
Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Advanced Encryption Standard

http://koclab.org Çetin Kaya Koç Winter 2020 1 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Finite Field Operations in Rijndael & AES

The Rijndael data block size can be 128, 192 or 256 bits; however,
the AES is fixed at 128 bits only

The state matrix is formed from the input data as a 4× 4, 4× 6, and
4× 8 matrices, for 128, 192 or 256 bits, respectively

Given the 128-bit data (A0A1A2 · · ·A14A15) such that each of Ai is 8
bits (1 byte), the 4× 4 state matrix is formed as

A0 A4 A8 A12

A1 A5 A9 A13

A2 A6 A10 A14

A3 A7 A11 A15


The 8-bit (1-byte) binary data is usually represented in hexadecimal,
such as (a3) = (1010 0011)

http://koclab.org Çetin Kaya Koç Winter 2020 2 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Finite Field Operations in Rijndael & AES

While the 8-bit input data block is a binary number in its most
generic form, the Rijndael/AES treats each one of the bytes in the
state matrix as elements of the Galois field GF(28)

The irreducible polynomial of the field GF(28) is
p(x) = x8 + x4 + x3 + x + 1

A field element a(x) ∈ GF(28) is represented using a polynomial of
degree at most 7 with coefficients ai ∈ GF(2) such that

7∑
i=0

aix
i = a7x

7 + x6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x + a0

For example, (a3) = (1010 0011) = x7 + x5 + x + 1

http://koclab.org Çetin Kaya Koç Winter 2020 3 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Field Addition in GF(28)

Given two field elements a(x) and b(x), their sum is c(x) is computed
by polynomial addition

c(x) = a(x) + b(x)

such that ci = ai + bi (mod 2) for 0 ≤ i ≤ 7, as shown below:

a7 a6 a5 a4 a3 a2 a1 a0
⊕ b7 b6 b5 b4 b3 b2 b1 b0

c7 c6 c5 c4 c3 c2 c1 c0

where ⊕ is the XOR operation, which is the same as modulo 2
addition

As the degree of the sum c(x) is equal to or less than the degree of
either inputs a(x) and b(x), there is no need for reduction

http://koclab.org Çetin Kaya Koç Winter 2020 4 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Field Multiplication in GF(28)

Given two field elements a(x) and b(x) with coefficients
ai , bi ∈ GF(2), their product is c(x) is computed using a polynomial
multiplication and then a polynomial reduction

We perform a polynomial multiplication over the field GF(2), and
obtain the product polynomial c ′(x) which is of degree at most 14

c ′(x) = a(x)× b(x)

If degree of c ′(x) is less than or equal to 7, then the product c ′(x) is
already an element of the Galois field GF(28), which implies
c(x) = c ′(x)

If degree of c ′(x) is more than 7, then we need to reduce c ′(x)
modulo p(x) = x8 + x4 + x3 + x + 1 and obtain the field element
c(x) ∈ GF(28):

c(x) = c ′(x) mod p(x)

http://koclab.org Çetin Kaya Koç Winter 2020 5 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Polynomial Multiplication in GF(2)

The polynomial multiplication c ′(x) = a(x)× b(x) is performed over
GF(2), i.e., the coefficients are added and multiplied in GF(2)

This implies that the product of two nonzero terms x i and x j is x i+j

The addition of two terms with the same power is zero: x i + x i = 0,
while the different powers are not: x i + x j

The computation of (a5) · (0d) = (1010 0101) · (0000 1101)

c ′(x) = (x7 + x5 + x2 + 1)× (x3 + x2 + 1)

= x10 + x8 + x5 + x3 + x9 + x7 + x4 + x2 + x7 + x5 + x2 + 1

= x10 + x9 + x8 + x7 + x7︸ ︷︷ ︸
0

+ x5 + x5︸ ︷︷ ︸
0

+x4 + x3 + x2 + x2︸ ︷︷ ︸
0

+1

= x10 + x9 + x8 + x4 + x3 + 1

http://koclab.org Çetin Kaya Koç Winter 2020 6 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Polynomial Multiplication in GF(2)

The polynomial multiplication over GF(2) can be performed by using
a succession of AND, XOR and SHIFT operations

Example: The computation of
(a5) · (0d) = (1010 0101) · (0000 1101), that is
c ′(x) = (x7 + x5 + x2 + 1)× (x3 + x2 + 1)

