Chapter Two

PROGRAMMING WITH NUMBERS AND STRINGS

Introduction

- Numbers and character strings are important data types in any Python program
 - These are the fundamental building blocks we use to build more complex data structures
- In this chapter, you will learn how to work with numbers and text. We will write several simple programs that use them

Chapter Goals

- To declare and initialize variables and constants
- To understand the properties and limitations of integers and floatingpoint numbers
- To appreciate the importance of comments and good code layout
- To write arithmetic expressions and assignment statements
- To create programs that read, and process inputs, and display the results
- To learn how to use Python strings
- To create simple graphics programs using basic shapes and text

Contents

- 2.1 Variables
- 2.2 Arithmetic
- 2.3 Problem Solving: First Do It By Hand
- 2.4 Strings
- 2.5 Input and Output

Variables

- A variable is a named storage location in a computer program
- There are many different types of variables, each type used to store different things
- You 'define' a variable by telling the compiler:
 - What name you will use to refer to it
 - The initial value of the variable
- You use an assignment statement to place a value into a variable

Variable Definition

• To define a variable, you must specify an initial value.

The assignment statement

• Use the **assignment statement** '=' to place a new value into a variable

cansPerPack = 6 # define & initializes the variable cansPerPack

- Beware: The "=" sign is NOT used for comparison:
 - It copies the value on the right side into the variable on the left side
 - You will learn about the comparison operator in the next chapter

Assignment syntax

 The value on the right of the '=' sign is assigned to the variable on the left

An example: soda deal

• Soft drinks are sold in cans and bottles. A store offers a six-pack of 12ounce cans for the same price as a two-liter bottle. Which should you buy? (12 fluid ounces equal approximately 0.355 liters.)

List of variables:

Number of cans per pack Ounces per can Ounces per bottle Type of Number Whole number Whole number Number with fraction

Why different types?

- There are three different types of data that we will use in this chapter:
 - 1. A whole number (no fractional part)7(integer or int)
 - 2. A number with a fraction part8.88 (float)
 - 3. A sequence of characters "Bob" (string)
- The data type is associated with the value, not the variable:

cansPerPack = 6 # int
canVolume = 12.0 # float

Updating a Variable (assigning a value)

- If an existing variable is assigned a new value, that value replaces the previous contents of the variable.
- For example:
 - cansPerPack = 6
 - cansPerPack = 8

Updating a Variable (computed)

- Executing the Assignment: cansPerPack = cansPerPack + 2
- Step by Step:
- Step 1: Calculate the right hand side of the assignment. Find the value of cansPerPack, and add 2 to it.

• Step 2: Store the result in the variable named on the left side of the assignment operator

A Warning...

- Since the data type is associated with the value and not the variable:
 - A variable can be assigned different values at different places in a program taxRate = 5
 # an int

Then later...

taxRate = 5.5 # a float

And then

taxRate = "Non- taxable" # a string

• If you use a variable and it has an unexpected type an error will occur in your program

Our First Program of the Day...

- Open IDLE and create a new file
 - type in the following
 - save the file as typetest.py
 - Run the program

```
# Testing different types in the same variable
taxRate = 5 # int
print(taxRate)
taxrate = 5.5 # float
print(taxRate)
taxRate = "Non-taxable" # string
print(taxRate)
print(taxRate + 5)
```

- So...
 - Once you have initialized a variable with a value of a particular type you should take great care to keep storing values of the same type in the variable

A Minor Change

• Change line 8 to read:

print(taxRate + "??")

- Save your changes
- Run the program
- What is the result?
- When you use the "+" operator with strings the second argument is concatenated to the end of the first
 - We'll cover string operations in more detail later in this chapter

Table 1: Number Literals in Python

Table 1 Number Literals in Python				
Number	Туре	Comment		
6	int	An integer has no fractional part.		
-6	int	Integers can be negative.		
0	int	Zero is an integer.		
0.5	float	A number with a fractional part has type float.		
1.0	float	An integer with a fractional part .0 has type float.		
1E6	float	A number in exponential notation: 1 × 10 ⁶ or 1000000. Numbers in exponential notation always have type float.		
2.96E-2	float	Negative exponent: $2.96 \times 10^{-2} = 2.96 / 100 = 0.0296$		
() 100,000		Error: Do not use a comma as a decimal separator.		
X 3 1/2		Error: Do not use fractions; use decimal notation: 3.5.		

