
PROGRAMMING	WITH	NUMBERS	AND	STRINGS

Chapter	Two



Introduction
• Numbers	and	character	strings	are	important	data	types	in	any	Python	
program
• These	 are	the	fundamental	 building	 blocks	we	use	to	build	more	complex	
data	structures

• In	this	chapter,	you	will	learn	how	to	work	with	numbers	and	text.	
We	will	write	several	simple	programs	that	use	them

4/6/16 2



Chapter	Goals
• To	declare	and	initialize	variables	and	constants

• To	understand	the	properties	and	limitations	of	integers	and	floating-
point	numbers

• To	appreciate	the	importance	of	comments	and	good	code	layout

• To	write	arithmetic	expressions	and	assignment	statements

• To	create	programs	that	read,	and	process	inputs,	and	display	the	
results

• To	learn	how	to	use	Python	strings

• To	create	simple	graphics	programs	using	basic	shapes	and	text

4/6/16 3



Contents
2.1 Variables

2.2 Arithmetic

2.3 Problem	Solving:		First	Do	It	By	Hand

2.4	 Strings

2.5 Input	and	Output

4/6/16 4



Variables
• A	variable	is	a	named	storage	location	in	a	computer	program

• There	are	many	different	types	of	variables,	each	type	used	to	store	
different	things

• You	‘define’a	variable	by	telling	the	compiler:
• What	name	you	will	use	to	refer	to	 it
• The	 initial	 value	of	the	variable

• You	use	an	assignment	statement	to	place	a	value	into	a	variable

4/6/16 5



Variable	Definition
• To	define	a	variable,	you	must	specify	an	initial	value.

4/6/16 6



The	assignment	 statement
• Use	the	assignment	statement	'='	to	place	a	new	value	into	a	variable

cansPerPack=	6			#	define	&	initializes	the	variable	cansPerPack

• Beware:		The	“=“	sign	is	NOT	used	for	comparison:
• It	copies	 the	value	on	the	right	side	 into	the	variable	on	the	 left	side
• You	will	 learn	about	the	comparison	 operator	in	the	next	chapter

4/6/16 7



Assignment	syntax
• The	value	on	the	right	of	the	'='	sign	is	assigned	to	the	variable	on	the	
left

4/6/16 8



An	example:	 soda	deal
• Soft	drinks	are	sold	in	cans	and	bottles.	A	store	offers	a	six-pack	of	12-
ounce	cans	for	the	same	price	as	a	two-liter	bottle.	Which	should	you	
buy?	(12	fluid	ounces	equal	approximately	0.355	liters.)

4/6/16 9

List	of	variables:
Number	 of	cans	per	pack
Ounces	 per	can
Ounces	 per	bottle

Type	of	Number
Whole	 number
Whole	 number
Number	with	fraction



• There	are	three	different	types	of	data	that	we	will	use	
in	this	chapter:
1. A	whole	number	(no	fractional	 part)											7   (integer or int)
2. A	number	with	a	fraction	part												 8.88 (float)
3. A	sequence	 of	characters	 														 "Bob”   (string)

• The	data	type	is	associated	with	the	value,	not	the	
variable:
cansPerPack = 6    # int
canVolume = 12.0   # float

Why	different	 types?

4/6/16 10



Updating	a	Variable	(assigning	 a	value)
• If	an	existing	variable	is	assigned	a	new	value,	that	value	replaces	the	
previous	contents	of	the	variable.	

• For	example:
• cansPerPack	=	6
• cansPerPack	=	8

4/6/16 11



Updating	a	Variable	 (computed)
• Executing	the	Assignment:	

cansPerPack=	cansPerPack+	2

• Step	by	Step:

• Step	1:		Calculate	the	right	hand	side	of	the	assignment.	Find	the	value	
of	cansPerPack,	and	add	2	to	it.

