Chapter Three

PART ONE: DECISIONS, RELATIONAL OPERATORS

Chapter Goals

 Toimplementdecisionsusingthe if statement

 To compareintegers, floating-point numbers, and Strings
* To write statementsusingthe Boolean data type

* To develop strategies for testingyour programs

* Tovalidateuserinput

In this chapter, you will learn how to programsimple and complex
decisions. You will apply what you learn to the task of checking
userinput.

Contents

* The if Statement

e Relational Operators

* Nested Branches

* Multiple Alternatives

* Problem Solving: Flowcharts

* Problem Solving: Test Cases

* Boolean Variablesand Operators
* Analyzing Strings

e Application: InputValidation

The 1f Statement

 Acomputer programoften needsto make decisions based oninput, or
circumstances

* For example, buildings often ‘skip’ the 13th floor, and elevators should
too

 The 14t flooris really the 13t floor
* So every floorabove 12 is really ‘floor-1’
e |ffloor>12, Actual floor=floor-1

 The two keywords of the if statementare:
e if
e else

The if statement allows a program to
carry out different actions depending on
the nature of the data to be processed.

Flowchart of the 1f Statement

e Oneofthe two branchesisexecuted once
e True(if)branch or False (else) branch

Condition actualFloor = 0

- . if floor > 13 :
Irue False
floor > 13? actualFloor = floor - 1
else :

actualFloor = floor

actualFloor = actualFloor =
floor - 1 floor

Flowchart with only a True Branch

e An if statementmaynotneeda ‘False’ (else)branch

No else branch

True False
floor > 13?

actualFloor = floor

actualFloor = if floor > 13 :
actualFloor - 1 actualFloor = actualFloor - 1

Syntax 3.1: The 1f Statement

-
Syntax if condition : if condition :
statements statements,
else :
statements,

. ‘ The colon indicates
A condition that is true or false.

. a compound statement.
Often uses relational operators: \r
= Il= < <= > >=

(See page 98.) if floor > 13 : e If the condition is true, the statement(s)
actualFloor = floor - 1 in this branch are executed in sequence;
else : if the condition is false, they are skipped.
actualFloor = floor
Omit the e1se branch \
if there is nothing to do.
5 If the condition is false, the statement(s)
in this branch are executed in sequence;
The i f and e1se if the condition is true, they are skipped.

: clavses must
’ be aligned.

Elevatorsim.py

1 ##

2 # This program simulates an elevator panel that skips the 13th tloor.
3 #

4

5 # Obrtain the tloor number from the user as an integer.
6 floor = int(input("Floor: ")) ’

7

8 # Adjust floor if necessary.

9 if floor > '
10 actualFloor = floor -
11 else :
12 actualFloor = floor
13

14 # Print the result.
15 print("The elevator will travel to the actual floor", actualFloor)

Program Run

Floor: 20
The elevator will travel to the actual floor 19

Our First Example

 Openthefile:
* elevatorsim.py

* Thisis a slightly modified program

* Runthe program
 Tryavaluethatis lessthat 13
 Whatis the result?
* Runthe programagain with a value thatis greaterthan 13
* Whatis the result?

* Whathappensif youenter13?

Our First Example (2)

e Revised Problem Statement(1):
 Checktheinputentered by the user:

* |[ftheinputis 13, set the valueto 14 and printa message
 Modifythe elevatorsimprogramto test the input

(4

The relational operatorforequalis “==*

* Modified Problem Statement(2)
* Insomecountriesthe number 14 is considered unlucky.
 Whatis the revised algorithm?

* Modifythe elevatorsimprogramto “skip” both the 13th and 14th
floor

Compound Statements

e Some constructsin Python are compound statements.

 compound statements span multiplelinesand consist of a header and
a statementblock

The if statementis an example of a compound statement
 Compoundstatements requireacolon “:” atthe end of the header.

