
sign criteriaand attemptsto specifically resist DC, have resulted in (sometimes far) weaker
systems, including the RDES (randomized DES) proposal of Koyama and Terada [709)],
which fall to variant attacks. Thelessonisthat in isolation, individual design principlesdo
not guarantee security.

DES alternatives are sought not only due to the desire for a keylength exceeding 56 hits,
but also because its bit-oriented operations are inconvenient in conventional software im-
plementations, often resulting in poor performance; this makes triple-DES less attractive.
Regarding fast software implementations of DES, see Shepherd [1124], Pfitzmann and AR
mann [970], and Feldmeier and Karn [391].

FEAL stimulated the development of a sequence of advanced cryptanal ytic techniques of
unparalleled richnessand utility. While it appearsto remain relatively secure when iterated
asufficient number of rounds (e.g., 24 or more), this defeatsits original objective of speed.
FEAL-4 aspresented at Eurocrypt’ 87 (Abstracts of Eurocrypt’ 87, April 1987) wasfound to
have certain vulnerabilities by den Boer (unpublished Eurocrypt’ 87 rump session talk), re-
sulting in Shimizu and Miyaguchi [1126] (or see Miyaguchi, Shiraishi, and Shimizu [887])
increasing FEAL to 8 rounds in the final proceedings. In 1988 den Boer [322] showed
FEAL-4 vulnerableto an adaptive chosen plaintext attack with 100 to 10 000 plaintexts. In
1990, Gilbert and Chassé [455] devised a chosen-plaintext attack (called a statistical meet-
in-the-middle attack) on FEAL-8 requiring 10 000 pairs of plaintexts, the bitwise XOR of
each pair being selected to be an appropriate constant (thus another early variant of differ-
ential cryptanalysis).

FEAL-N with N rounds, and its extension FEAL-NX with 128-bit key (Notes 7.97 and
7.98) were then published by Miyaguchi [884] (or see Miyaguchi et al. [885]), who nonethe-
less opined that chosen-plaintext attacks on FEAL-8 were not practical threats. However,
improved chosen-plaintext attacks were subsequently devised, as well as known-plaintext
attacks. Employing den Boer’s G function expressing linearity in the FEAL f-function,
Murphy [913] defeated FEAL-4 with 20 chosen plaintexts in under 4 hours (under 1 hour
for most keys) onaSun 3/60 workstation. A statistical method of Tardy-Corfdir and Gilbert
[1187] then alowed a known-plaintext attack on FEAL-4 (1000 texts; or 200 in an an-
nounced improvement) and FEAL-6 (2 x 10 000 texts), involving linear approximation of
FEAL S-boxes. Thereafter, thefirst version of linear cryptanalysis (L C) introduced by Mat-
sui and Yamagishi [798] allowed known-plaintext attack of FEAL-4 (5 texts, 6 minuteson
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a 25MHz 68040 processor), FEAL-6 (100 texts, 40 minutes), and FEAL-8 (228 texts, in
time equival ent to exhaustive search on 50-bit keys); the latter bettersthe 238 textsrequired
for FEAL-8 by Biham and Shamir [136] in their known-plaintext conversion of differen-
tial cryptanalysis (DC). Biham and Shamir [138, p.101] later implemented a DC chosen-
plaintext attack recovering FEAL-8 keys in two minutes on a PC using 128 chosen pairs,
the program requiring 280K bytes of storage. Biham [132] subsequently used L C to defeat
FEAL-8 with 224 known-plaintextsin 10 minutes on a personal computer. Ohta and Aoki
[943] suggest that FEAL-32 is as secure as DES against DC, while FEAL-16 is as secure
as DES against certain restricted forms of LC.

Differential-linear cryptanalysiswas introduced by Langford and Hellman [741], combin-
ing linear and differentia cryptanalysisto alow a reduced 8-round version of DES to be
attacked with fewer chosen-plaintexts than previous attacks. Aoki and Ohta [53] refined
these ideas for FEAL-8 yielding a differential-linear attack requiring only 12 chosen texts
and 35 days of computer time (cf. Table 7.10).