1 0 1 0 0 1 0 1
0 0 0 0 1 1 0 1
1 0 1 0 0 1 0 1

0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 1

1 0 1 0 0 1 0 1

1 1 1 0 0 0 1 1 0 0 1

which is obtained as: c ′(x) = x10 + x9 + x8 + x4 + x3 + 1

http://koclab.org Çetin Kaya Koç Winter 2020 7 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Polynomial Reduction in GF(2)

The second step of the multiplication operation in GF(28) is a
polynomial reduction of c ′(x) modulo the irreducible polynomial p(x)
over the ground field GF(2)

The reduction can be performed by hand using synthetic division of
c ′(x) by p(x), and obtaining the remainder r(x) which is equal to
c(x) ∈ GF(28)

However, we do not need the quotient, therefore, the steps for
computing the quotient can be skipped

I will explain the synthetic division algorithm and a simplified version

The simplified reduction algorithm can be coded as successive XOR
and shift operations

http://koclab.org Çetin Kaya Koç Winter 2020 8 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Polynomial Reduction via Synthetic Division

In the computation of (a5) · (0d) = (1010 0101) · (0000 1101), we
obtained the product c ′(x) = x10 + x9 + x8 + x4 + x3 + 1

Now, we reduce c ′(x) modulo p(x) = x8 + x4 + x3 + x + 1 using
synthetic division:

x10 + x9 + x8 + x4 + x3 + 1 x8 + x4 + x3 + x + 1
x10 + x6 + x5 + x3 + x2 x2 + x + 1
x9 + x8 + x6 + x5 + x4 + x + 2 + 1
x9 + x5 + x4 + x2 + x
x8 + x6 + x + 1
x8 + x4 + x3 + x + 1
x6 + x4 + x3

Therefore, the remainder is x6 + x4 + x3 = (0101 1000) = (58)

http://koclab.org Çetin Kaya Koç Winter 2020 9 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Simplified Polynomial Reduction

An inspection of the synthetic division algorithm shows that we
perform reduction by adding shifted versions of p(x) to c ′(x)

In the first step we have c ′(x), and we add x2 × p(x) to c ′(x) to
obtain

c ′(x) = c ′(x) + x2 × p(x)

= (x10 + x9 + x8 + x4 + x3 + 1) + x2 × (x8 + x4 + x3 + x + 1)

= x9 + x8 + x6 + x5 + x4 + x2 + 1

Therefore, we can simply substitute the terms x i for i ≥ 8 with
shifted versions of the irreducible polynomial

Also, since the highest degree term (above: x10) in c ′(x) is to be
cancelled out, there is no need to keep track of that; it is sufficient to
consider the lower part of p(x) which is x4 + x3 + x + 1

http://koclab.org Çetin Kaya Koç Winter 2020 10 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Simplified Polynomial Reduction

The simplified polynomial reduction replaces an occurrence of the
term x8 in c ′(x) with x4 + x3 + x + 1, the lower part of p(x) —
similarly, x8+j in c ′(x) is substituted with x j × (x4 + x3 + x + 1)

Considering our example: c ′(x) = x10 + x9 + x8 + x4 + x3 + 1, we
write

c ′(x) = x10 + x9 + x8 + x4 + x3 + 1

= x2 × x8 + x × x8 + x8 + x4 + x3 + 1

= x2 × (x4 + x3 + x + 1) + x × (x4 + x3 + x + 1) +

+(x4 + x3 + x + 1) + x4 + x3 + 1

= (x6 + x5 + x3 + x2) + (x5 + x4 + x2 + x) +

+(x4 + x3 + x + 1) + x4 + x3 + 1

= x6 + x4 + x3

http://koclab.org Çetin Kaya Koç Winter 2020 11 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

SHIFT-and-XOR Polynomial Reduction

The polynomial reduction can be performed by successive XOR and
SHIFT operations — this would be more amenable to programming

The irreducible polynomial p(x) = x8 + x4 + x3 + x + 1 is given as
x8 + x4 + x3 + x + 1, represented as (1 0001 1011)

The algorithm starts with the binary representation of c ′(x), and
shifts the binary representation of the irreducible polynomial and
performs XOR operations, zeroing the higher order 1s in c ′(x) until
the upper part of c ′(x) (bits 8 to 13) are completely zero