 The statementblockis a group of one or more statements, all indented
to the same column

 The statementblockstarts on the line after the header and ends at
the first statementindented less than the first statementin the block

Compound Statements

Statementblocks can be nested inside other types of blocks (we will
learn about more blocks later)

Statement blocks signal that one or more statements are partof a
given compoundstatement

* |In the case of the if constructthe statementblock specifies:
 Theinstructionsthatare executed if the conditionis true

* Orskippedif the conditionis false

Statement blocks are visual cues that allow you to follow the login and
flow of a program

Tips on Indenting Blocks

 Let IDLEdo the indentingforyou...

if totalSales > 100.0 :

! discount = totalSales * 0.05

| totalSales = totalSales - discount

| print("You received a discount of $%.2f" % discount)
else :

t diff = 100.0 - totalSales

if diff < 10.0 :

I print("If you were to purchase our item of the day you can receive a 5% discount.™)
else :

I print("You need to spend $%.2f more to receive a 5% discount.” % diff)
!
|

|
| -
1 2 Indentation level

|
|
|
|
|
|
0

This is referred to as “block structured” code. Indenting consistentlyis not
only syntactically required in Python, it also makes code much easier to
follow.

A Common Error

* Avoid duplicationinbranches

 Ifthesamecodeisduplicatedineach branchthen moveit out of the
if statement.

1t floor > 13 :
actualFloor = floor - 1
print("Actual floor:", actualFloor)
else :
actualFloor = floor
print("Actual floor:", actualFloor)

if floor > 13 :

actualFloor = floor - 1
else :

actualFloor = floor
print("Actual floor:", actualFloor)

The Conditional Operator

* A “shortcut” you mayfindin existing code
* Itisnotusedin this book

 The shortcutnotationcan be used anywherethata valueis
expected

True branch Condition False branch

actualFloor = floor - 1 1f floor > 13 else floor

print("Actual floor:", floor - 1 if floor > 13 else floor)

Complexityis BAD....
This “shortcut” is difficult to read and a poor programming practice

Relational Operators

* Everyif statementhasa condition
e Usuallycomparestwo values with an operator

. Table 1 Relational Operators
if floor > 13

. Python Math Notation Description

if floor >= 13 St
> > Greater than
if floor < 13 : >= = Greater than or equal
L < < Less than
if floor <= 13
. <= = Less than or equal

if floor == 13 __ - Equa]

= = Not equal

Assignment vs. Equality Testing

* Assignment: makes somethingtrue.

floor = 13

* Equality testing: checks if somethingis true.

if floor == 13 :

Comparing Strings

* Checkingif two strings are equal

if namel == name2 :
print("The strings are identical")

* Checkingif two strings arenot equal

if namel != name2 :
print("The strings are not identical")

Checking for String Equality (1)

* Fortwo strings to be equal, they mustbe of the samelength and
contain the same sequence of characters:

namel

N RO N RN Fh W a vy n e

namezZ

I8 Fo:F RN N W a y n e

Checking for String Equality (2)

* Ifanycharacteris different, the two strings will not be equal:

namel = [EIN EON RN F W a y n e namel = J o h n W ay n e
name2 = J] 'a nh e W ay n e name2 = J o h n W a y n e
e -

The sequence “ane” An uppercase “W?” 1s not

does not equal “ohn” equal to lowercase “w”

Relational Operator Examples (1)

Table 2 Relational Operator Examples

Expression Value Comment
3 <=4 True 3 is less than 4; <= tests for “less than or equal”.
® 3 =<4 Error The “less than or equal” operator is <=, not =<.
The “less than” symbol comes first.
3> 4 False > is the opposite of <=.
4 <4 False The left-hand side must be strictly smaller than

the right-hand side.

4 <= 4 True Both sides are equal; <= tests for “less than or
equal”.
3=5-2 True == tests for equality.
31=5-1 True = tests for inequality. It is true that 3 is not 5 - 1.
® 3=6/2 Error Use == to test for equality.
1.0 / 3.0 == 0.333333333 False Although the values are very close to one

another, they are not exactly equal. See Common
Error 3.2 on page 101.

® "10" > 5 Error You cannot compare a string to a number.

Relational Operator Examples (2)

Table 2 Relational Operator Examples

® 3=06/2 Error Use == to test for equality.

1.0 / 3.0 == 0.333333333 False Although the values are very close to one
another, they are not exactly equal. See Common
Error 3.2 on page 101.

® "10" > 5 Error You cannot compare a string to a number.

