CS 178 Intro to Crypto

1. Use the Fermat's test to prove that 1111 is not a prime number.
2. Use the Fermat's test to prove that $F_{5}=2^{2^{5}}+1=4294967297$ is not a prime number.
3. Use the Miller-Rabin test to prove that $F_{5}=2^{2^{5}}+1=4294967297$ is not a prime number.
4. Determine all possible encryption exponents for the RSA modulus $n=437$.
5. Alice encrypts a message m with Bob's public key RSA key $(899,11)$. The ciphertext is 468 . Determine the plaintext?
6. How many multiplications and squarings are required for an RSA encryption with the encryption exponent $e=2^{16}+1=65537$?
7. Factor $831,802,500$ using trial division.
8. Let the RSA primes be $p=11$ and $q=13$. Construct and list all possible RSA parameters $(n, \phi(n), e, d)$ using these primes.
9. Let an RSA public key system be determined by the parameters

$$
(e, n)=(37,2953401912753470184385527395089)
$$

Given the following two messages and their signatures

$$
\begin{aligned}
& \left(M_{1}, S_{1}\right)=(123456787654321,2529045382792077409201907200017) \\
& \left(M_{2}, S_{2}\right)=(876543212345678,1783412625941219914738123477721)
\end{aligned}
$$

obtain signatures for the following messages by applying forging:

$$
\begin{aligned}
& M_{3}=108215209236396770461822374638 \\
& M_{4}=2289000134448567813784851259005 \\
& M_{5}=1970129874192430866971371299001 \\
& M_{6}=1440262305070617466187763812276
\end{aligned}
$$

