Factoring Integers

Primes

- Natural (counting) numbers: $\mathcal{N}=\{1,2,3, \ldots\}$
- A number $p \in \mathcal{N}$ is called prime if it is divisible only by 1 and itself
- 1 is not considered prime
- 2 is the only even prime
- Primes: $2,3,5,7,11,13, \ldots$
- There are infinitely many primes
- Every natural number n is factored into prime powers uniquely:

$$
n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdots p_{m}^{k_{m}}
$$

For example: $1960=2^{3} \cdot 5^{1} \cdot 7^{2}$

Primes

- The number of primes less than or equal to n is $\frac{n}{\log _{e}(n)}$

n	$n / \log _{e}(n)$	exact
10^{2}	21.7	25
10^{3}	144.8	168
10^{6}	72382.4	78498
10^{9}	$4.8 \cdot 10^{7}$	50847534

- As we can see, primes are in abundance: we do not have scarcity
- The odds of selecting a prime is high for small numbers: if we select a 2-digit integer, the probability that it is prime is $25 / 100=25 \%$
- The odds of selecting a prime less than 10^{6} is $78498 / 10^{6} \approx 7.8 \%$
- If we make sure that this number is not divisible by 2 or 3 , (which makes up $2 / 3$ of integers), the odds increase to 23.5%

Primes

- As the numbers get larger, which would be the case for cryptographic applications, the ratio becomes less and less
- The ratio of 1024 -bit (308-digit) primes to the 308 -digit numbers is

$$
\frac{1}{\log _{e}\left(2^{1024}\right)} \approx \frac{1}{714}
$$

- Therefore, if we randomly select a 308-digit integer, the probability that it is prime is $1 / 714$
- If we remove the multiples of 2 and 3 from this selected integer, the odds of choosing a 308-digit prime at random is improved by a factor of 3 to $1 / 238$

Checking for Primality vs Factoring

- Primality testing: Is $n \in \mathcal{N}$ prime?

The answer is yes or no (we may not need the factors if n is composite)

- Factoring: What is the prime factorization of $n \in \mathcal{N}$? The answer is $n=p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}$
- Is $2^{101}+81=2535301200456458802993406410833$ prime? The answer: Yes
- Is $2^{101}+71=2535301200456458802993406410823$ prime? The answer: No
- Factor $n=2^{101}+61=2535301200456458802993406410813$ The answer: $n=3 \cdot 19 \cdot 1201 \cdot 37034944570408560161757109$

Factorization by Trial Division

- Trial division (exhaustive search): Find a prime factor of $n \in \mathcal{N}$ by dividing n by numbers that are smaller than n
- Observation 1: We do not need to divide n by composite numbers
- It is sufficient that we only try primes, for example, if n is divisible by 6 , then we could have discovered earlier that it was divisible by 2
- Observation 2: One of the factors of n must be smaller than \sqrt{n}, otherwise if $n=p q$ and $p>\sqrt{n}$ and $q>\sqrt{n}$ implies $p q>n$

Factorization by Trial Division

- Trial division finds a prime factor of $n \in \mathcal{N}$ by dividing n by k for $k=2,3, \ldots, \sqrt{n}$
- Trial division requires $O(\sqrt{n})$ divisions (in the worst case)
- If n is a k-bit number, then $n=O\left(2^{k}\right)$ and the number of divisions is $O\left(2^{k / 2}\right)$ which is exponential in k

Factorization by Trial Division

- For example, factoring $2^{101}+61$ requires about 2^{50} divisions
- Assuming one division requires $1 \mu \mathrm{~s}$, this would take 35 years!
- However, this is the worst case analysis, which assumes a prime divisor is as large as it can be $\approx \sqrt{n}$
- If n has a small divisors, they will be found more quickly
- For example, $2^{101}+61$ has smaller factors such as 3,19 , and 1201 , and thus, the trial division algorithm would quickly find them
- Therefore, we conclude that if $n=p \cdot q$ such that $p, q \approx \sqrt{n}$, then the trial division would take the longest time