Another Example

 Openthefile:
* compare.py

* Runthe program
* Whatarethe results?

Common Error (Floating Point)

* Floating-pointnumbershave only a limited precision, and calculations
can introduce roundoff errors.

* You musttake these inevitable roundoffsinto accountwhen
comparingfloating pointnumbers.

Common Error (Floating Point, 2)

* For example, the following code multiplies the squarerootof 2 by
itself.

* |deally, we expectto get the answer 2:

r = math.sqgrt(2.0)
if r * r == 2.0 :
print("sgqrt(2.09) squared is 2.0")
else :
print("sqrt(2.09) squared is not 2.0 but", r * r)

Output:
sgqrt(2.0) squared is not 2.0 but 2.0000000000000004

The Use of EPSILON

 Useaverysmallvalueto comparethe difference to determine if
floating-pointvalues are ‘close enough’

 The magnitude of their difference should be less than some
threshold

 Mathematically, we would writethatx andy are close enough if:

x—y|<e

EPSILON = 1E-14
r = math.sqgrt(2.0)
if abs(r * r - 2.0) < EPSILON :
print("sqrt(2.09) squared is approximately 2.0")

Lexicographical Order

 TocompareStringsin ‘dictionary’ like order:
stringl < string2

* Notes
e AIlUPPERCASE letters come beforelowercase

e ‘space’ comes beforeall other printable characters

* Digits (0-9) come before all letters
* See Appendix Aforthe BasicLatin (ASCII) Subsetof Unicode

Operator Precedence

* The comparisonoperatorshave lower precedence than arithmetic
operators

* Calculations are done beforethe comparison

 Normallyyour calculationsareonthe ‘right side’ of the comparison
or assignmentoperator

Calculations

actualFloor = floor + 1

if floor > height + 1

Implementing an 1f Statement (1)

1) Decide on a branchingcondition

original price < 1287
2) Write pseudocode for the true branch

discounted price = 0.9Z x original price

3) Write pseudocodefor the false branch

discounted price = 0.84 x original price

Implementing an 1f Statement (2)

4) Double-checkrelational operators

. Test values below, at, and above the comparison (127,128, 129)

5) Remove duplication
discounted price = x original price
6) Test both branches

discounted price = 0.92 x 100 = 92

discounted price = 0.84 x 200 = 168

Implementing an 1f Statement (3)

7. Write the code in Python

A Third Example

* The university bookstore has a Kilobyte Day sale every October 24
(10.24), giving an 8 percentdiscounton all computer accessory
purchases if the priceis less than $128, and a 16 percentdiscountif
the price is atleast $128.

if originalPrice < 128 :
discountRate = 0.92

else :
discountRate = 0.84
discountedPrice = discountRate * originalPrice

The Sale Example

 Openthefile:
e sale.py

 Runthe programseveraltime using differentvalues
 Usevalueslessthan 128

e Usevaluesgreaterthat 128
* Enter128

* Whatresults doyou get?

Nested Branches

e You cannestan ifinsideeither branch of an if statement.

* Simpleexample: Orderingdrinks
e Askthe customerfortheirdrinkorder

e if customerorderswine
e AskcustomerforlID
« if customer’ sageis 21 or over
* Serve wine
* Else

* Politely explainthe law to the customer
* Else

e Serve customersanon-alcoholicdrink

Flowchart of a Nested if

Ask for order Nestedif-else insidetrue branch of
l an if statement.
* Threepaths
True
Wine? Check ID
False
°= Tri) Serve wine
217
Serve non-
. False
alcoholic
drink Read law
V<

Done

Tax Example: nested 1fs

* Fouroutcomes (branches)

* Single

<= 32000
> 32000

e Married

<=64000
> 64000

Table 3 Federal Tax Rate Schedule

If your status is Single and

if the taxable income is the tax is of the amount over
at most $32,000 10% $0
over $32,000 $3,200 + 25% $32,000
If your status is Married and
if the taxable income is the tax is of the amount over
at most $64,000 10% $0

over $64,000 $6,400 + 25% $64,000

Flowchart for the Tax Example

.. True
Single?