• Step	2:		Store	the	result	in	the	variable	named	on	the	left	side	of	the	
assignment	operator

4/6/16 12



A	Warning…
• Since	the	data	type	is	associated	with	the	value	and	not	the	variable:

• A	variable	can	be	assigned	 different	values	at	different	places	 in	a	program
taxRate =	5 #	an	int

Then	later…

taxRate = 5.5 # a float

And	then	

taxRate = “Non- taxable” # a string

• If	you	use	a	variable	and	it	has	an	unexpected	type	an	error	will	occur	
in	your	program

4/6/16 13



Our	First	Program	of	the	Day…
• Open	IDLE	and	create	a	new	file

• type	 in	the	following	
• save	the	file	 as	typetest.py
• Run	the	program

# Testing different types in the same variable
taxRate = 5  # int
print(taxRate)
taxrate = 5.5  # float
print(taxRate)
taxRate = "Non-taxable" # string
print(taxRate)
print(taxRate + 5)

• So…
• Once	you	have	initialized	 a	variable	with	a	value	of	a	particular	 type	you	
should	 take	great	care	to	keep	storing	values	 of	the	same	 type	 in	the	
variable

4/6/16 14



A	Minor	Change
• Change	line	8	to	read:
print(taxRate + “??”)

• Save	your	changes
• Run	the	program

• What	is	the	result?

• When	you	use	the	“+”	operator	with	strings	the	second	argument	is	
concatenated	to	the	end	of	the	first
• We’ll	 cover	string	operations	 in	more	detail	 later	 in	this	chapter

4/6/16 15



Table	1:	Number	 Literals	 in	Python

4/6/16 16



Naming	 variables
• Variable	names	should	describe	the	purpose	of	the	variable

• ‘canVolume’ is	better	than	‘cv’

• Use	These	Simple	Rules
1. Variable	names	must	start	with	a	letter	or	the	underscore	(	_	)	

character
1. Continue	with	letters	(upper	or	lower	case),	digits	or	the	

underscore
2. You	cannot	use	other	symbols	(?	or	%...)	and	spaces	are	not	

permitted
3. Separate	words	with	‘camelCase’notation
1. Use	upper	case	letters	to	signify	word	boundaries

4. Don’t	use	‘reserved’	Python	words	(see	Appendix	C,	pages	A6	and	
A7)

4/6/16 17



Table	2:	Variable	Names	in	Python

4/6/16 18



Programming	Tip:	Use	Descriptive	Variable	Names

• Choose	descriptive	variable	names

• Which	variable	name	is	more	self	descriptive?

canVolume = 0.35

cv = 0.355

• This	is	particularly	important	when	programs	are	written	by	more	than	
one	person.

4/6/16 19



constants
• In	Python	a	constant is	a	variable	whose	value	should	not	be	changed	
after	it’s	assigned	an	initial	value.
• It	is	a	good	practice	to	use	 all	caps	when	naming	constants

BOTTLE_VOLUME = 2.0

• It	is	good	style	to	use	named	constants	to	explain	numerical	values	to	
be	used	in	calculations		
• Which	 is	clearer?

totalVolume = bottles * 2

totalVolume = bottles * BOTTLE_VOLUME

• A	programmer	reading	the	first	statement	may	not	understand	the	
significance	of	the	“2”		

• Python	will	let	you	change	the	value	of	a	constant
• Just	because	 you	can	do	it,	doesn’t	mean	you	should	do	 it

4/6/16 20



Constants:	Naming	&	Style
• It	is	customary	to	use	all	UPPER_CASE	letters	for	constants	to	
distinguish	them	from	variables.
• It	is	a	nice	visual	way	cue	

BOTTLE_VOLUME = 2 # Constant 
MAX_SIZE = 100      # Constant

taxRate = 5         # Variable

4/6/16 21



Python	comments
• Use	comments	at	the	beginning	of	each	program,	and	to	clarify	details	
of	the	code

• Comments	are	a	courtesy	to	others	and	a	way	to	document	your	
thinking
• Comments	 to	add	explanations	 for	humans	who	read	your	code.	

• The	compiler	ignores	comments.

