Representing Audio

cs4: Computer Science Bootcamp

Çetin Kaya Koç
http://koclab.cs.ucsb.edu/teaching/cs4
cetinkoc@ucsb.edu

Audio Data

- Audio data comes in a variety of forms
- However, the number of fundamental ways in which sound can be represented is actually fairly small
- The variety of audio file types is due to the fact that there are quite a few approaches to compressing audio data and a number of different ways of packaging the data

Analog-to-Digital Conversion

- Sound consists of audible variation in air pressure
- Microphones convert variation in air pressure into an "analog" voltage
- To represent sound digitally, we must convert this analog voltage into a series of numbers representing its amplitude
- This process is known as analog-to-digital conversion

Analog-to-Digital Conversion

- Audio data consisting of such numbers is said to be in pulse code modulation (PCM) format
- Audio data is often stored in other formats, usually in order to compress it, but it almost always starts off in PCM format
- The air pressure variation, and the corresponding voltage produced by a microphone, is continuous in two-dimensions
- The values vary continuously, and they exist at every point in time

Sampling, Quantization and Resolution

- However, a computer cannot directly represent a continuous signal
- Instead, it must measure the signal at a finite set of discrete times
- This process is known as sampling
- Furthremore, it must make use of a finite number of discrete amplitude levels
- This process is known as quantization
- The number of levels used in quantization is called resolution

Resolution

- The resolution is usually expressed in bits
- A system with a resolution of 8 bits makes use of $2^{8}=256$ levels
- A system with 16 bit resolution makes use of $2^{16}=65,536$ levels
- The sampling rate and resolution determine the quality of the digital representation of the sound
- "CD-quality" sound has a minimum resolution of 16 bits and a minimum sampling rate of 44,100 samples per second

Resolution

Each line represents a new sample. The time between each line/sample represents the sampling period, which equals $1 / 44,100$ of a second, for a CD with a sampling rate of 44.1 kHz .

- Therefore, within exactly 1 second, we have 44,100 integers each of which is 2 bytes
- If the audio we are sampling is long 0.001 seconds (1 milliseconds), we will have 44 integers each of which is 2 bytes (between 0 and 65,535)

Sampling Example

- For example, the Sine function between 0 and π can be sampled to 44 values as

- We take these 44 values, which are real numbers between 0 and 1 , and quantize them to integers between 0 and 65,535

Sampling Example

- A small integer (close to 0) represents a smaller real number (close to 0), while a large integer (close to 65,535) represents a larger real number (close to 1)
- The list in decimal:

$$
\begin{aligned}
& \{0,4783,9542,14249,18880,23411,27817,32074,36160,40053,43733,47179, \\
& 50374,53299,55941,58283,60315,62025,63405,64445,65142,65492,65492, \\
& 65142,64445,63405,62025,60315,58283,55941,53299,50374,47179,43733, \\
& 40053,36160,32074,27817,23411,18880,14249,9542,4783,0\}
\end{aligned}
$$

- The list in hexadecimal:

> \{0000, 12af, 2546, $37 a 9,49 c 0,5 b 73,6 c a 9,7 d 4 a, 8 d 40,9 c 75$, aad $5, b 84 b, c 4 c 6$, $d 033$, da85, e3ab, eb9b,f249,f7ad, fbbd, fe76, ffd $4, f f d 4, f e 76, f b b d, f 7 a d, f 249$, $e b 9 b, e 3 a b, d a 85, d 033, c 4 c 6, b 84 b, a a d 5,9 c 75,8 d 40,7 d 4 a, 6 c a 9,5 b 73,49 c 0,37 a 9$, $2546,12 a f, 0000\}$

Channels

- A single stream of sound, such as that from an ordinary monaural recording, constitutes one channel
- Stereo requires two channels
- Quadriphonic music requires four channels
- Recordings made in professional music studios may have many channels prior to mixing, one for each instrument and singer
- In practice, the most commonly used values are 1 and 2

Raw Audio Data

- Once we have a set of numbers for a given duration of sound, we are essentially done
- We have obtained digital audio: the collection of numbers, each of which shows quantized amplitude at a given time
- The number of numbers shows how much time this sound takes, for example, 22,050 numbers imply we have 0.5 second of audio
- Definition: Herz or $\mathrm{Hz} \rightarrow$ The number of samples per second

Raw Audio Data

- These numbers can be stored or transmitted as digital audio
- They can be "played" by converting back to analog

Raw Audio Data

- However, audio data takes up a lot of memory space
- 1 second of CD-quality of music has 44,100 samples
- At 16-bit resolution, this implies 88,200 bytes
- 1 minute: $60 \times 44,100 \times 2=5,292,000$ bytes
- 4 minutes: $60 \times 4 \times 44,100 \times 2=21,168,000$ bytes
- 1 hour: $60 \times 60 \times 5,292,000=317,520,000$ bytes
- Multiply these numbers by 2 if stereo is used

Hi-Res Audio Data

- High-resolution (Hi-res) audio has 24-bit resolution
- It is also sampled at a higher rate: 96,000 or 192,000 Herz*
- Therefore, 1 second of hi-res audio would take $192,000 \times 3=576,000$ bytes
- 1 minute: $60 \times 192,000 \times 3=34,560,000$ bytes
- 1 hour: $60 \times 60 \times 192,000 \times 3 \approx 2$ billion bytes
- Can you tell the difference?
- Guardian Article, Aug 21, 2014

Compressing Digital Audio Data

- The standard (16-bit \& 44,100 Hz) or Hi-res (24-bit \& 96,000 or $192,000 \mathrm{~Hz}$) digital audio takes a lot of memory space
- Therefore, compression is required

Compressing Digital Audio Data

- Digital audio has been around for a long time
- Compact Disc (CD) technology was invented in 1970s
- A CD stores about 700 m bytes of music
- A DVD can store 4 g bytes per layer
- Even today's speed and storage capacity, these are huge numbers
- Compression made digital audio ubiquitous (cheap or free)
- It also bankrupted Tower Records!