Naming variables

- Variable names should describe the purpose of the variable
 - 'canVolume' is better than 'cv'
- Use These Simple Rules
 - 1. Variable names must start with a letter or the underscore (_) character
 - 1. Continue with letters (upper or lower case), digits or the underscore
 - 2. You cannot use other symbols (? or %...) and spaces are not permitted
 - 3. Separate words with 'camelCase' notation
 - 1. Use upper case letters to signify word boundaries
 - Don't use 'reserved' Python words (see Appendix C, pages A6 and A7)

Table 2: Variable Names in Python

Table 2 Valiable Names in Python				
Variable Name	Comment			
canVolume1	Variable names consist of letters, numbers, and the underscore character.			
x	In mathematics, you use short variable names such as <i>x</i> or <i>y</i> . This is legal in Python, but not very common, because it can make programs harder to understand (see Programming Tip 2.1 on page 36).			
⚠️ CanVolume	Caution: Variable names are case sensitive. This variable name is different from canVolume, and it violates the convention that variable names should start with a lowercase letter.			
🚫 6pack	Error: Variable names cannot start with a number.			
🚫 can volume	Error: Variable names cannot contain spaces.			
🚫 class	Error: You cannot use a reserved word as a variable name.			
🚫 ltr/fl.oz	Error: You cannot use symbols such as / or.			

Table 2 Variable Names in Dython

Programming Tip: Use Descriptive Variable Names

- Choose descriptive variable names
- Which variable name is more self descriptive?

```
canVolume = 0.35
```

cv = 0.355

• This is particularly important when programs are written by more than one person.

constants

- In Python a constant is a variable whose value <u>should not</u> be changed after it's assigned an initial value.
 - It is a good practice to use all caps when naming constants

```
BOTTLE_VOLUME = 2.0
```

- It is good style to use named constants to explain numerical values to be used in calculations
 - Which is clearer?

```
totalVolume = bottles * 2
```

```
totalVolume = bottles * BOTTLE_VOLUME
```

- A programmer reading the first statement may not understand the significance of the "2"
- Python will let you change the value of a constant
 - Just because you can do it, doesn't mean you should do it

Constants: Naming & Style

- It is customary to use all UPPER_CASE letters for constants to distinguish them from variables.
 - It is a nice visual way cue

$BOTTLE_VOLUME = 2$	#	Constant
$MAX_SIZE = 100$	#	Constant
taxRate = 5	#	Variable

Python comments

- Use comments at the beginning of each program, and to clarify details of the code
- Comments are a courtesy to others and a way to document your thinking
 - Comments to add explanations for humans who read your code.
- The compiler ignores comments.

Commenting Code: 1st Style

```
##
#
  This program computes the volume (in liters) of a six-pack of soda
#
   cans and the total volume of a six-pack and a two-liter bottle
#
# Liters in a 12-ounce can
CAN_VOLUME = 0.355
# Liters in a two-liter bottle.
BOTTLE_VOLUME = 2
# Number of cans per pack.
cansPerPack = 6
# Calculate total volume in the cans.
totalVolume = cansPerPack * CAN_VOLUME
print("A six-pack of 12-ounce cans contains", totalvolume, "liters.")
# Calculate total volume in the cans and a 2-liter bottle.
totalVolume = totalVolume + BOTTLE VOLUME
print("A six-pack and a two-liter bottle contain", totalVolume,
"liters.")
```

Commenting Code: 2nd Style

```
##
  This program computes the volume (in liters) of a six-pack of soda
#
  cans and the total volume of a six-pack and a two-liter bottle
#
#
## CONSTANTS ##
CAN VOLUME = 0.355 # Liters in a 12-ounce can
BOTTLE VOLUME = 2 # Liters in a two-liter bottle
# Number of cans per pack.
cansPerPack = 6
# Calculate total volume in the cans.
totalVolume = cansPerPack * CAN VOLUME
print("A six-pack of 12-ounce cans contains", totalVolume, "liters.")
# Calculate total volume in the cans and a 2-liter bottle.
totalVolume = totalVolume + BOTTLE VOLUME
print("A six-pack and a two-liter bottle contain", totalVolume,
"liters.")
```

Undefined Variables

• You must define a variable before you use it: (i.e. it must be defined somewhere above the line of code where you first use the variable)

```
canVolume = 12 * literPerOunce
literPerOunce = 0.0296
```

• The correct order for the statements is:

```
literPerOunce = 0.0296
canVolume = 12 * literPerOunce
```

