# **Primality Testing**



### Primes

- Natural (counting) numbers:  $\mathcal{N} = \{1, 2, 3, \ldots\}$
- A number  $p \in \mathcal{N}$  is called prime if it is divisible only by 1 and itself
- p = 1 is not considered prime; 2 is the only even prime
- Primes: 2, 3, 5, 7, 11, 13, ...
- There are infinitely many primes
- Every natural number *n* is factored into prime powers uniquely:

$$n = p_1^{k_1} \times p_2^{k_2} \times \cdots \times p_m^{k_m}$$

For example:  $1960 = 2^3 \times 5^1 \times 7^2$ 

#### Primes

• The number of primes less than or equal to *n* is  $\frac{n}{\log_e(n)}$ 

| п               | $n/\log_e(n)$  | exact    |
|-----------------|----------------|----------|
| 10 <sup>2</sup> | 21.7           | 25       |
| 10 <sup>3</sup> | 144.8          | 168      |
| 10 <sup>6</sup> | 72382.4        | 78498    |
| $10^{9}$        | $4.8	imes10^7$ | 50847534 |

- As we can see, primes are in abundance; we do not have scarcity
- The odds of selecting a prime is high for small numbers: if we select a 2-digit integer, the probability that it is prime is 25/100 = 25%
- $\bullet\,$  The odds of selecting a prime less than  $10^6$  is  $78498/10^6\approx7.8\%$
- If we make sure that this number is not divisible by 2 or 3, (which makes up 2/3 of integers), the odds increase to 23.5%

#### Primes

- As the numbers get larger, which would be the case for cryptographic applications, the ratio becomes less and less
- The ratio of 1024-bit (308-digit) primes to the 308-digit numbers is

$$rac{1}{\log_e(2^{1024})} ~\approx~ rac{1}{714}$$

- Therefore, if we randomly select a 308-digit integer, the probability that it is prime is 1/714
- If we remove the multiples of 2 and 3 from this selected integer, the odds of choosing a 308-digit prime at random is improved by a factor of 3 to 1/238

## Checking for Primality vs Factoring

- Primality testing: Is n ∈ N prime? The answer is yes or no (we may not need the factors if n is composite)
- Factoring: What is the prime factorization of  $n \in \mathcal{N}$ ? The answer is  $n = p_1^{k_1} \times \cdots \times p_m^{k_m}$
- Is  $2^{101} + 81 = 2535301200456458802993406410833$  prime? The answer: Yes
- Is  $2^{101} + 71 = 2535301200456458802993406410823$  prime? The answer: No
- Factor n = 2<sup>101</sup> + 61 = 2535301200456458802993406410813 The answer: n = 3 × 19 × 1201 × 37034944570408560161757109

#### Primality Testing

- The decision problem "Is *n* prime?" is called the primality testing
- Primality testing is easier than factorization, as might be expected, since we are not asking for the factors of *n*
- There are two very efficient randomized polynomial-time algorithms: Fermat's method and Miller-Rabin method
- There is also a deterministic polynomial-time algorithm invented in 2002: The AKS algorithm, due to three Indian computer scientists: Manindra Agrawal, Neeraj Kayal, and Nitin Saxena at the IIT Kanpur
- In the first version of their paper, time complexity was  $O(b^{12})$ , which was later improved to  $O(b^{10.5})$  and then to  $O(b^{7.5})$ , where  $b = \log(n)$

### Fermat's Method

• Fermat's Little Theorem: If p is prime and  $1 \le a < p$ , then

$$a^{p-1} = 1 \pmod{p}$$

- The contrapositive of Fermat's Little Theorem: If a and n satisfy  $1 \le a < n$  and  $a^{n-1} \ne 1 \pmod{n}$ , then n is composite
- Consider the list of  $3^{n-1} \pmod{n}$  for  $n = 4, 5, \dots, 19$

| п         | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|-----------|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|
| $3^{n-1}$ | 3 | 1 | 3 | 1 | 3 | 0 | 3  | 1  | 3  | 1  | 3  | 9  | 11 | 1  | 9  | 1  |

This shows that for all composite numbers in this range, 3<sup>n-1</sup> (mod n) is distinct from 1, whereas all prime numbers satisfy 3<sup>n-1</sup> = 1 (mod n)

### Fermat's Witness and Fermat's Liar

- Fermat's Little Theorem (and its contrapositive) provide good criteria for checking primality
- A number a in the range a ∈ [1, n) is called a Fermat's witness for any n ≥ 2, if a<sup>n-1</sup> ≠ 1 (mod n)
- Existence of a witness for *n* means *n* is a composite number
- A number a in the range a ∈ [1, n) is called a Fermat's liar for an odd composite number n ≥ 3, if a<sup>n-1</sup> = 1 (mod n)
- Fermat's liar *a* is lying to us that *n* is prime, even though *n* is an odd composite number