False

* Fourbranches

income
<32,000

False

income
<64,000

False

True

True

10%
bracket

25%
bracket

10%
bracket

25%
bracket

Taxes.py (1)

1 ##

2 # This program computes income taxes, using a simplified tax schedule.
3 #

4

5 # Initialize constant variables for the tax rates and rate limits.
6 RATEL =

7 RATE2 =

8 RATE1_SINGLE_LIMIT =

9 RATE1_MARRIED_LIMIT =

10

11 # Read income and marital status.

12 income = float(input("Please enter your income: "))
13 maritalStatus = input("Please enter s for single, m for married: ")
14

15 # Compute taxes due.

16 taxl =

17 tax2 =

18

19 if maritalStatus == "s" :
20 if income <= RATE1_SINGLE_LIMIT :
21 taxl = RATE1l * income
22 else :
23 taxl = RATE1l * RATE1_SINGLE_LIMIT
24 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT)
25 else :
26 if income <= RATE1_MARRIED_LIMIT :
27 taxl = RATE1 * income
28 else :
29 taxl = RATE1l * RATE1_MARRIED_LIMIT
30 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT)
31

32 totalTax = taxl + tax2

Taxes.py (2)

 The ‘True’branch (Single)
 Two brancheswithin this branch

19 1f maritalStatus == "s" :

20 1T 1ncome <= RATE1_SINGLE_LIMIT :

21 taxl = RATE1l * income

22 else :

23 taxl = RATE1l * RATE1_SINGLE_LIMIT

24 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT)

Taxes.py (3)

 The ‘False’ branch (Married)

else :

1t income <= RATE1_MARRIED_LIMIT :
taxl = RATE1l * income

else :
taxl = RATE1l * RATE1 _MARRIED LIMIT
tax2 = RATE2 * (income - RATE1l MARRIED LIMIT)

Running the Tax Example

 Openthefile:
* taxes.py

* Runthe programseveraltime using differentvaluesforincomeand
marital status

e Useincomevalueslessthan $32,000
* Useincome values greater than $S64,000
 Enter “&” as the marital status

* Whatresults doyou get?

and-tracing

* Hand-tracing helps you understand whethera programworks correctly

* Createa table of key variables
e Use pencil and paperto track their values

* Works with pseudocode or code
 Tracklocation with a marker

* Use exampleinputvaluesthat:
 You know whatthe correct outcome shouldbe

* Will test each branch of your code

Hand-tracing the Tax Example

marital * Setup |
tax1 taxZ . income ., stafus * Table of variables
0 0 * Initialvalues

RATEL =
RATEZ =
RATEL_SINGLE_LIMIT =
RATE1_MARRIED_LIMIT =

(ol BN o))

15 # Compute taxes due.
16 taxl =

17 tax2 =

Hand-tracing the Tax Example (2)

wmarital _
tax1 taxZ . income , status * Inputvariables
0 0 20000 m * Fromuser

* Updatetable

11 # Read income and marital status.
12 1income = float(input("Please enter your income: "))
13 maritalStatus = input("Please enter s for single, m for married: ")

o_
S

 Because maritalstatusis not“s” we skip to the else on line 25

i

19 1if maritalStatus == "s

25 else

Hand-tracing the Tax Example (3)

e Becauseincomeis not<= 64000, we move to the else clause online 28
 Updatevariablesonlines 29 and 30

* Use constants

26 1T income <= RATE1 _MARRIED LIMIT :

27 taxl = RATE1l * income

28 else :

29 taxl = RATE1l * RATE1_MARRIED_LIMIT

30 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT)

wmarital
tax1 taxZ . income , status

) g A | 80000 m
6400 | 4000

Incremental Code and Test

* Usingthe flag problem statementasan example:
e Computethedataforthe firstpanel

* Printoutthe data
e Color

e The XandY coordinates of the top left corner of the panel
 The width of the panel
 The heightof the panel
* Checkthedata
* |fthe datais correct:
 Drawthepanel
* Else
* Look atyourequations
* Find andfixanyerrors
* Checkthe dataagain
* Do the nextpanel

4/6/16

Multiple Alternatives

3.4 Multiple Alternatives

* Whatif youhave morethantwo branches?

