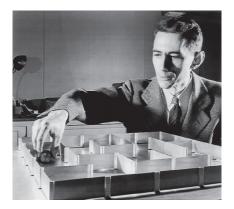
Perfect Secrecy



Claude Elwood Shannon

- Claude Elwood Shannon (1916-2001) was an American mathematician, electronic engineer, and cryptographer — he is known as "The father of Information Theory"
- Two landmark papers he had written established the foundations of information theory and modern cryptography
- He is also credited with founding digital circuit design theory in 1937, when as a 21-year old master's degree student at MIT, he wrote his thesis demonstrating the applications of boolean algebra to construct digital circuits — this work is considered as the most important master's thesis of all times!
- Shannon established the concept of perfect secrecy in his 1948-paper "Communication Theory of Secrecy Systems" (*Bell Systems Technical Journal*, vol 28, pages 656-715)

Shannon's Theory of Secrecy

• Consider the block cipher encryption and decryption functions

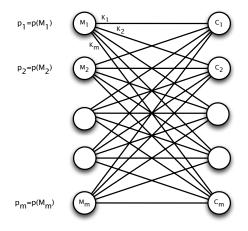
$$C = E_{\mathcal{K}}(M)$$
 and $M = D_{\mathcal{K}}(C)$

such that for any key K, the functions $E(\cdot)$ and $D(\cdot)$ are one-to-one, and $D_K(E_K(\cdot))$ is the identity transformation

- Let $\{M_1, M_2, \ldots, M_m\}$ be the message space, where the probability $p(M_i)$ of each message is known a priori, which are not necessarily equal (uniform distribution is not assumed)
- Let {K₁, K₂,..., K_k} be the key space, where probability of each key is known as p(K_i), which are usually equal: p(K_i) = 1/k for i = 1, 2, ..., k (keys are uniformly distributed)

Bipartite Graph of Mapping

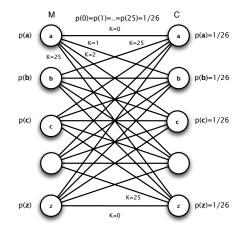
• Keys map all messages to all ciphertexts, giving a bipartite graph



Shift Cipher

- The message space $\{a, b, ..., z\}$ and m = 26, such that the messages are encoded as integers from $Z_{26} = \{0, 1, 2, ..., 25\}$
- The message probabilities are determined by the language of the communication, and not necessarily equal, for example p(a) = 0.082, p(e) = 0.127, p(z) = 0.001, however $\sum p(M) = 1$
- The key space $Z_{26} = \{0, 1, 2, ..., 25\}$ and k = 26, such that a key K is uniformly selected from Z_{26} , and thus, p(K) = 1/26
- Any message, for example M = e, is encrypted to any of the ciphertexts C ∈ {a, b, ..., z}, based on the value of the key: C = M + K (mod 26)
- Since each key $K \in Z_{26}$ is equally likely, each ciphertext $C \in \{a, b, \dots, z\}$ is equally likely for a given, fixed message, i.e., p(C) = 1/26

Shift Cipher Bipartite Graph



Affine Cipher

- The message space {a, b, ..., z} and m = 26; similarly, the messages are encoded as integers from $Z_{26} = \{0, 1, 2, ..., 25\}$ and the message probabilities are known a priori
- A message, for example M = e, is encrypted to any of the ciphertexts C ∈ {a, b, ..., z}, based on the value of the key pair (α, β), via the encryption function C = α · M + β (mod 26)
- The key space (α, β) with $\alpha \in \{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$ and $\beta \in \mathbb{Z}_{26}$, and therefore, $k = 12 \cdot 26 = 312$
- The number of keys is more than the number of messages k > m
- We also assume that a key K is uniformly selected: p(K) = 1/312

Affine Cipher

- There are 312 keys (more than the number of ciphertexts), and thus, a ciphertext *C* will appear more than once in the encryption of a given, fixed message *M*
- There are different key pairs (α_1, β_1) and (α_2, β_2) that map the same plaintext to the same ciphertext: $\alpha_1 M + \beta_1 = \alpha_2 M + \beta_2 \pmod{26}$
- For example, for the plaintext M = e, the following 12 key pairs (α, β) computes the ciphertext as C = d

In fact, each of the 26 ciphertexts appears exactly 12 times, therefore, for a given, fixed message each ciphertext is equally likely, as all 312 key pairs are scanned, p(C) = 12/312 = 1/26

• A cipher is perfect if for any pair (*M*, *C*), the probability of *M* is equal to the probability of *M* with the corresponding *C* is known

p(M|C) = p(M)

- This implies that the knowledge of ciphertext does not yield information about the plaintext
- A perfect cipher is immune against ciphertext only attacks
- Even if the adversary has infinite computational power, he/she cannot discover the plaintext in a ciphertext only attack scenario this is called unconditional security in the context of ciphertext only attacks