The resulting polynomial will not have any terms higher than x7, and
therefore, it would be equal to c(x)

http://koclab.org Çetin Kaya Koç Winter 2020 12 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

SHIFT-and-XOR Polynomial Reduction

Taking c ′(x) = x10 + x9 + x8 + x4 + x3 + 1 = (111 0001 1001) and
p(x) = (1 0001 1011), we perform the SHIFT-and-XOR reductions:

1 1 1 0 0 0 1 1 0 0 1
⊕ 1 0 0 0 1 1 0 1 1

0 1 1 0 1 1 1 0 1 0 1
⊕ 1 0 0 0 1 1 0 1 1

0 1 0 1 0 0 0 0 1 1
⊕ 1 0 0 0 1 1 0 1 1

0 0 1 0 1 1 0 0 0

0 1 0 1 1 0 0 0

The result is now a polynomial of length 8 (degree at most 7) and is
given as c(x) = (0101 1000) = x6 + x4 + x3

http://koclab.org Çetin Kaya Koç Winter 2020 13 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Inversion in GF(2k)

Another important field operation for Rijndael and AES is
multiplicative inversion, i.e., the computation of b(x) = a(x)−1 in
GF(2k) such that

b(x)× a(x) = 1 mod p(x)

The inverse can be computed using the extended Euclidean algorithm,
the Fermat’s method, or the Itoh-Tsuji algorithm

The extended Euclidean algorithm uses polynomial division and
addition operations over the ground field GF(2)

The Fermat’s and Itoh-Tsuji methods are based on the computing the
(2k − 2)th power of the element a(x) in the field GF(2k) in order to
obtain the inverse

http://koclab.org Çetin Kaya Koç Winter 2020 14 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Extended Euclidean Algorithm for Inverse

Given the element a(x) and the irreducible polynomial p(x) such that
GCD(a(x), p(x)) = 1, the extended Euclidean algorithm computes the
polynomials s(x) and t(x) with the property

a(x)× s(x) + p(x)× t(x) = 1

From this equality we find the inverse of a(x) in GF(2k) as

a(x)−1 = s(x)

Since our field of operations is GF(28), the irreducible polynomial is
given as p(x) = x8 + x4 + x3 + x + 1

All polynomial division and addition operations are performed in the
ground field GF(2), and the extended Euclidean Algorithm is generally
more efficient for large values of k

http://koclab.org Çetin Kaya Koç Winter 2020 15 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Fermat’s Method for Inversion

The inverse can also be computed using the analogue of the Fermat’s
Little Theorem in the multiplicative group of GF(2k)

For a 6= 0, a2
k−1 = 1 in GF(2k) since the group order is 2k − 1

Therefore, the inverse can be computed using the identity

a−1 = a2
k−2

which is used in both Fermat’s method and the Itoh-Tsuji method

Considering GF(28), we compute the inverse of a(x) in the field
GF(28), by taking its 28 − 2 = 254 power

a(x)−1 = a(x)2
8−2 = a(x)254

http://koclab.org Çetin Kaya Koç Winter 2020 16 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Fermat’s Method for Inversion

We can compute a(x)254 using the binary method of
exponentiation

Since 254 = (11111110)2, we obtain the 254th power of a(x) by
scanning the bits of 254 from left to right, perform a squaring for
every bit while performing a multiplication by a(x) if the bit is 1, as
follows:

a
s→ a2

m→ a3
s→ a6

m→ a7
s→ a14

m→ a15
s→ a30

a30
m→ a31

s→ a62
m→ a63

s→ a126
m→ a127

s→ a254

The binary method to compute the inverse of a(x) in GF(28) requires
13 multiplications (or: 7 squarings and 6 multiplications)

http://koclab.org Çetin Kaya Koç Winter 2020 17 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Itoh-Tsuji Algorithm for Inverse

The Itoh-Tsuji algorithm starts with

a−1 = a2
k−2 = (a2

k−1−1)2

and uses the factorization of 2k − 2 and the subsequent powers in
order to compute the inverse of a(x) in GF(2k)

Depending on whether the power j is even or odd, we can write:

For even (j) : 2j − 1 = (2
j
2 − 1) · (2

j
2 + 1)

