Representing and Storing Numbers

cs4: Computer Science Bootcamp

Çetin Kaya Koç
http://koclab.cs.ucsb.edu/teaching/cs4
cetinkoc@ucsb.edu

Outline

- Representations of integers
- Binary and decimal numbers
- Storing bits: Magnetic core and semiconductor memories
- Conversion between binary and decimal
- Hexadecimal representation
- Negative and positive integer representations
- Addition and subtraction
- Representing symbols and characters

Representation of Integers

- Natural (whole, counting) numbers: $\mathcal{N}=\{0,1,2,3, \ldots\}$
- (Positive and negative) integers: $\mathcal{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
- We represent integers in decimal for human convenience
- Decimal numbers have 10 unique digits: $0,1,2,3,4,5,6,7,8,9$
- Digit locations have weights which increase by a factor of 10 , from right to left (from least significant to most significant):

$$
\begin{array}{ccccc}
\ldots & 10^{3} & 10^{2} & 10^{1} & 10^{0} \\
\ldots & 1000 & 100 & 10 & 1
\end{array}
$$

- Examples:

$$
\begin{array}{ccccccc}
\ldots & 10^{3} & 10^{2} & 10^{1} & 10^{0} & & \\
\ldots & 2 & 0 & 1 & 5 & \rightarrow & 2015 \\
\ldots & 6 & 7 & 2 & 3 & \rightarrow & 6723
\end{array}
$$

Binary Representation

- Two unique digits: 0 and 1
- Weights of digits double from right to left, starting with 1 (from least significant to most significant):

$$
\begin{array}{ccccccccc}
\ldots & 2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} \\
\ldots & 128 & 64 & 32 & 16 & 8 & 4 & 2 & 1
\end{array}
$$

- Examples:

$$
\begin{array}{lllllllllll}
\ldots & 2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} & & \\
\ldots & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & \rightarrow & 10 \\
\ldots & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & \rightarrow & 74 \\
\ldots & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & \rightarrow & 138
\end{array}
$$

- A binary digit is called bit

Storing Bits

- Decimal representation is for human convenience: we are used to it
- Computers represent and store all numbers in binary
- To store a single bit we need a 1-bit memory
- To store a longer number, say n bits, we need n copies of 1 -bit memory, n-bit memory

Storing Bits

- Conceptually a 1-bit memory is a box capable of holding the value of the bit (which is either 1 or 0) as long as we need
- A 4-bit memory holding the binary number 1010 (in decimal, ten):

1	0	1	0

- We should be able to re-write another number on top of the existing one (thus erasing the old)
- For example, we can write 1001 (in decimal, nine) over 1001

1	0	0	1

- We lose the previous number completely

Memory

- There are different types of computer memory based on their speed, capacity, and the modes of use: registers, caches, main memory, hard disks, semiconductor drives, etc
- The speed and capacity is determined by the technology
- In today's technology the most common form of memory is based on semiconductor physics
- However, historically other memory technologies are used: electric relays, magnetic cores, etc
http://koclab.cs.ucsb.edu/teaching/cs4/docx/indian.mp4

Magnetic Core Memory

- For nearly 20 years (1955-1975) "magnetic core memory" was the predominant form of memory
- It uses tiny magnetic toroids (rings), the cores, through which wires are threaded to write and read information
- Each core represents one bit of information
- The cores can be magnetized in two different ways (clockwise or counterclockwise) and the bit stored in a core is 0 or 1 depending on that core's magnetization direction
- The wires are arranged to allow an individual core to be set to either a 1 or a 0 , and for its magnetization to be changed, by sending appropriate electric current pulses through selected wires

Magnetic Core Memory

Magnetic Core Memory

The distance between the rings is roughly 1 mm (0.04 in).