4/6/16 22



Commenting	Code:	1st Style
##
#  This program computes the volume (in liters) of a six-pack of soda
#  cans and the total volume of a six-pack and a two-liter bottle
#

# Liters in a 12-ounce can
CAN_VOLUME = 0.355

# Liters in a two-liter bottle.
BOTTLE_VOLUME = 2

# Number of cans per pack.
cansPerPack = 6

# Calculate total volume in the cans.
totalVolume = cansPerPack * CAN_VOLUME
print("A six-pack of 12-ounce cans contains", totalVolume, "liters.")

# Calculate total volume in the cans and a 2-liter bottle.
totalVolume = totalVolume + BOTTLE_VOLUME
print("A six-pack and a two-liter bottle contain", totalVolume, 
"liters.")

4/6/16 23



Commenting	Code:	2nd Style
##
#  This program computes the volume (in liters) of a six-pack of soda
#  cans and the total volume of a six-pack and a two-liter bottle
#
## CONSTANTS ##
CAN_VOLUME = 0.355   # Liters in a 12-ounce can
BOTTLE_VOLUME = 2     # Liters in a two-liter bottle

# Number of cans per pack.
cansPerPack = 6

# Calculate total volume in the cans.
totalVolume = cansPerPack * CAN_VOLUME
print("A six-pack of 12-ounce cans contains", totalVolume, "liters.")

# Calculate total volume in the cans and a 2-liter bottle.
totalVolume = totalVolume + BOTTLE_VOLUME
print("A six-pack and a two-liter bottle contain", totalVolume, 
"liters.")

4/6/16 24



Undefined	Variables
• You	must	define	a	variable	before	you	use	it:	(i.e.	it	must	be	defined	
somewhere	above	the	line	of	code	where	you	first	use	the	variable)

canVolume = 12 * literPerOunce
literPerOunce = 0.0296

• The	correct	order	for	the	statements	is:
literPerOunce = 0.0296
canVolume = 12 * literPerOunce

4/6/16 25



Arithmetic

4/6/16 26



Basic	Arithmetic	Operations
• Python	supports	all	of	the	basic	arithmetic	operations:

• Addition	 	 “+”
• Subtraction	 	 “-”
• Multiplication	 	“*”
• Division	 													“/”

• You	write	your	expressions	a	bit	differently

4/6/16 27



Precedence
• Precedence	is	similar	to	Algebra:

• PEMDAS
• Parenthesis,	Exponent,	Multiply/Divide,	Add/Subtract

4/6/16 28



Mixing	numeric	 types
• If	you	mix	integer	and	floating-point	values	in	an	arithmetic	
expression,	the	result	is	a	floating-point	value.

• 7	+	4.0				#	Yields	the	floating	value	11.0

• Remember	from	our	earlier	example:
• If	you	mix	stings	with	integer	 or	floating	point	 values	the	result	 is	an	error

4/6/16 29



Powers
• Double	stars	**	are	used	to	calculate	an	exponent

• Analyzing	the	expression:

• Becomes:
• b	*	((1	+	r /	100)	**	n)

4/6/16 30



Floor	division
• When	you	divide	two	integers	with	the	/	operator,	you	get	a	floating-
point	value.	For	example,

7	/	4

• Yields	1.75

• We	can	also	perform	floor	division	using	the	//	operator.	
• The	“//”	operator	computes	 the	quotient	 and	discards	 the	fractional	 part

7	//	4

• Evaluates	to	1	because	7	divided	by	4	is	1.75	with	a	fractional	part	of	
0.75,	which	is	discarded.

4/6/16 31



Calculating	 a	remainder
• If	you	are	interested	in	the	remainder	of	dividing	two	integers,	use	the	
“%”	operator	(called	modulus):

remainder	=	7	%	4

• The	value	of	remainder	will	be	3

• Sometimes	called	modulo	divide

4/6/16 32



A	Simple	Example:
• Open	a	new	file	in	the	Wing	IDE:

• Type	in	the	following:
# Convert pennies to dollars and cents
pennies = 1729
dollars = pennies // 100  # Calculates the number of dollars
cents = pennies % 100     # Calculates the number of pennies
print("I have", dollars, "and", cents, "cents")

• Save	the	file

• Run	the	file

• What	is	the	result?