For odd (j) : 2j − 1 = 2 · (2
j−1
2 − 1) · (2

j−1
2 + 1) + 1

The algorithm computes the powers of a using this factorization and
properties: if t = u · v , then at = (au)v and if t = u + v , then
at = auav

http://koclab.org Çetin Kaya Koç Winter 2020 18 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Itoh-Tsuji Algorithm in GF(28)

To invert in GF(28), we factor 28− 2 = 2 · (27− 1) using the formulae:

27 − 1 = 2 · (23 − 1) · (23 + 1) + 1 = 2 · 7 · 9 + 1

23 − 1 = 2 · (21 − 1) · (21 + 1) + 1 = 2 · 3 + 1

28 − 2 = 2 · (2 · 7 · 9 + 1) = 2 · [2 · (2 · 3 + 1) · (23 + 1) + 1]

We now compute a−1 = a254 using this factorization:

a
s→ a2

s→ a4
s→ a8

m→ a9

a9
s→ a18

m→ a27
s→ a54

m→ a63

a63
s→ a126

m→ a127
s→ a254

The Itoh-Tsuji algorithm requires 11 multiplications (or: 7 squarings
and 4 multiplications) which is slightly better than the binary method

http://koclab.org Çetin Kaya Koç Winter 2020 19 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Computation of SubByte in AES/Rijndael

The SubByte step involves a table lookup operation such that an
element a of the state matrix is replaced with S(a)

The S table is of dimension 16× 16 with 8-bit output entries

The input to the S table is the higher aH and lower aL part of the
element a (each of which is 4 bits, represented as 1-digit hex
numbers), and output S(a) is an 8-bit value, which is a 2-digit hex
number

Note that the entries of the state matrix are elements of the field
GF(28), however, we treat them as 2-digit hex numbers in the table
lookup computation of the SubByte round

However, the SubByte also defines a nonlinear function, a mix of the
field operations and the matrix-vector operations with boolean values

http://koclab.org Çetin Kaya Koç Winter 2020 20 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Table Lookup Computation of SubByte

Consider an entry of the state matrix as (23) which is a hex value,
represented as (0010 0011) in binary, and as an element of the field
GF(28) as polynomial a(x) = x5 + x + 1

aH\aL 0 1 2 3 · · ·
0 63 7c 77 7b · · ·
1 ca 82 c9 7d · · ·
2 b7 fd 93 26 · · ·
3 04 c7 23 c3 · · ·
...

...
...

...
...

We compute S(a) by taking its 1-digit higher part (2) as the row
index and 1-digit lower part (3) as the column index, and find

S(23) = 26

http://koclab.org Çetin Kaya Koç Winter 2020 21 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

The SubByte S-Box

{ }
y

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

x

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

http://koclab.org Çetin Kaya Koç Winter 2020 22 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Computation of SubByte as a Nonlinear Function

The SubByte step defines a nonlinear function which is a mix of the
field operations and the matrix-vector operations with boolean entries

Assume the input a(x) is given, in order to compute c(x) = S(a(x)),
we perform the following steps:
Step 1: If a(x) 6= 0, we compute its multiplicative inverse
b(x) = a−1(x) in the field GF(28); if a(x) = 0, we take b(x) = 0
Step 2: Once b(x) is available, we perform an affine transformation
c = Ab + d over the field GF(2), and obtain c(x), where A is an 8× 8
fixed matrix and d is 8× 1 fixed vector, described in the next page

The output is c(x) = S(a(x))

http://koclab.org Çetin Kaya Koç Winter 2020 23 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Computation of SubByte as a Nonlinear Function

In Step 2, we apply the affine transformation to the input vector
b(x) = (b7b6b5b4b3b2b1b0), and thus, compute the output vector as
c(x) = (c7c6c5c4c3c2c1c0) using the affine transformation c = Ab + d
as 

c0
c1
c2
c3
c4
c5
c6
c7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





b0
b1
b2
b3
b4
b5
b6
b7


+



1
1
0
0
0
1
1
0


The output of this transformation is c(x) = S(a(x))

http://koclab.org Çetin Kaya Koç Winter 2020 24 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Computation of SubByte as a Nonlinear Function

The computation of S(a(x)) involves a field inversion followed up by
an affine transformation

For field inversion, we can use any of the inversion algorithms: the
extended Euclidean algorithm, the Fermat’s or the Itoh-Tsuji method