Arithmetic

Basic Arithmetic Operations

- Python supports all of the basic arithmetic operations:
 - Addition "+"
 - Subtraction "-"
 - Multiplication "*"
 - Division "/"
- You write your expressions a bit differently

$$\frac{a+b}{2}$$
 (a + b) / 2

Precedence

- Precedence is similar to Algebra:
 - PEMDAS
 - Parenthesis, Exponent, Multiply/Divide, Add/Subtract

Mixing numeric types

- If you mix integer and floating-point values in an arithmetic expression, the result is a floating-point value.
- 7 + 4.0 # Yields the floating value 11.0
- Remember from our earlier example:
 - If you mix stings with integer or floating point values the result is an error

Powers

- Double stars ** are used to calculate an exponent
- Analyzing the expression:

$$b \times \left(1 + \frac{r}{100}\right)^n$$

- Becomes:
 - b * ((1 + r / 100) ** n)

Floor division

• When you divide two integers with the / operator, you get a floatingpoint value. For example,

7/4

- Yields 1.75
- We can also perform **floor division** using the // operator.
 - The "//" operator computes the quotient and discards the fractional part

7 // 4

• Evaluates to 1 because 7 divided by 4 is 1.75 with a fractional part of 0.75, which is discarded.

Calculating a remainder

• If you are interested in the remainder of dividing two integers, use the "%" operator (called modulus):

remainder = 7 % 4

- The value of remainder will be 3
- Sometimes called modulo divide

A Simple Example:

- Open a new file in the Wing IDE:
- Type in the following:

```
# Convert pennies to dollars and cents
pennies = 1729
dollars = pennies // 100 # Calculates the number of dollars
cents = pennies % 100 # Calculates the number of pennies
print("I have", dollars, "and", cents, "cents")
```

- Save the file
- Run the file
- What is the result?

Integer Division and Remainder Examples

Table 3 Floor Division and Remainder				
Expression (where n = 1729)	Value	Comment		
n % 10	9	For any positive integer n, n % 10 is the last digit of n.		
n // 10	172	This is n without the last digit.		
n % 100	29	The last two digits of n.		
n % 2	1	n % 2 is 0 if n is even, 1 if n is odd (provided n is not negative)		
-n // 10	-173	–173 is the largest integer \leq –172.9. We will not use floor division for negative numbers in this book.		

Calling functions

- Recall that a function is a collection of programming instructions that carry out a particular task.
- The print() function can display information, but there are many other functions available in Python.
- When calling a function you must provide the correct number of arguments
 - The program will generate an error message if you don't

Calling functions that return a value

- Most functions return a value. That is, when the function completes its task, it passes a value back to the point where the function was called.
- For example:
 - The call abs(-173) returns the value 173.
 - The value returned by a function can be stored in a variable:
 - distance = abs(x)
- You can use a function call as an argument to the **print** function
- Go to the python shell window in Wing and type:

print(abs(-173))
Built in Mathematical Functions

Table 4 Built-in Mathematical Functions						
Function	Returns					
abs(x)	The absolute value of <i>x</i> .					
round(x) round(x , n)	The floating-point value <i>x</i> rounded to a whole number or to <i>n</i> decimal places.					
$\max(x_1, x_2, \ldots, x_n)$	The largest value from among the arguments.					
$min(x_1, x_2, \ldots, x_n)$	The smallest value from among the arguments.					

Python libraries (modules)

- A **library** is a collection of code, written and compiled by someone else, that is ready for you to use in your program
- A **standard library** is a library that is considered part of the language and must be included with any Python system.
- Python's standard library is organized into modules.
 - Related functions and data types are grouped into the same module.
 - Functions defined in a module must be explicitly loaded into your program before they can be used.

Using functions from the Math Module

• For example, to use the sqrt() function, which computes the square root of its argument:

First include this statement at the top of your # program file. from math import sqrt

Then you can simply call the function as y = sqrt(x)

Built-in Functions

- **Built-in** functions are a small set of functions that are defined as a part of the Python language
 - They can be used without importing any modules

Functions from the Math Module

Table 5 Selected Functions in the math Module						
Function	Returns					
<pre>sqrt(x)</pre>	The square root of x . ($x \ge 0$)					
trunc(x)	Truncates floating-point value x to an integer.					
$\cos(x)$	The cosine of x in radians.					
sin(x)	The sine of x in radians.					
tan(x)	The tangent of x in radians.					
exp(x)	e^{x}					
degrees(x)	Convert x radians to degrees (i.e., returns $x \cdot 180/\pi$)					
radians(x)	Convert x degrees to radians (i.e., returns $x \cdot \pi/180$)					
log(x) log(x, base)	The natural logarithm of <i>x</i> (to base <i>e</i>) or the logarithm of <i>x</i> to the given <i>base</i> .					