### Fermat's Witness and Fermat's Liar

- 2 is a witness for all composite n in the range [2, 340] since if n is composite then 2<sup>n-1</sup> ≠ 1 (mod n), for n = 2, 3, ..., 340
- 2 is a liar for n = 341, since  $2^{340} = 1 \pmod{341}$  even though it is not a prime number:  $341 = 11 \cdot 31$
- 3 is a witness for 341 since  $3^{340} = 56 \pmod{341}$
- Because of the existence of Fermat liars, the converse of Fermat's Little Theorem is not true: The condition that  $a^{n-1} = 1 \pmod{n}$  does not imply that *n* is prime
- However, if *n* is a composite number, then there exists some Fermat's witness *a* for *n*

#### FERMAT(n)

- Input:  $n \ge 3$  is an odd integer
- Step 1: Randomly choose a in the range  $a \in [2, n-2]$
- Step 2:  $x := a^{n-1} \pmod{n}$
- Step 2: if  $x \neq 1 \pmod{n}$  return "*n* is composite" else return "*n* is prime"
  - Fermat's test is a randomized algorithm
  - If the Fermat test gives the answer "*n* is composite", the number *n* is composite indeed
  - However, if the Fermat test gives the answer "*n* is prime", the number *n* may or may not be prime, as there are Fermat's liars

- Consider n = 143 which is a composite number  $143 = 11 \cdot 13$
- The table below shows Fermat's witnesses and liars for 143

| Multiples of 11         | 11  | 22  | 33  | 44  | 55  | 66  | 77  | 88  | 99  | 110 | 121 | 132 |
|-------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Multiples of 13         | 13  | 26  | 39  | 52  | 65  | 78  | 91  | 104 | 117 | 130 |     |     |
| Fermat witnesses        | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 14  | 15  | 16  |
| in $\mathbb{Z}^*_{143}$ | 17  | 18  | 19  | 20  | 21  | 23  | 24  | 25  | 27  | 28  | 29  | 30  |
|                         | 31  | 32  | 34  | 35  | 36  | 37  | 38  | 40  | 41  | 42  | 43  | 45  |
|                         | 46  | 47  | 48  | 49  | 50  | 51  | 53  | 54  | 56  | 57  | 58  | 59  |
|                         | 60  | 61  | 62  | 63  | 64  | 67  | 68  | 69  | 70  | 71  | 72  | 73  |
|                         | 74  | 75  | 76  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86  | 87  |
|                         | 89  | 90  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 100 | 101 | 102 |
|                         | 103 | 105 | 106 | 107 | 108 | 109 | 111 | 112 | 113 | 114 | 115 | 116 |
|                         | 118 | 119 | 120 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 133 |
|                         | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 |     |     |     |     |
| Fermat liars            | 1   | 12  | 131 | 142 |     |     |     |     |     |     |     |     |

http://koclab.org

- If we run the Fermat test on 143, the probability that it answers "*n* is composite" is  $138/140 \approx 0.9857$ , since there are only two (non trivial) Fermat liars
- In other words, the Fermat witnesses outnumber the Fermat liars clearly in this example
- If this were true for all odd composite numbers, we would have a no-biased Monte Carlo algorithm for the primality problem
- A no-biased Monte Carlo algorithm **always** gives correct "no" answers, but perhaps incorrect "yes" answers
- Unfortunately, if *n* is composite, the Fermat test does not say so with probability at least 1/2 for **each given** *n*

### Carmichael Numbers

- There exist composite numbers n for which all elements of  $\mathcal{Z}_n^*$  are Fermat liars
- Such numbers are called Carmichael numbers
- The smallest Carmichael number:  $561 = 3 \cdot 11 \cdot 17$
- The next 6 Carmichael numbers are 1105, 1729, 2465, 2821, 6601, 8911
- Note that Carmichael numbers have Fermat witnesses in  $\mathcal{Z}_n \mathcal{Z}_n^*$
- It was proven in 1994 by Alford, Granville, and Pomerance that there are infinitely many Carmichael numbers: Specifically they proved that there are at least  $\sqrt[7]{n^2}$  Carmichael numbers between 1 and n
- Carmichael numbers have at least 3 prime factors

- Theorem: If n ≥ 3 is an odd composite number that has at least one Fermat witness in Z<sup>\*</sup><sub>n</sub>, then the Fermat test on input n gives the correct answer "n is composite" with probability at least 1/2
- This theorem says that for many composite numbers (except Carmichael numbers) the Fermat test has a good probability bound
- The reason why the Fermat test is not a Monte Carlo algorithm for "is *n* prime?" problem is that  $\mathcal{Z}_n^*$  contains too many Fermat liars for infinitely many numbers *n*, namely Carmichael numbers
- Given a Carmichael number *n* as input, the Fermat test gives the wrong answer "*n* is prime" with probability

$$rac{\phi(n)}{n} \approx \prod (1-rac{1}{p}) \lesssim 1$$

### The Miller-Rabin Test

Step 6: return "*n* is composite" and halt

### The Miller-Rabin Example

• n = 561 implies  $n - 1 = 560 = 2^4 \cdot 35$ , thus k = 4 and m = 35• Pick a = 2 and compute  $x := 2^{35} = 263 \pmod{561}$ ;  $x \neq 1$ •  $j = 0 \rightarrow x \neq -1 \pmod{561}$ ;  $x := 263^2 = 166 \pmod{561}$ •  $j = 1 \rightarrow x \neq -1 \pmod{561}$ ;  $x := 166^2 = 67 \pmod{561}$ •  $j = 2 \rightarrow x \neq -1 \pmod{561}$ ;  $x := 67^2 = 1 \pmod{561}$ •  $j = 3 \rightarrow x \neq -1 \pmod{561}$ ;  $x := 1^2 = 1 \pmod{561}$ • Therefore, n is composite