We can also create a lookup table I of size 28 × 8 bits for the inverses
of all field elements, such that I (a) = a−1; for completeness we can
place I (00) = (00); also note that I (01) = (01) since 1 is its own
inverse

Also, I (02) = I (x) = x7 + x3 + x2 + 1 since x × (x7 + x3 + x2 + 1)
equals

x8 + x4 + x3 + x = (x4 + x3 + x + 1) + x4 + x3 + x = 1

in other words I (02) = (1000 1101)2 = (8d)

http://koclab.org Çetin Kaya Koç Winter 2020 25 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Computation of S(00) and S(01)

For a(x) = 0, we have b(x) = 0, and thus, the affine transformation
c = Ab + d produces the vector c(x) as

c(x) = [1 1 0 0 0 1 1 0]T = (0110 0011)2 = (63)

and therefore S(0) = (63)

For a(x) = 1, we have b(x) = 1 = (0000 0001)2 = [1 0 0 0 0 0 0 0]T

which gives the result of the affine transformation as the sum of the
first column of matrix A and the vector d :

c(x) = [1 1 1 1 1 0 0 0]T + [1 1 0 0 0 1 1 0]T

= [0 0 1 1 1 1 1 0] = (0111 1100)2 = (7c)

and therefore S(01) = (7c)

http://koclab.org Çetin Kaya Koç Winter 2020 26 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Computation of S(02)

For a(x) = x , we have b(x) = x7 + x3 + x2 + 1, and thus, we have
b(x) = (1000 1101)2 = [1 0 1 1 0 0 0 1]T

The affine transformation produces the vector c(x) using

c0
c1
c2
c3
c4
c5
c6
c7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





1
0
1
1
0
0
0
1


+



1
1
0
0
0
1
1
0


=



1
1
1
0
1
1
1
0


Therefore, c(x) = (0111 0111)2 and S(x) = (77)

http://koclab.org Çetin Kaya Koç Winter 2020 27 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

MixColumn Operation

The MixColumn operation multiplies a fixed 4× 4 matrix with every
4× 1 column vector of the state matrix

The MixColumn matrix M in hex and polynomial representation is
02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 =


x x + 1 1 1
1 x x + 1 1
1 1 x x + 1

x + 1 1 1 x


Given a 4× 1 column vector u of the state matrix, such that each
vector entry is an element of the finite field GF(28), we perform a
matrix-vector multiplication operation Mu using field multiplications
and additions to compute the new column vector of the state matrix

http://koclab.org Çetin Kaya Koç Winter 2020 28 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

MixColumn Operation Example

The following MixColumn operation example is given:
02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02




d4

bf

5d

30

 =


04

66

81

e5


In the following we show the computation of the first entry of the
resulting vector, in other words, the computation of

[02 03 01 01]


d4

bf

5d

30

 = (04)

http://koclab.org Çetin Kaya Koç Winter 2020 29 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

MixColumn Operation Example

By representing the column vector [d4 bf 5d 30]T as a polynomial
vector, we can write this MixColumn operation in polynomial
representation as

[x x + 1 1 1]


x7 + x6 + x4 + x2

x7 + x5 + x4 + x3 + x2 + x + 1
x6 + x4 + x3 + x2 + 1

x5 + x4


To compute the inner product, we perform polynomial multiplications,
additions, and reductions modulo p(x) whenever necessary:

x × (x7 + x6 + x4 + x2) +
(x + 1)× (x7 + x5 + x4 + x3 + x2 + x + 1) +

1× (x6 + x4 + x3 + x2 + 1) +
1× (x5 + x4)

http://koclab.org Çetin Kaya Koç Winter 2020 30 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

MixColumn Operation Example

The first product:
x × (x7 + x6 + x4 + x2)

After the first product we need reduction modulo the irreducible
polynomial p(x) since the resulting polynomial would be of degree 8

x × (x7 + x6 + x4 + x2) = x8 + x7 + x5 + x3

= (x4 + x3 + x + 1) + x7 + x5 + x3

= x7 + x5 + x4 + x + 1

= (1011 0011) = (b3)

After the polynomial multiplication, we reduced the highest degree
term (which is x8) by substituting it with x4 + x3 + x + 1, which is the
lower half of the irreducible polynomial p(x) = x8 + x4 + x3 + x + 1

http://koclab.org Çetin Kaya Koç Winter 2020 31 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