Floating-point to integer conversion

• You can use the function int() and float() to convert between integer and floating point values:

```
balance = total + tax  # balance: float
dollars = int (balance) # dollars: integer
```

• You lose the fractional part of the floating-point value (no rounding occurs)

Arithmetic Expressions

Table 6 Arithmetic Expression Examples								
Mathematical Expression	Python Expression	Comments						
$\frac{x+y}{2}$	(x + y) / 2	The parentheses are required; x + y / 2 computes $x + \frac{y}{2}$.						
$\frac{xy}{2}$	x * y / 2	Parentheses are not required; operators with the same precedence are evaluated left to right.						
$\left(1+\frac{r}{100}\right)^n$	(1 + r / 100) ** n	The parentheses are required.						
$\sqrt{a^2+b^2}$	sqrt(a ** 2 + b ** 2)	You must import the sqrt function from the math module.						
π	рі	pi is a constant declared in the math module.						

Roundoff Errors

- Floating point values are not exact
 - This is a limitation of binary values; not all floating point numbers have an exact representation
- Open Wing, open a new file and type in:

```
price = 4.35
quantity = 100
total = price * quantity
# Should be 100 * 4.35 = 435.00
print(total)
```

- You can deal with roundoff errors by
 - rounding to the nearest integer (see Section 2.2.4)
 - or by displaying a fixed number of digits after the decimal separator (see Section 2.5.3).

Unbalanced Parentheses

- Consider the expression

 ((a + b) * t / 2 * (1 t)
 - What is wrong with the expression?
- Now consider this expression.
 - (a + b) * t) / (2 * (1 t))
 - This expression has three "(" and three ")", but it still is not correct
- At any point in an expression the count of "(" must be greater than or equal to the count of ")"
- At the end of the expression the two counts must be the same

Additional Programming Tips

• Use Spaces in expressions

totalCans = fullCans + emptyCans

• Is easier to read than

totalCans=fullCans+emptyCans

Other ways to import modules:
 From math import, sqrt, sin, cos # imports the functions listed
 From math import * # imports all functions from the module
 Import math # imports all functions from the module

• If you use the last style you have to add the module name and a "." before each function call

y = math.sqrt(x)

Problem Solving

DEVELOP THE ALGORITHM FIRST, THEN WRITE THE PYTHON

Problem Solving: First by Hand

- A very important step for developing an algorithm is to first carry out the computations by hand.
 - If you can't compute a solution by hand, how do you write the program?
- Example Problem:
 - A row of black and white tiles needs to be placed along a wall. For aesthetic reasons, the architect has specified that the first and last tile shall be black.
 - Your task is to compute the number of tiles needed and the gap at each end, given the space available and the width of each tile.

Start with example values

- Givens
- Total width: 100 inches
- Tile width: 5 inches
- Test your values
 - Let's see... 100/5 = 20, perfect! 20 tiles. No gap.
 - But wait... BW...BW "...first and last tile shall be black."
- Look more carefully at the problem....
 - Start with one black, then some number of WB pairs

- Observation: each pair is 2x width of 1 tile
 - In our example, 2 x 5 = 10 inches

Keep applying your solution

- Total width: 100 inches
- Tile width: 5 inches

- Calculate total width of all tiles
 - One black tile: 5"
 - 9 pairs of BWs: 90"
 - Total tile width: 95"
- Calculate gaps (one on each end)
 - 100 95 = 5" total gap
 - 5" gap / 2 = 2.5" at each end

Now devise an algorithm

- Use your example to see how you calculated values
- How many pairs?
 - Note: must be a whole number
 - Integer part of: (total width tile width) / 2 x tile width
- How many tiles?
 - 1 + 2 x the number of pairs
- Gap at each end
 - (total width number of tiles x tile width) / 2

The algorithm

- Calculate the number of pairs of tiles
 - Number of pairs = integer part of (total width tile width) / (2 * tile width)
- Calculate the number of tiles
 - Number of tiles = 1 + (2 * number of pairs)
- Calculate the gap
 - Gap at each end = (total width number of tiles * tile width / 2
- Print the number of pairs of tiles
- Print the total number of tiles in the row
- Print the gap

Strings

Strings

- Start with some simple definitions:
 - Text consists of **characters**
 - Characters are letters, numbers, punctuation marks, spaces,
 - A string is a sequence of characters
- In Python, string literals are specified by enclosing a sequence of **characters** within a matching pair of either single or double quotes.

print("This is a string.", 'So is this.')

