Computing Iterative Functions

cs4: Computer Science Bootcamp

Çetin Kaya Koç
http://koclab.cs.ucsb.edu/teaching/cs4
cetinkoc@ucsb.edu

Computing Iterative Sums

- Consider the sum:

$$
\sum_{i=1}^{100} i^{2}=1^{2}+2^{2}+3^{2}+\cdots+100^{2}
$$

- It is known that this sum is equal to 338,350
- We can also parameterize the sum with n

$$
\sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}
$$

for any $n \geq 1$

Computing Iterative Sums

- If write the sum as a function of the parameter n :

$$
f(n)=\sum_{i=1}^{n} i^{2}
$$

we can compute $f(n)$ for a given n

- For example, we know $f(100)=338,350$
- What about $f(200)$?
- How can we compute $f(n)$ for a given n ?

Compact Formulas for Sums

- There is a compact formula for this sum:

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

- This identity can be proven using mathematical induction
- We verify:

$$
f(100)=\sum_{i=1}^{100} i^{2}=\frac{100 \cdot 101 \cdot 201}{6}=338,350
$$

- Now we can easily compute $f(200)$:

$$
f(200)=\frac{200 \cdot 201 \cdot 401}{6}=2,686,700
$$

Computing General Iterative Sums

- What if we don't have a compact formula for a sum expression $g(n)$?
- For example, consider:

$$
g(n)=\sum_{i=1}^{n} i(i+1)^{2}=1 \cdot 2^{2}+2 \cdot 3^{2}+3 \cdot 4^{2}+\cdots+n \cdot(n+1)^{2}
$$

- How do we compute $g(100)$ or $g(200)$?
- Answer: We write an iterative program for $g(n)$

Computing $g(n)$ Iteratively

- Computing $g(n)=\sum_{i=1}^{n} i(i+1)^{2}$ for a given n

$$
\begin{aligned}
& \text { sum }=0 \\
& \mathrm{n}=100 \\
& \text { for } i \text { in range }(1, n+1): \\
& \quad \text { term }=i *(i+1) *(i+1) \\
& \quad \text { sum }=\text { sum }+ \text { term } \\
& \text { print (sum) }
\end{aligned}
$$

- The above program computes $g(100)$, and it gives $26,184,250$
- For a general n, we write a function

An Iterative Python Function for $g(n)$

```
def gsum(n):
    sum = 0
    for i in range(1,n+1):
        term = i*(i+1)*(i+1)
        sum = sum + term
    return(sum)
```

- We can now compute $g(n)$ for any n we provide as input to the function gsum
- $g(100)=26,184,250$
- $g(200)=409,403,500$
- $g(1000000)=250,001,166,668,416,667,500,000$

Iterative Function for General Sums

- A general sum is in the form

$$
h(n)=\sum_{i=n_{0}}^{n} a_{i}
$$

such that n_{0} is the starting point, n is the ending point, and a_{i} is the general term

- For example, for $f(n)=\sum_{i=1}^{n} i^{2}$, we have $n_{0}=1$ and $a_{i}=i^{2}$
- For $g(n)=\sum_{i=1}^{n} i(i+1)^{2}$, we have $n_{0}=1$ and $a_{i}=i(i+1)^{2}$

Iterative Function for General Sums

- Once the starting and ending points and the general term is available, we can easily write a Python function
- The first rule is that, we start with: sum $=0$
- The for loop boundary conditions give: range ($\mathrm{n} 0, \mathrm{n}+1$)
- The general term is computed using: term = ai
- The iteration rule is: sum $=$ sum + term
- Thus, the function becomes:

```
def fsum(n):
    sum = 0
    for i in range(n0,n+1):
        term = ai
        sum = sum + term
    return(sum)
```


Euler Formula for π

- Another interesting formula involving π was given by Euler:

$$
\frac{\pi^{2}}{6}=\sum_{i=1} \frac{1}{\bar{i}^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots
$$

- Applying our rules from the previous slide, we see that:

The sum starts with sum $=0$
The for loop boundary conditions are: range ($1, \mathrm{n}+1$)
The general term is computed using: term $=1 /(i * * 2)$
The iteration rule is: sum $=$ sum + term

- Finally we compute π from sum, we use

$$
\pi=\sqrt{6 \cdot \text { sum }}
$$

- To compute π with higher accuracy, we increase the value of n

Python Code for Euler Formula

```
def eulerPi(n):
    sum = 0
    for i in range(1,n+1):
        term = 1/(i**2)
        sum = sum + term
        return(math.sqrt(6*sum))
```