MixColumn Operation Example

The second product:

(x + 1)× (x7 + x5 + x4 + x3 + x2 + x + 1)

After the multiplication:

(x + 1)× (x7 + x5 + x4 + x3 + x2 + x + 1) = x8 + x7 + x6 + 1

We need to reduce it modulo p(x) since its degree is larger than 8

By substituting x8 with x4 + x3 + x + 1, we obtain

x4 + x3 + x + 1 + x7 + x6 + 1 = x7 + x6 + x4 + x3 + x

which is equal to (1101 1010) = (da)

http://koclab.org Çetin Kaya Koç Winter 2020 32 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

MixColumn Operation Example

However, we do not need reductions for the third and fourth products:

1× (x6 + x4 + x3 + x2 + 1) = x6 + x4 + x3 + x2 + 1 = (5d)
1× (x5 + x4) = x5 + x4 = (30)

Finally, adding all 4 resulting polynomials, we obtain the top entry as

(02)× (d4) = (b3) x7 + x5 + x4 + x + 1

(03)× (bf) = (da) x7 + x6 + x4 + x3 + x

(01)× (5d) = (5d) x6 + x4 + x3 + x2 + 1

(01)× (30) = (30) x5 + x4

(04) x2

http://koclab.org Çetin Kaya Koç Winter 2020 33 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Rijndael and AES Block and Key Lengths

Rijndael can have block lengths of 128, 192 and 256 bits, therefore,
the state matrix is of dimension 4× 4, 4× 6, and 4× 8 where the
entries are the elements of GF(28)

However, the AES block length is fixed at 128 bits only, and thus, the
state matrix is of dimension 4× 4

On the other hand, the Rijndael and AES can have key lengths of
128, 192 and 256 bits, therefore, the key matrix is of dimension 4× 4,
4× 6, and 4× 8 where the entries are the elements of GF(28)

The number of rows in the state and key matrices for the Rijndael
and AES is always 4

http://koclab.org Çetin Kaya Koç Winter 2020 34 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Rijndael and AES Block and Key Lengths

Let Nb and Nk be the number of columns of the state matrix and key
matrix, respectively

For example, Nb = 6 and Nk = 4 gives as the state and key matrices
as 

a00 a01 a02 a03 a04 a05
a10 a11 a12 a13 a14 a15
a20 a21 a22 a23 a24 a25
a30 a31 a32 a33 a34 a35




k00 k01 k02 k03
k10 k11 k12 k13
k20 k21 k22 k23
k30 k31 k32 k33


where each one of the state and key entries aij , klm ∈ GF(28)

Possible values of (Nb,Nk) for AES and Rijndael are:

AES: (4, 4), (4, 6), (4, 8)
Rijndael: (4, 4), (4, 6), (4, 8) (6, 4), (6, 6), (6, 8) (8, 4), (8, 6), (8, 8)

http://koclab.org Çetin Kaya Koç Winter 2020 35 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Rijndael Rounds

The number of rounds of Rijndael depends on the values of Nb and
Nk :

Nb\Nk 4 6 8

4 10 12 14
6 12 12 14
8 14 14 14

In all cases the 0th round is just a single step of AddRoundKey, and
the last round is missing the MixColumnStep, and therefore, consists
of the steps: ByteSub, ShiftRow, and AddRoundKey

For example, for (Nb,Nk) = (6, 6), the 0th round is just an
AddRoundKey step, while the rounds 1 through 11 consist of
ByteSub, ShiftRow, MixColunm, and AddRoundKey steps, and finally
the 12th round consists of ByteSub, ShiftRow, and AddRoundKey
steps

http://koclab.org Çetin Kaya Koç Winter 2020 36 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Rijndael and AES Block and Key Lengths

Due to the AddRoundKey step, the key matrix needs to match the
state matrix in dimension: This works fine for the cases of (4, 4) for
AES and Rijndael, and (6, 6), (8, 8) for Rijndael only

When the key matrix has more columns than the state matrix, then
the unused key columns are used in the next round, which are the
cases of (4, 6), (4, 8) for AES and Rijndael, and (6, 8) for Rijndael only

When the key matrix has fewer columns than the state matrix, then
the key scheduling works one more step and produces the additionally
needed columns for that round, and the unused key columns are used
in the next round, which are the cases of (6, 4), (8, 4), (8, 6) for
Rijndael only

http://koclab.org Çetin Kaya Koç Winter 2020 37 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