4/6/16 33



Integer	Division	and	Remainder	Examples
• Handy	to	use	for	making	change:

• pennies	 =	1729
• dollars	=	pennies	 /	100		#	17
• cents	 =	pennies	 %	100				#	29

4/6/16 34



Calling	 functions
• Recall	that	a	function	is	a	collection	of	programming	instructions	that	
carry	out	a	particular	task.

• The	print()	function	can	display	information,	but	there	are	many	other	
functions	available	in	Python.

• When	calling	a	function	you	must	provide	the	correct	number	of	
arguments
• The	program	will	generate	 an	error	message	 if	you	don’t

4/6/16 35



Calling	 functions	 that	return	a	value
• Most	functions	return	a	value.	That	is,	when	the	function	completes	its	
task,	it	passes	a	value	back	to	the	point	where	the	function	was	called.

• For	example:
• The	call	abs(-173)	returns	the	value	173.
• The	value	returned	by	a	function	can	be	stored	in	a	variable:

• distance	=	abs(x)

• You	can	use	a	function	call	as	an	argument	to	the	print function

• Go	to	the	python	shell	window	in	Wing	and	type:

print(abs(-173))

4/6/16 36



Built	 in	Mathematical	Functions

4/6/16 37



Python	 libraries	 (modules)
• A	library is	a	collection	of	code,	written	and	compiled	by	someone	
else,	that	is	ready	for	you	to	use	in	your	program

• A	standard	library	is	a	library	that	is	considered	part	of	the	language	
and	must	be	included	with	any	Python	system.

• Python’s	standard	library	is	organized	into	modules.	
• Related	 functions	 and	data	types	are	grouped	 into	the	same	module.	
• Functions	 defined	 in	a	module	must	be	explicitly	 loaded	 into	your	program	
before	they	can	be	used.

4/6/16 38



Using	functions	from	the	Math	Module
• For	example,	to	use	the	sqrt()	function,	which	computes	the	square	
root	of	its	argument:

# First include this statement at the top of your   

# program file. 

from math import sqrt

#	Then	 you	can	simply	 call	 the	function	 as
y = sqrt(x)

4/6/16 39



Built-in	Functions
• Built-in	functions	are	a	small	set	of	functions	that	are	defined	as	a	part	
of	the	Python	language
• They	can	be	used	without	 importing	 any	modules

4/6/16 40



Functions	 from	the	Math	Module

4/6/16 41



Floating-point	 to	integer	conversion
• You	can	use	the	function int()	and	float()	to	convert	between	integer	
and	floating	point	values:

balance = total + tax   # balance: float
dollars = int (balance) # dollars: integer

• You	lose	the	fractional	part	of	the	floating-point	value	(no	rounding	
occurs)

4/6/16 42



Arithmetic	Expressions

4/6/16 43



Roundoff	Errors
• Floating	point	values	are	not	exact

• This	 is	a	limitation	 of	binary	values;	 not	all	floating	 point	numbers	 have	an	
exact	representation	 	

• Open	Wing,	open	a	new	file	and	type	in:
price = 4.35
quantity = 100
total = price * quantity 

# Should be 100 * 4.35 = 435.00
print(total) 

• You	can	deal	with	roundoff	errors	by
• rounding	to	the	nearest	 integer	 (see	Section	 2.2.4)	
• or	by	displaying	 a	fixed	 number	of	digits	 after	the	decimal	 separator	 (see	
Section	 2.5.3).

4/6/16 44



Unbalanced	Parentheses
• Consider	the	expression
((a + b) * t / 2 * (1 - t)

• What	 is	wrong	with	the	expression?

