Public-Key Cryptography

Secure Communication over an Insecure Channel

Secret-Key Cryptography

Encryption and decryption functions: $E(\cdot) \& D(\cdot)$ Encryption and decryption keys: $K_{e} \& K_{d}$ Plaintext and ciphertext: $M \& C$

Secret-Key Cryptography

- $C=E_{K_{e}}(M)$ and $M=D_{K_{d}}(C)$
- Either $E(\cdot)=D(\cdot)$ and $K_{e} \neq K_{d}$
K_{d} is easily deduced from K_{e} K_{e} is easily deduced from K_{d}
- Or $E(\cdot) \neq D(\cdot)$ and $K_{e}=K_{d}$
$D(\cdot)$ is easily deduced from $E(\cdot)$
$E(\cdot)$ is easily deduced from $D(\cdot)$

Example: Hill Algebra

- Encoding: $\{a, b, \ldots, z\} \longrightarrow\{0,1, \ldots, 25\}$
- Select a $d \times d$ matrix \mathcal{A} of integers and find its inverse $\mathcal{A}^{-1} \bmod 26$
- For example, for $d=2$

$$
\mathcal{A}=\left[\begin{array}{ll}
3 & 3 \\
2 & 5
\end{array}\right] \quad \text { and } \quad \mathcal{A}^{-1}=\left[\begin{array}{cc}
15 & 17 \\
20 & 9
\end{array}\right]
$$

Verify:

$$
\left[\begin{array}{ll}
3 & 3 \\
2 & 5
\end{array}\right]\left[\begin{array}{cc}
15 & 17 \\
20 & 9
\end{array}\right]=\left[\begin{array}{ll}
105 & 78 \\
130 & 79
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right](\bmod 26)
$$

Hill Cipher

- Encryption function: $c=E(m)=\mathcal{A} m(\bmod 26)$
- Decryption function: $m=D(c)=\mathcal{A}^{-1} c(\bmod 26)$
- m and c are $d \times 1$ vectors of plaintext and ciphertext letter encodings
- Encryption key $K_{e}: \mathcal{A}$
- Decryption key $K_{d}: \mathcal{A}^{-1}(\bmod 26)$
- \mathcal{A} and \mathcal{A}^{-1} are $d \times d$ matrices such that $\operatorname{det}(\mathcal{A}) \neq 0(\bmod 26)$ and \mathcal{A}^{-1} is the inverse of $\mathcal{A} \bmod 26$

Secret-Key versus Public-Key Cryptography

- Secret-Key Cryptography:
- Requires establishment of a secure channel for key exchange
- Two parties cannot start communication if they never met
- Secure communication of n parties requires $n(n-1) / 2$ keys
- Keys are "shared", rather than "owned" (secret vs private)
- Public-Key Cryptography:
- No need for a secure channel
- May require establishment of a public-key directory
- Two parties can start communication even if they never met
- Secure communication of n parties requires n keys
- Keys are "owned', rather than "shared"
- Ability to "sign" digital data (secret vs private)

Public-Key Cryptography

- The functions $C(\cdot)$ and $D(\cdot)$ are inverses of one another

$$
C=E_{K_{e}}(M) \text { and } M=D_{K_{d}}(C)
$$

- Encryption and decryption processes are asymmetric:

$$
K_{e} \neq K_{d}
$$

- K_{e} is public, known to everyone
- K_{d} is private, known only to the user
- K_{e} may be easily deduced from K_{d}
- However, K_{d} is NOT easily deduced from K_{e}

Public-Key Cryptography

Public-Key Cryptography

- The User publishes his/her own public key: K_{e}
- Anyone can obtain the public key K_{e} and can encrypt a message M, and send the ciphertext to the User

$$
C=E_{K_{e}}(M)
$$

- The private key is known only to the User: K_{d}
- Only the User can decrypt the ciphertext to get the message

$$
M=D_{K_{d}}(C)
$$

- The adversary may be able to block the ciphertext, but cannot decrypt

Public-Key Cryptography

- A public-key cryptographic algorithm is based on a function $y=f(x)$ such that
Given x, computing y is EASY: $y=f(x)$
Given y, computing x is HARD: $x=f^{-1}(y)$

- Such functions are called one-way
- In order to decide what is hard: Theory of complexity could help

One-Way Functions for PKC

- However, a one-way function is difficult for anyone to invert
- What we need: a function easy to invert for the legitimate receiver of the encrypted message, but for everyone else: hard
- Such functions are called one-way trapdoor functions
- In order to build a public-key encryption algorithm, we need a one-way trapdoor function
- Once that is understood (in around 1975-1976), researchers looked for such special functions which are either based on the known one-way functions or some other constructions

Knapsack Problem

- A problem from combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible

- The decision problem form of the knapsack problem: "Can a value of at least V be achieved without exceeding the weight X ?" is NP-complete
- There is no known polynomial-time algorithm on all cases

0-1 Knapsack Problem

- 0-1 Knapsack Problem: Given a set of integers $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ and an integer X, is there a subset B of A such that the sum of the elements in the subset B is exactly X ?

$$
\sum_{a_{i} \in B} a_{i}=X
$$

- For a randomly generated set of $a_{i} s$: A hard knapsack problem
- Consider $A=\{3,4,5,12,13\}$ and $X=19$
- We need to try all subsets of A to find out which one sums to 19