e Countthe branchesforthe following earthquake effectexample:
* 8 (orgreater)

« 7t07.99 Table 4 Richter Scale|
* 6106.99 Value Effect
* 4.5105.99 8 Most structures fall
* Lessthan4.5 7 Many buildings destroyed
6 Many buildings considerably
When using multiple if statements, damaged, some collapse
test the general conditions after the R e —

more specific conditions. buildings

Flowchart of Multiway Branching
I

v
True
>= 8.07 — Most Structures Fall
False
True
>=7.0? — Many Buildings Destroyed
False |
True ildi i
= 6.0? Many buildings considerably damaged,
some collapse
False v
True
>= 457 —» Damage to poorly constructed buildings
False J
No destruction of buildings
l.

elif Statement

e ShortforéElse,if...

e Assoonasone onthe test conditions succeeds, the statementblockis
executed

* No other tests are attempted

* |f none of the test conditions succeed the final else clauseis executed

1f, elif Multiway Branching

if richter >= 8.0 : # Handle the ‘special case’ first
print("Most structures fall")

elif richter >= 7.0 :
print("Many buildings destroyed")

elif richter >= 6.0 :
print("Many buildings damaged, some collapse")

elif richter >= 4.5 :
print("Damage to poorly constructed buildings")

else : # so that the ‘general case’ can be handled last
print("No destruction of buildings")

What is Wrong With This Code?

if richter >= 8.0 :
print("Most structures fall")
if richter >= 7.0 :
print("Many buildings destroyed")
if richter >= 6.0 :
print("Many buildings damaged, some collapse")
if richter >= 4.5 :
print("Damage to poorly constructed buildings")

earthquake Example

 Openthefile:
e earthquake.py

 Runthe programwith several differentinputs

Using Flowcharts to Develop
and Refine Algorithms

3.5 Problem Solving: Flowcharts

* You haveseen a few basic flowcharts

e Aflowchartshowsthe structure of decisions and tasksto solve a
problem

 Basicflowchartelements:

True

Simple task Input/output Condition

False

e Connectthem with arrows

Each branch of a decision
can contain tasks and
further decisions

 Butneverpointanarrowinside
another branch!

Using Flowcharts

* Flowcharts are an excellenttool

 Theycan helpyou visualize the flow of your algorithm

* Buildingthe flowchart

* Link yourtasksandinput/ outputboxesinthe sequencetheyneed
to be executed

* Whenyou needto make a decision use the diamond (a conditional
statement) with two outcomes

* Never pointanarrow insideanotherbranch

Conditional Flowcharts

Two Outcomes Multiple Outcomes
. True “Choice 17
Choice 1 branch
o True
Condition
False
False Choice 2 True “Choice 2~
branch
False
False branch True branch
) True “Choice 3”
Choice 3 branch
False
“Other”

branch

Shipping Cost flowchart

Shipping costs are S5 inside the contiguousthe United States (Lower 48
states),and $S10 to Hawaii and Alaska. International shipping costs are
also S10.

e ThreeBranches:

. . True
Inside US?
False
Shipping Contiguous True Shippi
COSt = SlOl United States Col;f}:gg
False
International Hawaii/Alaska Lower 48

Branch Branch Branch

Don’t Connect Branches!

Shipping costs are S5 inside the United States, exceptthat to Hawaiiand
Alaskatheyare $10. International shipping costs are also $10.

e Don’tdo this!

, True
Inside US?
False
<
Shipping True . .
cost = $10 Contine{ntal us? e ?g;l:}llgg
| False
International Hawaii/Alaska Lower 48

Branch Branch Branch

Shipping Cost Flowchart

Shipping costs are S5 inside the United States, exceptthat to Hawaiiand
Alaskatheyare $10. International shipping costs are also $10.

_ True
Inside US?

False

Shipping True
cost = $10 Continental US?

False

Shipping Shipping
cost = $10 cost = $5

Shipping Example

 Openthefile:
* Shipping.py

* Runthe programwith severaldifferentinputs?
* Whathappensif youenter “usa” as the country?