• Now	consider	this	expression.
(a + b) * t) / (2 * (1 - t)

• This	expression	 has	three	“(“	and	three	 “)”,	but	 it	still	 is	not	correct

• At	any	point	in	an	expression	the	count	of	“(“	must	be	greater	than	or	
equal	to	the	count	of	“)”

• At	the	end	of	the	expression	the	two	counts	must	be	the	same

4/6/16 45



Additional	Programming	Tips
• Use	Spaces	in	expressions
totalCans = fullCans + emptyCans

• Is	easier	to	read	than
totalCans=fullCans+emptyCans

• Other	ways	to	import	modules:
From math import, sqrt, sin, cos # imports the functions listed
From math import *  # imports all functions from the module
Import math # imports all functions from the module

• If	you	use	the	last	style	you	have	to	add	the	module	name	and	a	“.”	before	
each	function	call

y = math.sqrt(x)

4/6/16 46



Problem	Solving
DEVELOP	THE	ALGORITHM	 FIRST,	THEN	WRITE	THE	
PYTHON	

4/6/16 47



Problem	Solving:	 	First	by	Hand
• A	very	important	step	for	developing	an	algorithm	is	to	first	carry	out	
the	computations	by	hand.	
• If	you	can’t	compute	a	solution	by	hand,	how	do	you	write	the	
program?

• Example	Problem:		
• A	row	of	black	and	white	tiles	needs	to	be	placed	along	a	wall.	For	
aesthetic	reasons,	the	architect	has	specified	that	the	first	and	last	
tile	shall	be	black.

• Your	task	is	to	compute	the	number	of	tiles	needed	and	the	gap	at	
each	end,	given	the	space	available	and	the	width	of	each	tile.

4/6/16 48



Start	with	example	values
• Givens

• Total	width:	100	inches

• Tile	width:	5	inches

• Test	your	values
• Let’s	see…	 100/5	=	20,	perfect!	 	20	tiles.	 No	gap.
• But	wait…	BW…BW		“…first	and	last	tile	 shall	 be	black.”

• Look	more	carefully	at	the	problem….
• Start	with	one	black,	then	 some	number	 of	WB	pairs

• Observation:	 	each	pair	is	2x	width	of	1	tile
• In	our	example,	2	x	5	=	10	inches

4/6/16 49



Keep	applying	 your	solution
• Total	width:	100	inches
• Tile	width:	5	inches

• Calculate	total	width	of	all	tiles
• One	black	tile:	 5”
• 9	pairs	of	BWs:	90”
• Total	 tile	width:	 95”

• Calculate	gaps	(one	on	each	end)
• 100	– 95	=	5” total	gap
• 5” gap	/	2	=	2.5” at	each	end

4/6/16 50



Now	devise	an	algorithm
• Use	your	example	to	see	how	you	calculated	values

• How	many	pairs?
• Note:	 	must	be	a	whole	number
• Integer	part	of:		(total	width	– tile	width)	/	2	x	tile	width

• How	many	tiles?
• 1	+	2	x	the	number	of	pairs

• Gap	at	each	end
• (total	width	– number	 of	tiles	 x	tile	width)	/	2

4/6/16 51



The	algorithm
• Calculate	the	number	of	pairs	of	tiles

• Number	 of	pairs	=	integer	 part	of	(total	width	– tile	width)	/	(2	*	tile	width)

• Calculate	the	number	of	tiles
• Number	 of	tiles	 =	1	+	(2	*	number	of	pairs)

• Calculate	the	gap
• Gap	at	each	end	=	(total	width	– number	of	tiles	 *	tile	width	/	2

• Print	the	number	of	pairs	of	tiles

• Print	the	total	number	of	tiles	in	the	row

• Print	the	gap

4/6/16 52



Strings

4/6/16 53



Strings
• Start	with	some	simple	definitions:

• Text	 consists	 of	characters
• Characters	are	letters,	 numbers,	punctuation	 marks,	spaces,	….
• A	string is	a	sequence	 of	characters

• In	Python,	string	literals	are	specified	by	enclosing	a	sequence	of	
characterswithin	a	matching	pair	of	either	single	or	double	quotes.

print("This	is	a	string.",	'So	is	this.')

• By	allowing	both	types	of	delimiters,	Python	makes	it	easy	to	include	
an	apostrophe	or	quotation	mark	within	a	string.
• message	 =	'He	said	"Hello"‘
• Remember	 to	use	matching	 pairs	of	quotes,	 single	with	single,	 double	with	
double

4/6/16 54



String	Length
• The	number	of	characters	in	a	string	is	called	the	length	of	the	string.	
(For	example,	the	length	of	"Harry"	is	5).

