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Primes

Natural (counting) numbers: N = {1, 2, 3, . . .}
A number p ∈ N is called prime if it is divisible only by 1 and itself

1 is not considered prime

2 is the only even prime

Primes: 2, 3, 5, 7, 11, 13, ...

There are infinitely many primes

Every natural number n is factored into prime powers uniquely:

n = pk11 · p
k2
2 · · · p

km
m

For example: 1960 = 23 · 51 · 72
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Primes

The number of primes less than or equal to n is n
loge(n)

n n/ loge(n) exact

102 21.7 25
103 144.8 168
106 72382.4 78498
109 4.8 · 107 50847534

As we can see, primes are in abundance: we do not have scarcity

The odds of selecting a prime is high for small numbers: if we select a
2-digit integer, the probability that it is prime is 25/100 = 25%

The odds of selecting a prime less than 106 is 78498/106 ≈ 7.8%

If we make sure that this number is not divisible by 2 or 3, (which
makes up 2/3 of integers), the odds increase to 23.5%
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Primes

As the numbers get larger, which would be the case for cryptographic
applications, the ratio becomes less and less

The ratio of 1024-bit (308-digit) primes to the 308-digit numbers is

1

loge(21024)
≈ 1

714

Therefore, if we randomly select a 308-digit integer, the probability
that it is prime is 1/714

If we remove the multiples of 2 and 3 from this selected integer, the
odds of choosing a 308-digit prime at random is improved by a factor
of 3 to 1/238
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Checking for Primality vs Factoring

Primality testing: Is n ∈ N prime?
The answer is yes or no (we may not need the factors if n is
composite)

Factoring: What is the prime factorization of n ∈ N ?
The answer is n = pk11 · · · pkmm
Is 2101 + 81 = 2535301200456458802993406410833 prime?
The answer: Yes

Is 2101 + 71 = 2535301200456458802993406410823 prime?
The answer: No

Factor n = 2101 + 61 = 2535301200456458802993406410813
The answer: n = 3 · 19 · 1201 · 37034944570408560161757109
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Factorization by Trial Division

Trial division (exhaustive search): Find a prime factor of n ∈ N by
dividing n by numbers that are smaller than n

Observation 1: We do not need to divide n by composite numbers

It is sufficient that we only try primes, for example, if n is divisible by
6, then we could have discovered earlier that it was divisible by 2

Observation 2: One of the factors of n must be smaller than
√
n,

otherwise if n = pq and p >
√
n and q >

√
n implies pq > n
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Factorization by Trial Division

Trial division finds a prime factor of n ∈ N by dividing n by k for
k = 2, 3, . . . ,

√
n

Trial division requires O(
√
n) divisions (in the worst case)

If n is a k-bit number, then n = O(2k) and the number of divisions is
O(2k/2) which is exponential in k
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Factorization by Trial Division

For example, factoring 2101 + 61 requires about 250 divisions

Assuming one division requires 1 µs, this would take 35 years!

However, this is the worst case analysis, which assumes a prime
divisor is as large as it can be ≈

√
n

If n has a small divisors, they will be found more quickly

For example, 2101 + 61 has smaller factors such as 3, 19, and 1201,
and thus, the trial division algorithm would quickly find them

Therefore, we conclude that if n = p · q such that p, q ≈
√
n, then

the trial division would take the longest time
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Factorization by Trial Division

The number of divisions for factoring n with large prime factors is
exponential in terms of the number of bits in n

Trial division starts from k = 2 and increases k until
√
n, and thus, it

is very successful on numbers which have small prime factors: these
factors would be found first, reducing the size of the number to be
factored

For example, given n = 122733106823002242862411, we would find
the smaller factors 17, 31, and 101 first, and divide them out

n

17 · 31 · 101
= m = 2305843027467304993

and then continue to factor m which is smaller in size than n
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Fermat’s Trial Division

Fermat’s idea was that if n can be written as the difference of two
perfect squares:

n = x2 − y2

then, we can write
n = (x − y)(x + y)

and therefore, we can find two factors of n

As opposed to the standard trial division algorithm, Fermat’s method
starts x ≈ d

√
ne and y = 1, and increases y until we find a y value

such that x2 − y2 = n

Since x ≈ d
√
ne, Fermat’s methods finds a factor that is closer to the

size of
√
n before it finds a smaller factor
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Fermat’s Trial Division

For example, consider n = 302679949, we have d
√
ne = 17398

We start with x = 17398 and y = 1, increase y as long as x2− y2 ≤ n

We either find a y such that x2 − y2 = n or the selected value of x
does not work, i.e., we cannot find y such that x2 − y2 = n, then we
increase x as x = x + 1 and start with y = 1 again

It turns out for x = 19015, we find y = 7674 such that

x2 − y2 = 190152 − 76742 = 302679949 = n

therefore, n is factored as n = (x − y)(x + y) such that

n = (19015− 7674)(19015 + 7674) = 11341 · 26689
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Kraitchik’s Method

Instead of looking for x and y satisfying x2 − y2 = n, we can also
search for “random” x and y such that

x2 = y2 (mod n)

For such a pair (x , y), factorization of n is not guaranteed

We only know the difference of the squares is a multiple of n:

x2 − y2 = (x − y)(x + y) = 0 (mod n)

Since n divides (x − y) · (x + y), we have 1/2 chance that prime
divisors of n are distributed among the divisors of both of these factors

The GCD(n, x − y) will be a nontrivial factor, the GCD will be neither
1 nor n
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Kraitchik’s Method

For n = 221 = 13 · 17, we find x = 4 and y = 30, such that 42 = 16
(mod 221) and 302 = 900 = 16 (mod 221), and therefore,

GCD(221, 30− 4) = GCD(221, 26) = 13

In fact, there are many (x , y) such that x2 = y2 (mod 221), which
gives us a higher chance of finding a pair (x , y):

(2, 15), (3, 88), (5, 73), . . . , (11, 28), . . .

Note that we still perform an exhaustive search to find a pair (x , y)
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Dixon’s Method

There is an algorithm due to Dixon to find such squares (x and y)
which is slightly more efficient

It expresses the numbers x and y into small prime powers, and then
works with the exponents

When the exponents of the small primes in the expression are all
even, for example, if x = 28 · 36 · 52 · 70 · 118, then x is a square

The algorithm starts with particular (random) x and y values (which
have even powers in their small-prime factorizations), and creates
other candidates for x and y which have even powers, and checks for
equality x2 = y2 (mod n) among all such squares
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Modern Factorization Methods

Factorization in general seems to require exhaustive search: modern
factorization algorithms differ from one another slightly in the way
this search is constructed

There is no known deterministic or randomized polynomial time
algorithm for finding the factors of a given composite integer n,
particularly, when n = p · q with size of p and q about half of the size
of n

The best integer factorization algorithm called GNFS (generalized
number field sieve) algorithm requires a time complexity of

O

(
exp

((
64

9
b

) 1
3

(log b)
2
3

))

where b is the number of bits in n
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Complexity of Factorization

It is not known exactly which complexity classes contain the decision
version of the integer factorization problem

It is known to be in NP since a YES answer can be verified in
polynomial time by multiplication: Are p and q factors of n?

However, it is not known to be in NP-complete since no such
reduction proof is discovered

Many people have looked for a polynomial time algorithm for integer
factorization, and failed

On the other hand, factorization problem can be solved in polynomial
time on a quantum computer, using Shor’s algorithm
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http://koclab.org