Factorization by Trial Division

- The number of divisions for factoring n with large prime factors is exponential in terms of the number of bits in n
- Trial division starts from $k=2$ and increases k until \sqrt{n}, and thus, it is very successful on numbers which have small prime factors: these factors would be found first, reducing the size of the number to be factored
- For example, given $n=122733106823002242862411$, we would find the smaller factors 17, 31, and 101 first, and divide them out

$$
\frac{n}{17 \cdot 31 \cdot 101}=m=2305843027467304993
$$

and then continue to factor m which is smaller in size than n

Fermat's Trial Division

- Fermat's idea was that if n can be written as the difference of two perfect squares:

$$
n=x^{2}-y^{2}
$$

then, we can write

$$
n=(x-y)(x+y)
$$

and therefore, we can find two factors of n

- As opposed to the standard trial division algorithm, Fermat's method starts $x \approx\lceil\sqrt{n}\rceil$ and $y=1$, and increases y until we find a y value such that $x^{2}-y^{2}=n$
- Since $x \approx\lceil\sqrt{n}\rceil$, Fermat's methods finds a factor that is closer to the size of \sqrt{n} before it finds a smaller factor

Fermat's Trial Division

- For example, consider $n=302679949$, we have $\lceil\sqrt{n}\rceil=17398$
- We start with $x=17398$ and $y=1$, increase y as long as $x^{2}-y^{2} \leq n$
- We either find a y such that $x^{2}-y^{2}=n$ or the selected value of x does not work, i.e., we cannot find y such that $x^{2}-y^{2}=n$, then we increase x as $x=x+1$ and start with $y=1$ again
- It turns out for $x=19015$, we find $y=7674$ such that

$$
x^{2}-y^{2}=19015^{2}-7674^{2}=302679949=n
$$

therefore, n is factored as $n=(x-y)(x+y)$ such that

$$
n=(19015-7674)(19015+7674)=11341 \cdot 26689
$$

Kraitchik's Method

- Instead of looking for x and y satisfying $x^{2}-y^{2}=n$, we can also search for "random" x and y such that

$$
x^{2}=y^{2} \quad(\bmod n)
$$

- For such a pair (x, y), factorization of n is not guaranteed
- We only know the difference of the squares is a multiple of n :

$$
x^{2}-y^{2}=(x-y)(x+y)=0 \quad(\bmod n)
$$

- Since n divides $(x-y) \cdot(x+y)$, we have $1 / 2$ chance that prime divisors of n are distributed among the divisors of both of these factors
- The $\operatorname{GCD}(n, x-y)$ will be a nontrivial factor, the GCD will be neither 1 nor n

Kraitchik's Method

- For $n=221=13 \cdot 17$, we find $x=4$ and $y=30$, such that $4^{2}=16$ $(\bmod 221)$ and $30^{2}=900=16(\bmod 221)$, and therefore,

$$
\operatorname{GCD}(221,30-4)=\operatorname{GCD}(221,26)=13
$$

- In fact, there are many (x, y) such that $x^{2}=y^{2}(\bmod 221)$, which gives us a higher chance of finding a pair (x, y) :

$$
(2,15),(3,88),(5,73), \ldots,(11,28), \ldots
$$

- Note that we still perform an exhaustive search to find a pair (x, y)

Dixon's Method

- There is an algorithm due to Dixon to find such squares (x and y) which is slightly more efficient
- It expresses the numbers x and y into small prime powers, and then works with the exponents
- When the exponents of the small primes in the expression are all even, for example, if $x=2^{8} \cdot 3^{6} \cdot 5^{2} \cdot 7^{0} \cdot 11^{8}$, then x is a square
- The algorithm starts with particular (random) x and y values (which have even powers in their small-prime factorizations), and creates other candidates for x and y which have even powers, and checks for equality $x^{2}=y^{2}(\bmod n)$ among all such squares

Modern Factorization Methods

- Factorization in general seems to require exhaustive search: modern factorization algorithms differ from one another slightly in the way this search is constructed
- There is no known deterministic or randomized polynomial time algorithm for finding the factors of a given composite integer n, particularly, when $n=p \cdot q$ with size of p and q about half of the size of n
- The best integer factorization algorithm called GNFS (generalized number field sieve) algorithm requires a time complexity of

$$
O\left(\exp \left(\left(\frac{64}{9} b\right)^{\frac{1}{3}}(\log b)^{\frac{2}{3}}\right)\right)
$$

where b is the number of bits in n

Complexity of Factorization

- It is not known exactly which complexity classes contain the decision version of the integer factorization problem
- It is known to be in $\mathcal{N P}$ since a YES answer can be verified in polynomial time by multiplication: Are p and q factors of n ?
- However, it is not known to be in $\mathcal{N} \mathcal{P}$-complete since no such reduction proof is discovered
- Many people have looked for a polynomial time algorithm for integer factorization, and failed
- On the other hand, factorization problem can be solved in polynomial time on a quantum computer, using Shor's algorithm