• You	can	compute	the	length	of	a	string	using	Python’s	len()	function:

length	=	len("World!")	#	length	is	6

• A	string	of	length	0	is	called	the	empty	string.	It	contains	no	characters	
and	is	written	as	""	or	''.

4/6/16 55



String	Concatenation	 (“+”)
• You	can	‘add’one	String	onto	the	end	of	another

firstName	=	"Harry"

lastName	=	"Morgan"

name		=	firstName	+	lastName		#	HarryMorgan

print(“my	name	is:”,	name)

• You	wanted	a	space	in	between	the	two	names?

name	=	firstName	+	" " +	lastName		#	Harry	Morgan

Using	“+”	to	concatenate	strings	is	an	example	of	a	concept	called	
operator	overloading.		The	“+”	operator	performs	different	functions	of	

variables	of	different	types

4/6/16 56



String	repetition	 (“*”)
• You	can	also	produce	a	string	that	is	the	result	of	repeating	a	string	
multiple	times.

• Suppose	you	need	to	print	a	dashed	line.

• Instead	of	specifying	a	literal	string	with	50	dashes,	you	can	use	the	*	
operator	to	create	a	string	that	is	comprised	of	the	string	"-"	repeated	
50	times.

dashes	=	"-"	*	50

• results	in	the	string

• "-------------------------------------------------“

The	“*”	operator	is	also	overloaded.

4/6/16 57



Converting	Numbers	 to	Strings
• Use	the	str()	function	to	convert	between	numbers	and	strings.

• Open	Wing,	then	open	a	new	file	and	type	in:
balance = 888.88
dollars = 888   
balanceAsString = str(balance) 
dollarsAsString = str(dollars)
print(balanceAsString)
print(dollarsAsString) 

• To	turn	a	string	containing	a	number	into	a	numerical	value,	we	use	
the	int()	and	float()	functions:

id = int("1729")
price = float("17.29")
print(id)
print(price) 

• This	conversion	is	important	when	the	strings	come	from	user	input.

4/6/16 58



Strings	and	Characters
• strings are	sequences	of	characters

• Python	uses	Unicode characters
• Unicode defines	over	100,000	characters
• Unicode was	designed	 to	be	able	 to	encode	 text	 in	essentially	 all	written	languages

• Characters	 are	stored	as	integer	 values
• See	the	ASCII	subset	on	Unicode	chart	 in	Appendix	A
• For	example,	 the	letter	‘H’ has	a	value	of	72

4/6/16 59



Copying	a	character	 from	a	String
• Each	char	inside	a	String	has	an	index	number:
0 1 2 3 4 5 6 7 8 9

c h a r s h e r e

0 1 2 3 4

H a r r y

4/6/16 60

• The	first	char	is	index	zero	(0)

• The	[]	operator	returns	a	char	at	a	given	index	inside	a	String:
name	=	"Harry”
start	=	name[0]
last	=	name[4]



String	Operations

4/6/16 61



Methods
• In	computer	programming,	an	object	is	a	software	entity	that	
represents	a	value	with	certain	behavior.
• The	value	can	be	simple,	 such	as	a	string,	or	complex,	 like	a	graphical	
window	or	data	file.

• The	behavior	of	an	object	is	given	through	its	methods.
• A	method	 is	a	collection	 of	programming	 instructions	 to	carry	out	a	specific	
task	– similar	 to	a	function

• But	unlike	a	function,	which	is	a	standalone	operation,	a	method can	
only	be	applied	to	an	object	of	the	type	for	which	it	was	defined.
• Methods	 are	specific	 to	a	type	of	object
• Functions	 are	general	 and	can	accept	arguments	 of	different	 types	

• You	can	apply	the	upper()	method	to	any	string,	like	this:
• name	=	"John	Smith"
• #	Sets	uppercaseName to	"JOHN	SMITH"
• uppercaseName =	name.upper()

4/6/16 62



Some	Useful	String	Methods

4/6/16 63



String	Escape	Sequences
• How	would	you	print	a	double	quote?