The green and brown wires (X and Y) are for selection. The sense wires are diagonal, colored orange, and the inhibit wires are vertical twisted pairs.

http://www.nzeldes.com/HOC/CoreMemory.htm

Magnetic Core Memory

$4 \times 16 \times 16$ bits $=1024$ bits 1024 bits is 1 K (Kilo) bits

Various logical organizations:
$1 \times 32 \times 32$
$2 \times 16 \times 32$
$4 \times 2 \times 8 \times 16$
1×1024
2×512
4×256

Magnetic Core Memory Size

- A 1-bit magnetic core takes approximately 1 mm 2 space
- The 1024 -bit core would be about $1024 \mathrm{~mm} 2 \approx 10 \mathrm{~cm} 2$
- Your iPhone may have 16G (Giga) bytes, which is $16 \times 8 \times 2^{30}$ bits
- In core memory, this means an area of $128 \times 2^{20} \times 10 \mathrm{~cm} 2$
- This is equivalent to $134,217 \mathrm{~m} 2$
- A football field is about 110 m by 48 m , which is $5,280 \mathrm{~m} 2$
- 16 Gigabytes of magnetic core memory takes the space of 25 fields!
- iPhone with magnetic core memory would be unthinkable! :)

5 MByte IBM Hard Drive in 1956

Semiconductor Memory Size

- Current memory technology is based on semiconductors
- The geometry of 1-bit memory is measured by nanometers $\left(10^{-9} \mathrm{~m}\right)$
- The main concept of 1-bit (CMOS) memory:

- The size of memory chip holding several gigabits is only a few mm2

128 GBit Flash Chip 2012

Semiconductor Memory - Logical View

Semiconductor Memory - Chip Mask

Semiconductor Memory - Cross-Section View

(a) Device cross-section

(b) Schematic symbol

Semiconductor Memory - Physical Device

Flash
Courtesy Intel
EPROM

Semiconductor Memory - Future Devices

Semiconductor Memory - Future Devices

Binary and Decimal Representation

- Decimal representation is for human convenience
- It is hard to read binary numbers on paper: 11111011111 ?
- If represented in decimal, it looks familiar: 2015
- Sometimes we need to convert binary numbers to decimal or vice versa

Binary2Decimal Conversion

- Sum the powers of 2 for which the bit is 1 , ignore others
- $(00001010)=8+2=10$
- $(01001010)=64+8+2=74$
- $(10001010)=128+8+2=138$

Decimal2Binary Conversion

- Subtract the largest power of 2 (keeping the remainder positive) from the number, and set the corresponding bit to 1
- The other bits are zero
- For example, if the number is 138 , the largest power of 2 that is closest to 138 would be $128=2^{7}$, and thus:
- $138-2^{7}=10 \rightarrow$ the bit 7 is set to 1
- $10-2^{3}=2 \rightarrow$ the bit 3 is set to 1
- $2-2^{1}=0 \rightarrow$ the bit 1 is set to 1

$$
\begin{array}{lllllllll}
& & 2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} \\
2^{0} \\
138 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}
$$

Hexadecimal Representation

- A convenient "on-paper" representation of binary numbers
- The binary number is grouped into 4 bits, starting from right
- If the number of bits is not a multiple of 4 , leftmost 0 s are added
- $2015 \rightarrow 11111011111 \rightarrow 011111011111$
- Each 4-bit group is viewed as a digit, and represented using a separate symbol
- Since there are $2^{4}=16$ distinct numbers, we need 16 symbols
- We could select any set of 16 distinct symbols: $\alpha, \beta, \gamma, \delta, \ldots$
- However, there is a conventional (and more logical) method
- We use decimal digits for the first ten and the first six letters of the alphabet for the rest

Hexadecimal Representation

0000	0	1010	A
0001	1	1011	B
0010	2	1100	C
0011	3	1101	D
0100	4	1110	E
0101	5	1111	F
0110	6		
0111	7		
1000	8		
1001	9		

Therefore, 2015 would be represented as

$$
(2015)_{\text {decimal }}=(011111011111)_{\text {binary }}=(7 D F)_{\text {hex }}
$$