- Computing π for n from 1,000 to 8,000:

n	Pi
1000	3.1406380562059946
2000	3.1411152718364823
4000	3.141353941945064
8000	3.1414732925750646

Computing Terms Iteratively

- One issue that often comes up is the details of the computation of the ith term, term
- There could be some savings in the number of arithmetic operations in the computation of term
- Generally this is achieved by using the $(i-1)$ st term in the computation of i th term, for $i=1,2,3, \ldots$
- In other words, we compute term not directly but iteratively
- The computation of sum is also iterative, since the sum in the previous iteration is utilized

Computing Terms Iteratively

- To illustrate iterative computation of term, we use a formula involving the Euler's constant e

$$
e=1+\sum_{i=1} \frac{1}{i!}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots
$$

- The numerator of these fractions $\frac{p_{i}}{q_{1}}$ is always $p_{i}=1$, while the denominator is $q_{i}=i$! at the i th iteration
- The i th denominator can be derived from $(i-1)$ st denominator:

$$
q_{i}=q_{i-1} \cdot i=(i-1)!\cdot i=i!
$$

- Therefore, if term from the $(i-1)$ st iteration is available, we compute term for the i th iteration as term $=$ term/i since

$$
\text { term }=\frac{p_{i}}{q_{i}}=\frac{1}{q_{i}}=\frac{1}{q_{i-1}} \cdot \frac{1}{i}=\frac{p_{i-1}}{q_{i-1}} \cdot \frac{1}{i}=\text { term } / \mathrm{i}
$$

Python Code for Computing e

- To compute term iteratively, we to start with term $=1$
- Meanwhile the initial value of sum $=0$
- In the final step, we add 1 to sum to obtain e

```
def e(n):
    sum = 0
    term = 1
    for i in range(1,n+1):
    term = term/i
    sum = sum + term
    return(1+sum)
```


Iterative Functions for Products

- Wallis formula for computing $\pi / 2$ was a product formula:

$$
\frac{\pi}{2}=\prod_{i=1}^{n}\left(\frac{2 i}{2 i-1} \cdot \frac{2 i}{2 i+1}\right)=\frac{2 \cdot 2}{1 \cdot 3} \cdot \frac{4 \cdot 4}{3 \cdot 5} \cdot \frac{6 \cdot 6}{5 \cdot 7} \cdot \frac{8 \cdot 8}{7 \cdot 9} \cdots
$$

- An iterative method for this formula would be computing a product, instead of a sum
- Therefore, it would start with: prod = 1
- The for loop boundary conditions give: range $(1, n+1)$
- The general term is: term $=(2 * \mathrm{i}) * * 2 /((2 * \mathrm{i}-1) *(2 * \mathrm{i}+1))$
- The iteration rule is: prod $=$ prod $*$ term

Iterative Computation of Wallis Formula

```
def wallisPi(n):
    prod = 1
    for i in range(1,n+1):
    term = (2*i)**2/((2*i-1)*(2*i+1))
    prod = prod * term
    return(2*prod)
```

- Computing π for n from 1000 to 8000 :

n	Pi
1000	3.1408085296644828
2000	3.1412002733216604
4000	3.141396383784121
8000	3.1414944987571713

Iterative Functions for Sums and Products

- An iterative function may have both sum and product terms
- In this case, we keep a sum and a prod variables and run them through the iteration
- For example, Vieta's formula allows us to compute $\frac{2}{\pi}$:

$$
\frac{2}{\pi}=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdot \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2} \cdots
$$

- The general term a_{i} is a ratio: $\frac{p_{i}}{q_{i}}$
- The numerator p_{i} in i th step is used to computed the numerator in the $(i+1)$ st step: $a_{i+1}=\sqrt{2+a_{i}}$ by starting with $a_{0}=0$
- The denominator is always 2

Computing π using Vieta's Formula

```
def vieta(n):
prod = 1
    num = 0
    for i in range(1,n+1):
    num = math.sqrt(2+num)
    prod = prod*num/2
    return(2/prod)
```

- Vieta's formula produces more accurate results for smaller n
- Computing π for n from 5 to 40:

n	Pi
5	3.1403311569547525
10	3.1415914215111997
20	3.1415926535886185
40	3.141592653589794