 We willlearn several ways to correct the code later in this
chapter

Complex Decision Making is Hard

 Computersystemsare usedto helpsortandrouteluggage at airports

* The systems:
* Scan the baggagetags

e Sorts the items
* Routestheitems to conveyor belts
* Humansthen placethe bags on trucks

* |In 1993 Denver builta new airport with a “state of the art” luggage
system thatreplaced the human operators with roboticcarts

* The system failed
 Theairportcould notopen with out a luggage system

The system was replaced (it took over a year)
The cost was almostS1B.... (yes one billion... 1994 dollars)
The companythatdesigned the system wentbankrupt

Building Test Cases

Problem Solving: Test Cases

 Aim forcomplete coverage of all decision points:
 Therearetwo possibilities for the marital status and two tax
brackets for each status, yieldingfour test cases

e Testa handful of boundaryconditions, such asan incomethatis at
the boundary between two tax brackets,and a zeroincome

* |fyouareresponsibleforerror checking (whichis discussed in
Section 3.9), also test an invalid input, such as a negativeincome

e Each branch ofyourcodeshould be covered with a test case

Choosing Test Cases

* Chooseinputvaluesthat:
 TestboundarycasesandO values

e Testeach branch

Test Case Expected Qutput Comwent

30,000 s 3,000 107 bracket
72,000 s 13,200 3,200+ 25% of 40,000
50,000 wm 5,000 107 bracket

104,000 m 16,400 6,400 + 257 of 40,000
32,000 s 3,200 boundary case

0s 0 boundary case

Make a Schedule...

* Make a reasonable estimateof the time it will take you to:
* Designthe algorithm

* Developtestcases
* Translatethealgorithmto code and enter the code

 Testanddebugyour program

* Leave some extratime forunanticipated problems

As you gain more experienceyour estimates will become more
accurate. Itis better to have some extra time than to be late

Boolean Variables and
Operators

Boolean Variables

* Boolean Variables

 ABooleanvariableis often called a flag becauseit can be either up
(true) ordown(false)

* booleanisa Python datatype
 failed = True

* Booleanvariablescanbeeither True or False
* Therearetwo Boolean Operators: and, or

 Theyare usedto combine multiple conditions

Combined Conditions: and

* Combiningtwo conditionsis often usedin range checking
* |savaluebetweentwo other values?

e Both sides of the and must be true forthe resultto be true

A B A and B
True True True
if temp > @ and temp < 100 :
print("Liquid") True False False
False True False

False False False

Combined Conditions: or

* Weuseorif onlyone of two conditionsneed to be true
* Use acompoundconditional withanor:

if temp <= @ or temp >= 100

print("Not liquid") A B
* |f either conditionistrue True True
e Theresultis true
True False
False True

False False

AorB
True
True
True

False

The not operator: not

* Ifyouneedto inverta booleanvariable or comparison, precede it with
not

if not attending or grade < 60 :

print("Drop?") A hot A
if attending and not(grade < 60) L False
print(“"Stay") False True

* |fyouareusingnot, try to usesimplerlogic:

if attending and grade >= 60 :
print("Stay")

The not operator: inequality !

* Aslightly differentoperatoris used forthe not when checking for
inequality rather than negation.
 Exampleinequality:

 The password thatthe userenteredis not equal to the password on
file.

e i userPassword != filePassword :

and Flowchart

* Thisis often called ‘range checking’

* Usedto validatethatthe inputis
between two values

Both conditions
must be true

if temp > © and temp < 100
print("Liquid")

and

Temperature
> 0?

True

Temperature
< 100?

True

Water 1s
liquid

False

False

or flowchart

* Anotherform of ‘range checking’
* Checksif valueis outsidea range

or
False
TCIZI]PC[‘&HUI’C TCH]pCI’<UI’C
<0? = 100?
if temp <= @ or temp >= 100 : True True
print("Not Liquid")
At least

one condition
must be true

Water 1s
not liquid

False

Comparison Example

 Openthefile:
* Compare2.py

* Runthe programwith severalinputs

Boolean Operator Examples

Expression
0 < 200 and 200 < 100
0 < 200 or 200 < 100

0 < 200 or 100 < 200

Table 5 Boolean Operator Examples

Value
False
True

True

0 < x and x < 100 or x == -1 (0 < x and x < 100)

not (0 < 200)

frozen == True

frozen == False

or X == -1

False

frozen

not frozen

Comment
Only the first condition is true.
The first condition is true.