- By allowing both types of delimiters, Python makes it easy to include an apostrophe or quotation mark within a string.
 - message = 'He said "Hello"'
 - Remember to use matching pairs of quotes, single with single, double with double

String Length

- The number of characters in a string is called the length of the string. (For example, the length of "Harry" is 5).
- You can compute the length of a string using Python's len() function: length = len("World!") # length is 6
- A string of length 0 is called the empty string. It contains no characters and is written as "" or ".

String Concatenation ("+")

• You can 'add' one String onto the end of another

```
firstName = "Harry"
```

```
lastName = "Morgan"
```

```
name = firstName + lastName # HarryMorgan
```

```
print("my name is:", name)
```

• You wanted a space in between the two names?

```
name = firstName + " " + lastName # Harry Morgan
```

Using "+" to concatenate strings is an example of a concept called operator overloading. The "+" operator performs different functions of variables of different types

String repetition ("*")

- You can also produce a string that is the result of repeating a string multiple times.
- Suppose you need to print a dashed line.
- Instead of specifying a literal string with 50 dashes, you can use the * operator to create a string that is comprised of the string "-" repeated 50 times.

dashes = "-" * 50

- results in the string

The "*" operator is also overloaded.

Converting Numbers to Strings

- Use the str() function to convert between numbers and strings.
- Open Wing, then open a new file and type in:

```
balance = 888.88
dollars = 888
balanceAsString = str(balance)
dollarsAsString = str(dollars)
print(balanceAsString)
print(dollarsAsString)
```

• To turn a string containing a number into a numerical value, we use the int() and float() functions:

```
id = int("1729")
price = float("17.29")
print(id)
print(price)
```

• This conversion is important when the strings come from user input.

Strings and Characters

- strings are sequences of characters
 - Python uses Unicode characters
 - **Unicode** defines over 100,000 characters
 - Unicode was designed to be able to encode text in essentially all written languages
 - Characters are stored as integer values
 - See the ASCII subset on Unicode chart in Appendix A
 - For example, the letter 'H' has a value of 72

Copying a character from a String

• Each char inside a String has an index number:

0	1	2	3	4	5	6	7	8	9
С	h	а	r	S		h	е	r	е

- The first char is index zero (0)
- The [] operator returns a char at a given index inside a String:

name = "Harry" start = name[0] last = name[4]

String Operations

Table 7 String Operations								
Statement	Result	Comment						
string = "Py" string = string + "thon"	string is set to "Python"	When applied to strings, + denotes concatenation.						
print("Please" + " enter your name: ")	Prints Please enter your name:	Use concatenation to break up strings that don't fit into one line.						
team = str(49) + "ers"	team is set to "49ers"	Because 49 is an integer, it must be converted to a string.						
greeting = "H & S" n = len(greeting)	n is set to 5	Each space counts as one character.						
string = "Sally" ch = string[1]	ch is set to "a"	Note that the initial position is 0.						
<pre>last = string[len(string) - 1]</pre>	last is set to the string containing the last character in string	The last character has position len(string) - 1.						

Methods

- In computer programming, an object is a software entity that represents a value with certain behavior.
 - The value can be simple, such as a string, or complex, like a graphical window or data file.
- The behavior of an object is given through its **methods**.
 - A method is a collection of programming instructions to carry out a specific task similar to a function
- But unlike a **function**, which is a standalone operation, a **method** can only be applied to an object of the type for which it was defined.
 - Methods are specific to a type of object
 - Functions are general and can accept arguments of different types
- You can apply the upper() method to any string, like this:
 - name = "John Smith"
 - # Sets uppercaseName to "JOHN SMITH"
 - uppercaseName = name.upper()

Some Useful String Methods

Table 8 Useful String Methods						
Method Returns						
s.lower()	A lowercase version of string s.					
s.upper()	An uppercase version of <i>s</i> .					
s.replace(old, new) A new version of string s in which every occurre the substring old is replaced by the string new.						