• Preface	the	"	with	a	“\”	 inside	 the	double	 quoted	 String

print("He	said	\"Hello\"")

• OK,	then	how	do	you	print	a	backslash?
• Preface	the	\ with	another	 \

System.out.print("“C:\\Temp\\Secret.txt“")

• Special	characters	inside	Strings
• Output	a	newline	with	a	‘\n’

print("*\n**\n***\n")

*
**
***

4/6/16 64



Input	and	Output

4/6/16 65



Input	and	Output
• You	can	read	a	String	from	the	console	with	the	input()	function:

• name	=	 input("Please	 enter	your	name")

• Converting	a	String	variable	to	a	number	can	be	used	if	numeric	
(rather	than	string	input)	is	needed
• age	=	int(input("Please	 enter	age:	"))

• The	above	 is	equivalent	 to	doing	 it	two	steps	(getting	 the	 input	 and	then	
converting	 it	to	a	number):

• aString =	input("Please	 enter	age:	")	#	String	input
• age	=	int(aString) #	Converted	 to		
• #	int

4/6/16 66



Formatted	output
• Outputting	floating	point	values	can	look	strange:
Price per liter:  1.21997

• To	control	the	output	appearance	of	numeric	variables,	use	formatted	
output	tools	such	as:
print("Price per liter %.2f"  %(price))

Price per liter: 1.22

print("Price per liter %10.2f"  %(price))

Price per liter:       1.22

• The	%10.2f	is	called	a	format	specifier 10 spaces 2 spaces

4/6/16 67



Syntax:	 formatting	strings

4/6/16 68



Format	flag	examples
• Left	Justify	a	String:

• print("%-10s"	%("Total:"))

• Right	justify	a	number	with	two	decimal	places
• print("%10.2f"	%(price))

• And	you	can	print	multiple	values:
• print("%-10s%10.2f"	%("Total:	 ",	price))

4/6/16 69



Volume2.py

4/6/16 70



Format	Specifier	Examples

4/6/16 71



Summary:	 variables
• A	variable	is	a	storage	location	with	a	name.

• When	defining	a	variable,	you	must	specify	an	initial	value.

• By	convention,	variable	names	should	start	with	a	lower	case	letter.

• An	assignment	statement	stores	a	new	value	in	a	variable,	replacing	
the	previously	stored	value.	

4/6/16 72



Summary:	 operators	
• The	assignment	operator	=	does	not	denote	mathematical	equality.

• Variables	whose	initial	value	should	not	change	are	typically	
capitalized	by	convention.	

• The	/	operator	performs	a	division	yielding	a	value	that	may	have	a	
fractional	value.

• The	//	operator	performs	a	division,	the	remainder	is	discarded.

• The	%	operator	computes	the	remainder	of	a	floor	division.

4/6/16 73



Summary:	 python	overview
• The	Python	library	declares	many	mathematical	functions,	such	as	
sqrt()	and	abs()

• You	can	convert	between	integers,	floats	and	strings	using	the	
respective	functions:	int(),	float(),	str()

• Python	libraries	are	grouped	into	modules.	Use	the	import	statement	
to	use	methods	from	a	module.

• Use	the	input()	function	to	read	keyboard	input	in	a	console	window.

4/6/16 74



Summary:	 python	overview
• Use	the	format	specifiers	to	specify	how	values	should	be	formatted.

4/6/16 75



Summary:	 Strings
• Strings	are	sequences	of	characters.

• The	len()	function	yields	the	number	of	characters	in	a	String.

• Use	the	+	operator	to	concatenate	Strings;	that	is,	to	put	them	
together	to	yield	a	longer	String.

• In	order	to	perform	a	concatenation,	the	+	operator	requires	both	
arguments	to	be	strings.	Numbers	must	be	converted	to	strings	using	
the	str()	function.

• String	index	numbers	are	counted	starting	with	0.

4/6/16 76



Summary:	 Strings
• Use	the	[	]	operator	to	extract	the	elements	of	a	String.

4/6/16 77