The or is not a test for “either-or”. If both
conditions are true, the result is true.

The and operator has a higher precedence than the
or operator (see Appendix B).

0 < 200 is true, therefore its negation is false.

There is no need to compare a Boolean variable
with True.

[tis clearer to use not than to compare with False.

Common Errors with Boolean Conditions

Confusingand andor Conditions
e |tisasurprisinglycommonerrorto confuse and and or conditions.

* Avaluelies between0Oand 100 if it is at least0 and at most 100.
 |tlies outsidethatrangeifitisless than O or greaterthan 100.

 Thereis no goldenrule;youjust haveto think carefully.

Short-circuit Evaluation: and

 Combinedconditions are evaluated fromleft to right
* |fthe left half of an and conditionis false, whylook further?

if temp > © and temp < 100

print("Liquid")
and
False
Temperature
> 07
Both conditions True Done!
must be true
False

Temperature
< 100?

True

Short-circuit evaluation: or

* |f the left half of the or is true, whylook further?

if temp <= © or temp >= 100
print("Not Liquid")

or
False
Temperature Temperature
<Q? > 100?
True True
At least
Done! one condition

must be true

F dlSG

De Morgan'’s law

 De Morgan’slaw tells you how to negateand and or conditions:
* not(AandB) isthe sameas notAornotB

e not(AorB) isthesameas notAandnotB

 Example: Shippingis higherto AKand HI

if (country != "USA" if not(country=="USA"
and state != "AK" or state=="AK"
and state != "HI") : or state=="HI") :
shippingCharge = 20.00 shippingCharge = 20.00

* To simplify conditionswith negations of and or or expressions, it’s a
good idea to apply De Morgan’slaw to move the negations to the
innermost level.

Analyzing Strings

Analyzing Strings — The in Operator

 Sometimesit’s necessarytoanalyze orask certain questionsabouta
particular string.

Sometimes it is necessary to determineif a string contains a given
substring. Thatis, one string contains an exact match of another
string.

Given this code segment,
name = "John Wayne"
the expression

"Way" in name

yields True because the substring "Way" occurs within the string
storedinvariable name.

The not in operatoristhe inverseonthein operator

Substring: Suffixes

* Supposeyouaregiventhe name ofa file and need to ensure thatit
has the correctextension

if filename.endswith(".html") :
print("This is an HTML file.")

 Theendswith() stringmethodis appliedto the string stored in
filenameandreturns True if the string ends with the substring
".html"and False otherwise.

Operations for Testing Substrings

Table 6 Operations for Testing Substrings

Operation
substring in s

s.count (substring)

s.endswith(substring)

s.find(substring)

s.startswith(substring)

Description
Returns True if the string s contains substring and False otherwise.

Returns the number of non-overlapping occurrences of substring in the
string s.

Returns True if the string s ends with the substring and False otherwise.

Returns the lowest index in the string s where substring begins, or —1 it
substring is not found.

Returns True if the string s begins with substring and False otherwise.

Methods: Testing String Characteristics (1)

Table 7 Methods for Testing String Characteristics

Method Description

s.isalnum() Returns True if string s consists of only letters or digits
and it contains at least one character. Otherwise it
returns False.

s.isalpha) Returns True if string s consists of only letters and
contains at least one character. Otherwise it returns
False.

s.isdigit() Returns True if string s consists of only digits and
contains at least one character. Otherwise, it returns

False.

Methods for Testing String Characteristics (2)

Table 7 Methods for Testing String Characteristics

s.islower() Returns True if string s contains at least one letter and
all letters in the string are lowercase. Otherwise, it
returns False.

s.isspace) Returns True if string s consists of only white space
characters (blank, newline, tab) and it contains at least
one character. Otherwise, it returns False.

s.isupper() Returns True if string s contains at least one letter and
all letters in the string are uppercase. Otherwise, it
returns False.

