CS 178 Intro to Crypto

1. In the AES algorithm, compute the following and give the results in polynomial, hex, and binary notations:
(a) $\operatorname{SubBytes}\left(x^{7}+x^{6}+x^{5}\right)$
(b) SubBytes $(A 7)$
(c) SubBytes(10010110)
2. Suppose the key for round 0 in AES is zero (consisting of 128 bits of 0 s).
(a) Show that the key for the first round is $W(4), W(5), W(6), W(7)$, where

$$
W(4)=W(5)=W(6)=W(7)=\left(\begin{array}{l}
01100010 \\
01100011 \\
01100011 \\
01100011
\end{array}\right)=[62,63,63,63]^{T}
$$

(b) Show that $W(8)=W(10) \neq W(9)=W(11)$ (Hint: This can be done without computing $W(8)$ explicitly).
3. Consider the prime $p=9929$ and the primitive element 2 .
a) Show the steps of the Diffie-Hellman between Alice and Bob for $a=1983$ and $b=2014$.
b) What is the value of the agreed secret key?
4. The ciphertext 5859 was obtained from the RSA algorithm using $n=11413$ and $e=7467$. Using the factorization $11413=101 \cdot 113$, find the plaintext.
5. RSA with three primes would also work: $n=p q r, \phi(n)=(p-1)(q-1)(r-1), \operatorname{gcd}(e, \phi(n))=1$, and $d=e^{-1}(\bmod \phi(n))$.
a) Setup an example RSA public/private key pair using primes $29,31,37$, and $e=17$.
b) Encrypt $m=10000$ and then decrypt the ciphertext.
c) Explain why 3-prime RSA is not preferred.