Test vectors for FEAL-N and FEAL-NX (Example 7.99) are given by Miyaguchi [884].
The DC attack of Biham and Shamir [137], which finds FEAL-N subkeys themselves, is
equally as effectiveon FEAL-NX. Biham[132] notesthat an L C attack on FEAL-N is pos-
siblewith lessthan 24 known plaintexts (and complexity) for upto N = 20. For additional
discussion of properties of FEAL, see Biham and Shamir [138, §6.3].

The primary referencefor IDEA isLai [726]. A preliminary versionintroduced by Lai and
Massey [728] was named PES (Proposed Encryption Standard). Lai, Massey, and Murphy
[730] showed that a generalization (see below) of differential cryptanalysis (DC) alowed
recovery of PES keys, albeit requiring all 264 possible ciphertexts (cf. exhaustive search
of 2128 operations). Minor modifications resulted in IPES (Improved PES): instager, 1 <
r < 9, thegroup operationskeyed by K. é”) and K. i”) (Band ® inFigure7.11) werereversed
from PES; the permutation on 16-bit blocks after stage r, 1 < r < 9, was atered; and
necessary changes were made in the decryption (but not encryption) key schedule. IPES
was commercialized under the name IDEA, and is patented (see Chapter 15).

Theingeniousdesign of IDEA issupported by acareful analysisof theinteraction and alge-
braicincompatibilitiesof operationsacrossthe groups (IFo", @), (Zan, B), and (Z3n 1, ©).
The design of the MA structure (see Figure 7.11) resultsin IDEA being “ complete” after a
singleround; for other security properties, seeLai [726]. Regarding mixing operationsfrom
different algebraic systems, see also the 1974 examination by Grossman [522] of transfor-
mations arising by aternating mod 2™ and mod 2 addition (@), and the use of arithmetic
modulo 232 — 1 and 232 — 2 in MAA (Algorithm 9.68).

Daemen [292, 289] identifies several classes of so-called weak keys for IDEA, and notes a
small modification to the key schedule to eliminate them. Thelargest isaclass of 2°! keys
for which membership can be tested in two encryptions plus a small number of computa-
tions, whereafter the key itself can be recovered using 16 chosen plaintext-difference en-
cryptions, on the order of 216 group operations, plus2'” key search encryptions. The prob-
ability of arandomly chosen key being in thisclassis 2% /2128 = 277, A smaller number
of weak key blockswere observed earlier by Lai [726], and dismissed as inconsequential.
The analysis of Meier [832] revealed no attacks feasible against full 8-round IDEA, and
supportsthe conclusion of Lai [726] that IDEA appears to be secure against DC after 4 of
its 8 rounds (cf. Note 7.107). Daemen [289] also references attacks on reduced-round vari-
ants of IDEA. Whilelinear cryptanalysis (LC) can be applied to any iterated block cipher,
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Harpes, Kramer, and Massey [541] provide ageneralization thereof; IDEA and SAFER K-
64 are argued to be secure against this particular generalization.

Lai, Massey, and Murphy [730] (see also Lai [726]) generalized DC to apply to Markov
ciphers (which they introduced for this purpose; DES, FEAL, and LOKI are all examples
under the assumption of independent round keys) including IDEA; broadened the notion of
a difference from that based on @ to: AX = X ® (X*)~! where ® is a specified group
operationand (X *)~! isthe group inverse of an element X *; and defined an i-round differ-
ential (as opposed to an i-round characteristic used by Biham and Shamir [138] on DES) to
be apair («, 8) such that two distinct plaintexts with difference AX = « resultsin apair
of round ¢ outputs with difference 3.

Decimal values correspondingto Tables 7.12 and 7.13 may befoundin Lai [726]. A table-
based alternative for multiplication mod 216 + 1 (cf. Note 7.104) isto look up the anti-log
of log, (a) + log, (b) mod 216, relative to a generator a of Z31s ; the required tables,
however, are quite large.