Knapsack as a One-Way Function

- EASY: Given a randomly generated $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$, select a subset $B \subset A$, and find the sum

$$
X=\sum_{a_{i} \in B} a_{i}
$$

- HARD: Given a randomly generated $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$, and the sum X, determine the subset B such that

$$
X=\sum_{a_{i} \in B} a_{i}
$$

Trapdoor Knapsack

- What we need: A knapsack problem is that is hard for everyone else, except the intended recipient
- Consider the set A has the super-increasing property:

$$
\sum_{i=0}^{j-1} a_{i}<a_{j}
$$

- $A=\{1,2,4,8,16,32,64, \ldots\}$: Super-increasing

$$
1<2 ; 1+2<4 ; 1+2+4<8 ; 1+2+4+8<16 ; \cdots
$$

- Given X, it would be trivial to determine if any of $a_{i} s$ is to be included: if there is a 1 in the binary expansion of X in the i th position

Trapdoor Knapsack

- Take an easy knapsack and disguise it
- Consider $A=\{1,2,4,8,16\}$
- Select a prime p larger than the sum 31, for example $p=37$
- Select t and compute $t^{-1} \bmod p$, for example, $t=17$ and $t^{-1}=24$
- Produce a new knapsack vector A^{\prime} from A such that

$$
a_{i}^{\prime}=a_{i} \cdot t \quad(\bmod p)
$$

This gives $A^{\prime}=\{17,34,31,25,13\}$, which is not super-increasing

Trapdoor Knapsack

- However, with the special trapdoor information $t=17$ and $t^{-1}=24$, and $p=37$, we can convert this problem to a super-increasing knapsack
- Given A^{\prime} and $X^{\prime}=72$, is there a subset of A^{\prime} summing to X^{\prime} ?
- First turn the problem into a super-increasing knapsack version, by simply finding X from X^{\prime} as $X=X^{\prime} \cdot t^{-1}=72 \cdot 24=26(\bmod 37)$
- Solve the super-increasing knapsack $A=\{1, \mathbf{2}, 4, \mathbf{8}, \mathbf{1 6}\}$ and $X=26$, which is easily obtained from the binary expansion of $26=16+8+2$
- This gives the solution for $A^{\prime}=\{17, \mathbf{3 4}, 31, \mathbf{2 5}, \mathbf{1 3}\}$ and $X^{\prime}=72$ as $72=34+25+13$

Trapdoor Knapsack Public-Key Encryption

- User A:

Selects a super-increasing vector A with $|A|=n>100$
Selects a prime p larger than the sum $\sum_{i=0}^{n-1} a_{i}$
Selects t and t^{-1} such that $t \cdot t^{-1}=1 \bmod p$
Obtains the hard knapsack A^{\prime} from A using $a_{i}^{\prime}=a_{i} \cdot t \bmod p$
Publishes A^{\prime} in a server and keeps A, t, t^{-1}, and p secret

- User B:

Wants to send a message M to User A
Breaks the message M into n bits: $\left(m_{n-1} m_{n-2} \cdots m_{1} m_{0}\right)$
Obtains A^{\prime} from the public key server
Computes the ciphertext C^{\prime} as $C^{\prime}=\sum_{i=0}^{n-1} m_{i} a_{i}^{\prime}$
Sends the ciphertext C^{\prime} to User A

Trapdoor Knapsack Public-Key Encryption

- User A:

Receives the ciphertext ' C
Computes $C=C^{\prime} \cdot t^{-1} \bmod p$
Solves the a super-increasing vector A and C Uses this solution to obtain the plaintext M

- Therefore, we obtained the Knapsack public-key encryption algorithm
- Our objective: User A faces an easy problem due to the trapdoor information, while everyone else faces a computationally difficult problem
- We accomplished the first half of our objective nicely: The super-increasing knapsack problem is indeed easy to solve

Trapdoor Knapsack Public-Key Encryption

- The trapdoor knapsack public-key encryption method was proposed by Ralph Merkle and Martin Hellman in 1978 (IEEE Tran. Information Theory)
- In 1984, Adi Shamir published a polynomial-time algorithm for breaking the Merkle-Hellman knapsack public-key encryption method in the same journal
- Does this mean a general (randomly generated) 0-1 knapsack problem is easy to solve? \rightarrow It was supposed to be NP-complete :(
- A knapsack problem with a disguised super-increasing vector is not the same as a general knapsack problem with a randomly generated vector

Lessons from Knapsack Public-Key Encryption

- Adi Shamir's attack on the Merkle-Hellman knapsack public-key encryption method essentially exposes the disguise and finds the randomization parameters t, t^{-1} and p
- This shows the difficulty of using the complexity theory for designing public-key encryption methods
- Public-key cryptography requires trapdoor one-way functions
- The complexity theory identifies computationally intractable problems by reducing them into known problems in a difficult-to-solve set (NP-complete)
- Such problems are inherently difficult for randomly generated inputs
- Disguising easy problems for the purpose of trapdoor does not seem to work well for designing public-key cryptographic algorithms

Well-Known One-Way Functions

- Discrete Logarithm:

Given p, g, and x, computing y in $y=g^{x}(\bmod p)$ is EASY Given p, g, y, computing x in $y=g^{x}(\bmod p)$ is HARD

- Factoring:

Given p and q, computing n in $n=p \cdot q$ is EASY
Given n, computing p or q in $n=p \cdot q$ is HARD

- Discrete Square Root:

Given x and y, computing y in $y=x^{2}(\bmod n)$ is EASY
Given y and n, computing x in $y=x^{2}(\bmod n)$ is HARD

- Discrete eth Root:

Given x, n and e, computing y in $y=x^{e}(\bmod n)$ is EASY Given y, n and e, computing x in $y=x^{e}(\bmod n)$ is HARD

