Homework Assignment 3:

1. Give the value of term at each iteration for the following sum:

$$
\frac{5 \pi^{5}}{1536}=\frac{1}{1^{5}}-\frac{1}{3^{5}}+\frac{1}{5^{5}}-\frac{1}{7^{5}}+\cdots
$$

2. It is known that the inverse of Euler's constant is approximated as by computing the following sum for a large integer n :

$$
\frac{1}{e} \approx 1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+\cdots+\frac{1}{n!}
$$

We are interested in computing the sum for a given n using an iterative Python function. Starting from sum $=0$, at each iteration, we add each term value to sum. Give the expression for term.
3. Given the value of term at the i th iteration in the above, give an efficient method term for the next iteration.
4. Give the value of each term in iteration i, by using the previous term for computing $\frac{2}{\pi}$ using Vieta's formula:

$$
\frac{2}{\pi}=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdot \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2} \cdots
$$

5. A product formula for computing $\pi / 4$ is given by Euler:

$$
\frac{\pi}{4}=\frac{3}{4} \cdot \frac{5}{4} \cdot \frac{7}{8} \cdot \frac{11}{12} \cdot \frac{13}{12} \cdot \frac{17}{16} \cdot \frac{19}{20} \cdot \frac{23}{24} \cdot \frac{29}{28} \cdot \frac{31}{32} \ldots
$$

where the numerators are prime numbers (starting from 3) and each denominator is the multiple of 4 nearest to the numerator.

Is there an iterative algorithm for computing this product? Explain, what the difficulty would be.