Massey [787] introduced SAFER K-64 with a 64-bit key and initially recommended 6
rounds, giving a reference implementation and test vectors (cf. Example 7.114). It is not
patented. Massey [788] then published SAFER K-128 (with a reference implementation),
differing only inits use of a non-proprietary (and backwards compatible) key schedule ac-
commodating 128-bit keys, proposed by a Singapore group; 10 rounds were recommended
(12 maximum). Massey [788] gave further justification for design components of SAFER
K-64. Vaudenay [1215] showed SAFER K-64 is weakened if the S-box mapping (Re-
mark 7.112) is replaced by a random permutation.

Knudsen [685] proposed the modified key schedule of Note 7.110 after finding aweakness
in6-round SAFER K -64 that, while not of practical concernfor encryption (with 245 chosen
plaintexts, it finds 8 bits of the key), permitted collisionswhen using the cipher for hashing.
Thisand asubsequent certificational attack on SAFER K-64 by S. Murphy (to be published)
lead Massey (“ Strengthened key schedule for the cipher SAFER”, posted to the USENET
newsgroup sci.crypt, September 9 1995) to advise adoption of the new key schedule, with
the resulting algorithm distinguished as SAFER SK-64 with 8 rounds recommended (min-
imum 6, maximum 10); an analogous change to the 128-bit key schedule yields SAFER
SK-128 for which 10 rounds remain recommended (maximum 12). A new variant of DC
by Knudsen and Berson [687] using truncated differentials (building on Knudsen [686])
yields a certificational attack on 5-round SAFER K-64 with 24° chosen plaintexts; the at-
tack, which doesnot extend to 6 rounds, indicatesthat security islessthan argued by Massey
[788], who a'so notes that preliminary attempts at linear cryptanaysis of SAFER were un-
successful.

RC5 wasdesigned by Rivest [1056], and published along with areferenceimplementation.
Themagic constants of Table 7.14 are based on the golden ratio and the base of natural log-
arithms. The data-dependent rotations (which vary across rounds) distinguish RC5 from
iterated ciphers which have identical operations each round; Madryga[779] proposed an
earlier (lesselegant) cipher involving data-dependent rotations. A preliminary examination
by Kaliski and Yin [656] suggested that, while variations remain to be explored, standard
linear and differential cryptanalysis appear impractical for RC5-32 (64-bit blocksize) for
r = 12: their differential attacks on 9 and 12 round RC5 require, respectively, 245, 262
chosen-plaintext pairs, while their linear attacks on 4, 5, and 6-round RC5-32 require, re-
spectively, 237, 247, 257 known plaintexts. Both attacks depend on the number of rounds
and the blocksize, but not the byte-length of theinput key (since subkeys are recovered di-
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rectly). Knudsenand Meier [689] subsequently presented differential attackson RC5which
improved on those of Kaliski and Yin by a factor up to 512, and showed that RC5 has so-
called weak keys (independent of the key schedule) for which these differential attacks per-
form even better.

LOKI wasintroduced by Brown, Pieprzyk, and Seberry [215] and renamed LOKI’ 89 after
the discovery of weaknesses lead to the introduction of LOKI'91 by Brown et a. [214].
Knudsen [682] noted each LOKI’89 key fell into a class of 16 equivaent keys, and the
differentia cryptanalysis of Biham and Shamir [137] was shown to be effective against
reduced-round versions. LOKI'91 failed to succumb to differential analysis by Knudsen
[683]; Tokitaet al. [1193] later confirmed the optimality of Knudsen's characteristics, sug-
gesting that LOKI’89 and LOKI’ 91 were resistant to both ordinary linear and differential
cryptanalysis. However, neither should be used for hashing as originally proposed (see
Knudsen [682]) or in other modes (see Preneel [1003]). Moreover, both are susceptible
to related-key attacks (Note 7.6), popularized by Biham [128, 129]; but see also the ear-
lier ideas of Knudsen [683]. Distinct from these are key clustering attacks (see Diffie and
Hellman [347, p.410]), wherein a cryptanalyst first finds a key “close” to the correct key,
and then searches a cluster of “nearby” keysto find the correct one.