### Square Roots of 1 Mod n

- An element x ∈ Z<sub>n</sub> is a quadratic residue mod n if and only if there is some a ∈ [1, n) such that x = a<sup>2</sup> (mod n)
- For example, 3 is quadratic residue mod 11 since  $3 = 5^2 \pmod{11}$
- If x = 1, then a is said to be square root of 1 mod n
- Trivially, 1 and -1 are always square roots of 1 mod m since  $1^2 = 1$  (mod n) and  $(n-1)^2 = (-1)^2 = 1 \pmod{n}$
- The prime number 23 has 2 square roots of 1, namely 1 and 22
- The composite number  $143 = 11 \cdot 13$  has 4 square roots of 1, namely 1, 12, 131, and 142

### Square Roots of 1 Mod n

- Theorem: Every prime number n has only two trivial square roots of 1 mod n, namely ±1 (mod n)
- Hence, if n has a nontrivial (other than  $\pm 1$ ) square root of 1, then n must be composite
- If n = p<sub>1</sub>p<sub>2</sub> ··· p<sub>k</sub> is composite, where p<sub>i</sub> > 2 are prime numbers then the Chinese Remainder Theorem can be used to show that n has exactly 2<sup>k</sup> square roots of 1 mod n
- The square roots of 1 mod n are all numbers  $a \in [1, n)$  such that  $a = \pm 1 \pmod{p_i}$  for i = 1, 2, ..., k
- Unless *n* has extraordinarily many prime factors, we cannot find nontrivial square roots of 1 mod *n* by picking random numbers *a*

## Miller-Rabin Witnesses and Miller-Rabin Liars

- Let  $n \geq 3$  be any odd number and  $a \in \mathcal{Z}_n^*$
- Express  $n-1 = 2^k \cdot m$  with m is odd
- We say *a* is a **Miller-Rabin liar** for *n* if and only if *n* is a composite number and one of the following is **true**:

• 
$$a^m = 1 \pmod{n}$$
  
•  $a^m = -1 \pmod{n}$   
•  $a^{2m} = -1 \pmod{n}$   
•  $a^{2^2m} = -1 \pmod{n}$   
• ...  
•  $a^{2^{k-1}m} = -1 \pmod{n}$ 

• We say *a* is a **Miller-Rabin witness** for *n* if and only if *a* is not a Miller-Rabin liar

### Miller-Rabin Witnesses and Miller-Rabin Liars

- Consider the Carmichael number  $n = 561 = 3 \cdot 11 \cdot 17$
- We have  $n 1 = 560 = 2^4 \cdot 35$ , and thus k = 4 and m = 35
- By enumeration, we show that 561 has 10 Miller-Rabin liars

| а   | a <sup>35</sup> | a <sup>70</sup> | a <sup>140</sup> | a <sup>280</sup> | a <sup>560</sup> |
|-----|-----------------|-----------------|------------------|------------------|------------------|
| 1   | 1               | 1               | 1                | 1                | 1                |
| 50  | -1              | 1               | 1                | 1                | 1                |
| 101 | -1              | 1               | 1                | 1                | 1                |
| 103 | 1               | 1               | 1                | 1                | 1                |
| 256 | 1               | 1               | 1                | 1                | 1                |
| 305 | -1              | 1               | 1                | 1                | 1                |
| 458 | -1              | 1               | 1                | 1                | 1                |
| 460 | 1               | 1               | 1                | 1                | 1                |
| 511 | 1               | 1               | 1                | 1                | 1                |
| 560 | -1              | 1               | 1                | 1                | 1                |

The rest of numbers in  $\mathcal{Z}_{561}^*$  are all Miller-Rabin witnesses

### The Miller-Rabin Test

- Theorem: If there exists a Miller-Rabin witness for *n*, then *n* is composite
- Theorem: If n ≥ 3 is an odd composite number, then there are at most n-1/4 Miller-Rabin liars
- Theorem: The Miller-Rabin Test has an error probability of at most 1/4
- The Miller-Rabin test is very efficient and has a very good probability bound — it is the preferred algorithm for generating large primes used in the RSA algorithm, the Diffie-Hellman key exchange algorithm, or any of the public-key cryptographic protocols where large primes are needed
- There is another probabilistic algorithm for primality testing, called Solovay-Strassen test, however, it is less efficient and less accurate, and therefore, less popular