String Escape Sequences

- How would you print a double quote?
 - Preface the " with a "\" inside the double quoted String

print("He said \"Hello\"")

- OK, then how do you print a backslash?
 - Preface the $\$ with another $\$

System.out.print(""C:\\Temp\\Secret.txt"")

Special characters inside Strings *
Output a newline with a '\n' **
print("*\n**\n") ***

Input and Output

Input and Output

- You can read a String from the console with the input() function:
 - name = input("Please enter your name")
- Converting a String variable to a number can be used if numeric (rather than string input) is needed
 - age = int(input("Please enter age: "))
 - The above is equivalent to doing it two steps (getting the input and then converting it to a number):
 - aString = input("Please enter age: ") # String input
 - age = int(aString) # Converted to
 - # int

Formatted output

- Outputting floating point values can look strange: Price per liter: 1.21997
- To control the output appearance of numeric variables, use formatted output tools such as: print("Price per liter %.2f" %(price))
 Price per liter: 1.22
 print("Price per liter %10.2f" %(price))
 Price per liter: 1.22

Syntax: formatting strings

Format flag examples

• Left Justify a String:

4/6/16

- print("%-10s"%("Total:"))
- Right justify a number with two decimal places
 - print("%10.2f" %(price))

print("%-10s%10.2f" %("Total: ", price))

Volume2.py

ch02/volume2.py

```
##
 2
        This program prints the price per ounce for a six-pack of cans.
     #
3
     #
4
 5
     # Define constant for pack size.
6
     CANS PER PACK = 6
7
8
    # Obtain price per pack and can volume.
userInput = input("Please enter the price for a six-pack: ")
9
10
     packPrice = float(userInput)
11
12
     userInput = input("Please enter the volume for each can (in ounces): ")
13
     canVolume = float(userInput)
14
    # Compute pack volume.
15
     packVolume = canVolume * CANS_PER_PACK
16
17
    # Compute and print price per ounce.
18
19
    pricePerOunce = packPrice / packVolume
20
    print("Price per ounce: %8.2f" % pricePerOunce)
```

Format Specifier Examples

Table 9 Format Specifier								Examples		
Format String	Sample Output						ut		Comments	
"%d"	2 4	1								Use d with an integer.
"%5d"			2	4						Spaces are added so that the field width is 5.
"%05d"	0 () (0 2	4						If you add 0 before the field width, zeroes are added instead of spaces.
"Quantity:%5d"	Qι	i i	a n	t	i t	у:		2	4	Characters inside a format string but outside a format specifier appear in the output.
"%f"	1	. 1	2 1	9	97					Use f with a floating-point number.
"%.2f"	1	. 1	2 2							Prints two digits after the decimal point.
"%7.2f"			1		2 2					Spaces are added so that the field width is 7.
"%s"	H e	e .	1 1	0						Use s with a string.
"%d %.2f"	2 4	1	1	•	22					You can format multiple values at once.
"%9s"				Н	e 1	1 o				Strings are right-justified by default.
"%-9s"	H e	5	1 1	0						Use a negative field width to left-justify.
"%d%%"	2 4	4 9	6							To add a percent sign to the output, use %%.

Summary: variables

- A variable is a storage location with a name.
- When defining a variable, you must specify an initial value.
- By convention, variable names should start with a lower case letter.
- An assignment statement stores a new value in a variable, replacing the previously stored value.
Summary: operators

- The assignment operator = does not denote mathematical equality.
- Variables whose initial value should not change are typically capitalized by convention.
- The / operator performs a division yielding a value that may have a fractional value.
- The // operator performs a division, the remainder is discarded.
- The % operator computes the remainder of a floor division.

Summary: python overview

- The Python library declares many mathematical functions, such as sqrt() and abs()
- You can convert between integers, floats and strings using the respective functions: int(), float(), str()
- Python libraries are grouped into modules. Use the import statement to use methods from a module.
- Use the input() function to read keyboard input in a console window.

Summary: python overview

• Use the format specifiers to specify how values should be formatted.

Summary: Strings

- Strings are sequences of characters.
- The len() function yields the number of characters in a String.
- Use the + operator to concatenate Strings; that is, to put them together to yield a longer String.
- In order to perform a concatenation, the + operator requires both arguments to be strings. Numbers must be converted to strings using the str() function.
- String index numbers are counted starting with 0.

• Use the [] operator to extract the elements of a String.