Comparing and Analyzing Strings (1)

Table 8 Comparing and Analyzing Strings

Expression Value Comment
"John" == "John" True == is also used to test the equality of two strings.
"John" == "john" False Fortwo strings to be equal, they must be identical. An

uppercase “J” does not equal a lowercase “j”
"john" < "John" False Based on lexicographical ordering of strings an uppercase
comes before alowercase “j” so the string "john"
follows the string "John". See Special Topic 3.2 on page 101.

“«r» 1

"john" in "John Johnson' False The substring "john" must match exactly.

name = "John Johnson" True The string does not contain the substring "ho".
"ho" not in name

name. count("oh") 2 All non-overlapping substrings are included in the count.

name. find("oh") 1 Finds the position or string index where the first
substring occurs.

name. find("ho") -1 The string does not contain the substring ho.

name.startswith("john™) False The string starts with "John" but an uppercase “J” does
not match a lowercase “}”

name.isspace() False The string contains non-white space characters.
name.isalnum() False The string also contains blank spaces.
"1729".isdigitQ True The string only contains characters that are digits.

"-1729".isdigitQ False A negative sign is not a digit.

Comparing and Analyzing Strings (2)

Table 8 Comparing and Analyzing Strings

name.startswith("john™)

name.isspace()
name.isalnum()
"1729".1sdigit()

"-1729".1sdigit()

False

False

False

True

False

The string starts with "John" but an uppercase “J” does
«K'»

not match a lowercase “j”.
The string contains non-white space characters.
The string also contains blank spaces.

The string only contains characters that are digits.

A negative sign is not a digit.

Substring Example

 Openthefile:
e Substrings.ph

* Runthe programand testseveralstrings and substrings

Input Validation

Input Validation

* Acceptinguserinputis dangerous
* ConsidertheElevator program:

 Assumethatthe elevator panelhasbuttonslabeled 1 through 20
(but not 13).

Input Validation

 Thefollowingareillegal inputs:
* The number13

if floor == 13 :
print("Error: There is no thirteenth floor.")

e Zeroor anegative number
e Anumberlargerthan 20

if floor <= @ or floor > 20 :
print("Error: The floor must be between 1 and 20.")

 Aninputthatis nota sequence of digits, such as five:

* Python’s exception mechanismis needed to help verifyinteger
and floating pointvalues (Chapter7).

Elevatorsim2.py

CONOUVAWN =—

o el ol o e e -
VN hWN=O

##
This program simulates an elevator panel that skips the 13th floor,
checking tor input errors.
#

Obrtain the floor number from the user as an integer.
floor = int(input("Floor: ™))

Make sure the user input is valid.

if floor ==
print("Error: There is no thirteenth floor.")
elif floor <= 0 or floor >

print("Error: The floor must be between 1 and 20.")
else :

Now we know that the input is valid.

actualFloor = floor

Elevator Simulation

 Openthefile:
* elevatorsim2.py

e Testthe programwitha rangeofinputsincluding:
12
e 14
e 13
e -1
e 0
e 23
19

Chapter Three Review

Summary: 1f Statement

 Theif statementallowsaprogramto carry out differentactions
dependingon the nature of the data to be processed.

* Relationaloperators(< <= > >= == |=)areusedtocompare
numbersand Strings.

* Stringsarecomparedin lexicographicorder.

 Multiple if statements can be combined to evaluate complex
decisions.

 Whenusing multiple if statements, test general conditions after
more specificconditions.

Summary: Flowcharts and Testing

e When a decision statementis contained inside the branch of another
decision statement, the statements are nested.

* Nested decisionsarerequiredfor problemsthathave two levels of
decision making.

* Flow chartsare made up of elements for tasks, input/output, and
decisions.

e Each branch ofa decision can contain tasks and further decisions.
* Never pointanarrow inside another branch.

 Eachbranch ofyourprogram shouldbe covered by a test case.

* |tisagoodidea to designtest casesbeforeimplementinga program.

Summary: Boolean

 Thetype boolean hastwo values,true and false.

Python has two Boolean operators thatcombine conditions: and
andor.

To inverta condition, use the not operator.
When checking for equalityusethe ! operator.
The and and or operatorsare computedlazily:

 Assoonasthe truth valueis determined, no further conditions
are evaluated.

De Morgan’slaw tells you how to negate and and or conditions.