8 x 32 bit S-boxesfirst appeared in the Snefru hash function of Merkle [854]; here such
fixed S-boxes created from random numbers were used in itsinternal encryption mapping.
Regarding large S-boxes, see also Gordon and Retkin [517], Adams and Tavares [7], and
Biham [132]. Merkle [856] again used 8 x 32 S-boxes in Khufu and Khafre (see also
§15.2.3(viii)). In this 1990 paper, Merkle gives a chosen-plaintext differential attack de-
feating 8 rounds of Khufu (with secret S-box). Regarding 16-round Khafre, aDC attack by
Biham and Shamir [138, 137] requires somewhat over 1500 chosen plaintexts and one hour
on a personal computer, and their known-plaintext differential attack requires 237-> plain-
texts; for 24-round Khafre, they require 253 chosen plaintexts or 258-5 known plaintexts.
Khufu with 16 rounds was examined by Gilbert and Chauvaud [456], who gave an attack
using 243 chosen plaintexts and about 243 operations.

CAST isadesign procedure for afamily of DES-like ciphers, featuring fixed m x n bit
S-boxes (m < n) based on bent functions. Adams and Tavares [7] examine the construc-
tion of large S-boxesresistant to differential cryptanalysis, and give a partial example (with
64-bit blocklength and 8 x 32 bit S-boxes) of a CAST cipher. CAST ciphers have variable
keysize and numbers of rounds. Rijmen and Preneel [1049] presented a cryptanalytic tech-
nique applicableto Feistel cipherswith non-surjective round functions (e.g., LOKI’91 and
an example CAST cipher), noting cases where 6 to 8 roundsis insufficient.

Blowfishisa16-round DES-like cipher dueto Schneier [1093], with 64-bit blocksand keys
of length up to 448 bits. The computationally intensive key expansion phase creates eigh-
teen 32-bit subkeys plus four 8 x 32 bit S-boxes derived from the input key (cf. Khafre
above), for atotal of 4168 bytes. See Vaudenay [1216] for a preliminary analysis of Blow-
fish.

3-WAY isablock cipher with 96-bit blocksize and keysize, dueto Daemen [289] and intro-
duced by Daemen, Govaerts, and Vandewalle [290] along with a reference C implementa-
tion and test vectors. It was designed for speed in both hardware and software, and to resist
differential and linear attacks. Itscoreis a 3-hit nonlinear S-box and a linear mapping rep-
resentable as polynomial multiplication in Z32.

SHARK isan SP-network block cipher dueto Rijmen et al. [1048] (coordinatesfor arefer-
ence implementation are given) which may be viewed as a generalization of SAFER, em-
ploying highly nonlinear S-boxes and the idea of MDS codes (cf. Note 12.36) for diffusion
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to allow a small number of rounds to suffice. The block ciphers BEAR and LION of An-
derson and Biham [30] are 3-round unbalanced Feistel networks, motivated by the earlier
construction of Luby and Rackoff [776] (see also Maurer [816] and Lucks [777]) which
provides a provably secure (under suitable assumptions) block cipher from pseudorandom
functions using a 3-round Feistel structure. SHARK, BEAR, and LION all remain to be
subjected to independent analysisin order to substantiate their conjectured security levels.

SKIPJACK isaclassified block cipher whose specification is maintained by the U.S. Na-
tional Security Agency (NSA). FIPS 185 [405] notes that its specification is available to
organi zations entering into a Memorandum of Agreement with the NSA, and includesin-
terface details (e.g., it has an 80-bit secret key). A public report contains results of a pre-
liminary security evaluation of this 64-bit block cipher (“ SKIPJACK Review, Interim Re-
port, The SKIPJACK Algorithm”, 1993 July 28, by E.F. Brickell, D.E. Denning, S.T. Kent,
D.P. Maher, and W. Tuchman). See also Roe[1064, p.312] regarding curiousresults on the
cyclic closure tests on SKIPJACK, which give evidence related to the size of the cipher
keyspace.

GOST 28147-89isaSoviet government encryption algorithm with a32-round Feistel struc-
ture and unspecified S-boxes; see Charneset al. [241].

RC2 isablock cipher proprietary to RSA Data Security Inc. (asisthe stream cipher RC4).
WAKE isablock cipher dueto Wheeler [1237] employing akey-dependent table, intended
for fast encryption of bulk data on processors with 32-bit words. TEA (Tiny Encryption
Algorithm) is ablock cipher proposed by Wheeler and Needham [1238].
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