Perfect Cipher

- Consider the Bayes' theorem: p(M)p(C|M) = p(C)p(M|C)
- Therefore, a cipher is perfect if and only if

$$\forall M, C \quad p(C) = p(C|M)$$

Since we have

$$p(C|M) = \sum_{\substack{K \\ E_{K}(M) = C}} p(K)$$

Therefore, a cipher is perfect if and only

$$\forall C \left(\sum_{\substack{K \\ E_{K}(M) = C}} p(K) \text{ is independent of } M \right)$$

Perfect Cipher

- Theorem: For a perfect cipher k ≥ m, that the number of keys is larger than or equal to the number of messages
- Proof: Assume k < m and consider a ciphertex C^* such that $p(C^*) > 0$. There exists L messages (where $1 \le L \le m$) such that $M = D_K(C^*)$ for some K. Let M^* not obtainable from $D_K(C^*)$ (there are m L such messages), then

$$p(C^*|M^*) = \sum_{\substack{K \\ E_K(M^*)=C^*}} p(K) = \sum_{K \in \emptyset} p(K) = 0$$

This is a contradiction since in a perfect cipher we must have

$$p(C^*|M^*) = p(C^*) > 0$$

Shift Cipher

- Consider the shift cipher for $M \in \{a, b, \dots, z\}$ for mapping a single letter
- We have 26 keys and 26 messages: k = m = 26, and

$$p(C) = p(C|M) = 1/26$$

- When we encrypt 2 letters, we have k = 26, and $n = 26^2$, and thus, $p(C) = 1/26^2$
- This implies each M has only 26 values for C, and thus, for those Cs: p(C|M) = 1/26, while for the other Cs: p(C|M) = 0
- In particular, p(C = XY | M = aa) = 0 for any $X \neq Y$

Vernam Cipher

- Vernam cipher is a generalization of the Vigenere cipher, where the key is as long as the message
- Assuming k = m and the keys are selected randomly, we have p(K) = 1/k = 1/m, and thus

$$p(C|M) = p(K = C - M) = \frac{1}{m} = \frac{1}{k}$$

Since p(C|M) = 1/m for any pair (M, C), therefore, p(C|M) = p(C)

• For all possible ciphertext, all messages are possible, as given *M* and *C*, there is a unique key that encrypts *M* to *C*

One-Time Pad

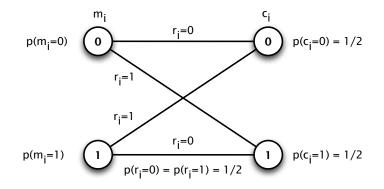
• Vernam cipher is called one-time pad when M, C, K are single bits, and r_i is randomly generated with uniform probability $p(r_i) = 1/2$

	r_1	<i>r</i> ₂		ri		r _n
\oplus	m_1	m_2	• • •	mi		m_n
	<i>c</i> ₁	<i>c</i> ₂	• • •	Ci		Cn

- The message m_i ∈ {0,1} probabilities p(0) and p(1) may or may not be known, however, they are not assumed to be equal, but p(0) + p(1) = 1
- For every value of $c_i \in \{0, 1\}$, there are 2 messages and 2 keys: $c_i = 0$ implies $(r_i, m_i) = (0, 0)$ or $(r_i, m_i) = (1, 1)$ $c_i = 1$ implies $(r_i, m_i) = (0, 1)$ or $(r_i, m_i) = (1, 0)$

One-Time Pad Bipartite Graph

$$p(c_i = 0 | m_i = 0) = p(r_i = 0) = 1/2$$
 and $p(c_i = 0 | m_i = 1) = p(r_i = 1) = 1/2$
 $p(c_i = 1 | m_i = 0) = p(r_i = 1) = 1/2$ and $p(c_i = 1 | m_i = 1) = p(r_0 = 1) = 1/2$



3-bit One-Time Pad

- Similarly, consider the 3-bit ciphertext (c₁c₂c₃): this ciphertext was obtained by a bitwise XOR operation of the 3-bit plaintext (m₁m₂m₃) and the 3-bit random key (r₁r₂r₃) such that c_i = m_i ⊕ r_i
- The 3-bit key ($r_1r_2r_3$) is one of the following 8 values, with equal 1/8 probability: {000,001,010,011,100,101,110,111}
- We may or may not know the plaintext probabilities, however, each $(m_1m_2m_3)$ appears with some probability $0 < p(m_1m_2m_3) < 1$
- Regardless of what the plaintext is, each ciphertext is equally likely, with probability 1/8, for example, if $(m_1m_2m_3) = (101)$ then, any of these 8 key and ciphertext pairs are equally likely:

$r_1r_2r_3$:	000	001	010	011	100	101	110	111
<i>c</i> ₁ <i>c</i> ₂ <i>c</i> ₃ :	101	100	111	110	001	000	011	010

Electronic Codebook Mode

- Given a long message $M = M_1 M_2 \cdots M_N$, we encrypt each block M_i to $C_i = E_K(M_i)$ using the same key, and append the individual ciphertexts to obtain the result $C = C_1 C_2 \cdots C_N$
- This does not constitute a perfect cipher since for N > 1, the number of keys < the number of messages
- Note that p(C = XY | M = aa) = 0, however, $p(C = XY) \neq 0$ when $X \neq Y$
- Thus, we can gain some information on the key or the message under a ciphertext only scenario