CS 178 Intro to Crypto

1. Use the extended Euclid algorithm to compute the inverse of 25 modulo 511.
2. Use the Fermat's Little Theorem to compute the inverse of 2 modulo 47 .
3. Use Euler's Theorem to compute the inverse of 81 modulo 323.
4. Determine all invertible elements modulo 48 , in $Z_{48}$. Construct the multiplication table of the group consisting these elements and the multiplication operation modulo 48.
5. Compute $\phi(48)$ using the formula given in slides. How does the answer relate to Question 4 ?
6. Compute $2^{20} \bmod 13$ using the binary method.
7. Consider the 5 -bit LFSR with connections $c_{0}=c_{1}=c_{2}=c_{3}=1$ and $c_{4}=0$.

- Given the current state as 10000 , compute the next 32 states.
- Does this 5 -bit LFSR cycle through all $2^{5}-1$ states if it starts from a nonzero state?
- What is the mathematical rule that determines whether or not an $n$-bit LFSR cycles through all $2^{n}-1$ nonzero states?
- What is the definition of maximal LFSR?
- Is this LFSR maximal?

8. Consider the following LFSR. Given the current state, compute the next 8 states and 8 output bits. It is claimed that this 16 -bit LFSR will circulate through all $2^{16}-1$ states (excluding all zero state). How can you prove this?

[^0]
[^0]:    Deliver the assignment via Dropbox; link is to be provided. Late submissions are not accepted.