AddRoundKey Step

In the AddRoundKey step, the key matrix and the state matrix are
added over the field GF(28)

The state and the round key matrices have the same number of rows
and columns, for example, they are both 4× 4 as follows

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

 +


k00 k01 k02 k03
k10 k11 k12 k13
k20 k21 k22 k23
k30 k31 k32 k33


Here, each of aij , kij ∈ GF(28) and the resulting aij + kij ∈ GF(28) for
0 ≤ i , j ≤ 3

Due the property of the addition, there is no need to perform
reduction

http://koclab.org Çetin Kaya Koç Winter 2020 38 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

ShiftRow Transformation

In ShiftRow the last three rows of the state matrix is shifted cyclically,
but the number of shifts depend on the number of columns Nb of the
state matrix

Since for AES Nb is fixed at 4, the number of shifts for the last three
rows are also fixed at 1, 2, and 3

However, Rijndael can have different block lengths and the number of
shifts is determined according to the value of Nb

Nb c1 c2 c3
4 1 2 3
6 1 2 3
8 1 3 4

http://koclab.org Çetin Kaya Koç Winter 2020 39 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Expanded Key in Key Scheduling

The original key matrix 4, 6, and 8 columns, for key sizes 128, 192,
and 256, respectively

The expanded key has Nb(1 + Nr ) columns, where Nr is the number
of rounds

The first Nk columns of the expanded key is the columns of the
original key; the remaining columns are produced recursively from the
previous columns

The key scheduling algorithm for Nk ≤ 6 uses the same steps, while
for Nk > 6, there is an additional SubByte step

http://koclab.org Çetin Kaya Koç Winter 2020 40 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

Round Constants in Key Scheduling

The key scheduling algorithm uses several steps, such as a columnwise
cyclical shift transformation, a SubByte transformation, and an
addition operation involving a variable called round constant (Rcon)

The Rcon(i) is defined as column vectors such that

Rcon(i) =


x i

0
0
0


where the operation x i is performed in GF(28), and therefore, for
i ≥ 8, it needs to be reduced modulo the irreducible polynomial

Only the top entry of this column vector is nonzero, and the first 12
values for increasing i are 01, 02, 04, 08, 10, 20, 40, 80, 1b, 36, 6c,
d8

http://koclab.org Çetin Kaya Koç Winter 2020 41 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

AES Decryption

The Rijndael is not a Feistel network, and its inverse is almost the
same as the cipher — A round of the inverse cipher has the same
structure

The decryption is performed by applying the transformations in
inverse order

The AddRoundKey step is identical

The ByteSub, MixColumn and ShiftRow steps are replaced by their
inverses

The InverseShiftRow steps performs cyclic right shift operations,
instead of the cyclic left shifts in the ShiftRow step

http://koclab.org Çetin Kaya Koç Winter 2020 42 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

The InverseMixColumn and the InverseSubByte

The InverseMixColumn matrix is given as
0e 0b 0d 09

09 0e 0b 0d

0d 09 0e 0b

0b 0d 09 0e


In polynomial notation, this is

x3 + x2 + x x3 + x + 1 x3 + x2 + 1 x3 + 1
x3 + 1 x3 + x2 + x x3 + x + 1 x3 + x2 + 1

x3 + x2 + 1 x3 + 1 x3 + x2 + x x3 + x + 1
x3 + x + 1 x3 + x2 + 1 x3 + 1 x3 + x2 + x



http://koclab.org Çetin Kaya Koç Winter 2020 43 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

The InverseMixColumn and the InverseSubByte

The InverseMixColumn operation is not efficient as the MixColumn
operation due to the fact the entries are not as as simple

The InverseSubByte is performed over the inverse S-box

For example, S(00) = (63) implies that S−1(63) = (00), and
similarly, S−1(7c) = (01) and S−1(77) = (02)

http://koclab.org Çetin Kaya Koç Winter 2020 44 / 45

http://koclab.org


Advanced Encryption Standard GF(28) Arithmetic, Rijndael, S-Box

The InverseSubByte S-Box

y
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

x

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

http://koclab.org Çetin Kaya Koç Winter 2020 45 / 45

http://koclab.org