Negative Numbers

- So far we considered only positive numbers
- In fact, we did not think about the sign at all
- All numbers we have seen so far are unsigned integers
- To represent signed numbers, we need to reserve a separate bit for the sign, and also treat the rest of the bits somewhat differently
- There are 3 methods: Sign-Magnitude, One's-Complement, and Two's-Complement
- These representations allow both the negative and positive numbers in a unified way
- We will only study Two's-Complement which is predominantly used

Two's-Complement Representation

- First we fix the number of bits to a particular value, such as 4
- We use all 4 bits to represent a number even if it does not need it
- The leftmost bit is the sign of the number, positive or negative
- 0 stands for positive and 1 stands for negative
- The negative of a number is obtained by taking the bitwise complement of the number and then adding 1 to it
- For example,$+6=(0110)$ implies $-6=(1001)+(0001)=(1010)$

4-bit Two's-Complement Representation

0000	\rightarrow	+0	1000	\rightarrow
-8				
0001	\rightarrow	+1	1001	\rightarrow
-7				
0010	\rightarrow	+2	1010	\rightarrow
-6				
0011	\rightarrow	+3	1011	\rightarrow
-5				
0100	\rightarrow	+4	1100	\rightarrow
-4				
0101	\rightarrow	+5	1101	\rightarrow
-3				
0110	\rightarrow	+6	1110	\rightarrow

Negation in Two's-Complement Representation

- Given a positive integer x, how do we find $-x$?
- For example, given $3=(0011)$, how do we obtain -3 ?
- Algorithm: Complement every bit and add 1
- $0011 \rightarrow 1100 \rightarrow 1100+1 \rightarrow 1101$
- Similarly, given $-4=(1100)$, how do we obtain +4 ?
- $1100 \rightarrow 0011 \rightarrow 0011+1 \rightarrow 0100$

Addition in Two's-Complement Representation

- Add the numbers (including their signs) and ignore the carry out
- For example: $(-2)+(+7)=(1110)+(0111)$ is performed as

(1) | (1) | (1) | (0) | | l |
| :---: | :---: | :---: | :---: | :--- |
| carry bits | | | | |
| 1 | 1 | 1 | 0 | (-2) |
| 0 | 1 | 1 | 1 | $(+7)$ |
| 0 | 1 | 0 | 1 | $(+5)$ |

Subtraction in Two's-Complement Representation

- Subtraction is performed by negating the second operand and then performing addition: $(+5)-(+7)=(+5)+(-7)$
- We already learned the negation algorithm: Complement every bit of the number and then adding 1 to it
- Since $x=+7=(0111)$, then $-x=(1000)+1=(1001)=-7$
- Now, add the numbers (including their signs) and ignore the carry out
- $(+5)+(-7)=(0101)+(1001)$ is performed as

(1) | (0) | (0) | (1) | | l | carry bits |
| :---: | :---: | :---: | :---: | :--- | :--- |
| 0 | 1 | 0 | 1 | $(+5)$ | |
| 1 | 0 | 0 | 1 | (-7) | |
| 1 | 1 | 1 | 0 | (-2) | |

Overflow

- If the result is beyond the range of numbers representable, there will be overflow (in all 3 representations)
- In 4-bit Two's-Complement we can represent only
$\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}$
- If we attempt to add 4 and 5 in 4 -bit Two's-Complement representation, the result (which is 9) is not representable, and thus we will not be able to obtain the correct sum

(0) | (1) | (0) | (0) | | carry bits |
| :---: | :---: | :---: | :---: | :--- |
| 0 | 1 | 0 | 0 | $(+4)$ |
| 0 | 1 | 0 | 1 | $(+5)$ |
| 1 | 0 | 0 | 1 | $(-7) ?$ |

- Solution: Allow more bits

Representing Symbols and Characters

- Representation method of integers should take arithmetic operations into account
- In general, any representation method of a particular class of objects should mind the use of objects in a computational setting or their relationship to one another
- In some cases (such as integers), the computational requirements are very important
- In some other cases (such as characters, letters, text), there are fewer or less stringent computational requirements
- We just need to assign a "code" to the symbol (character or letter) and remember it when we need it

