
PART	ONE:	DECISIONS,	RELATIONAL	OPERATORS

Chapter	Three

Chapter	Goals
• To	implement	decisions	using	the	if	statement

• To	compare	integers,	floating-point	numbers,	and	Strings

• To	write	statements	using	the	Boolean	data	type

• To	develop	strategies	for	testing	your	programs

• To	validate	user	input

In	this	chapter,	you	will	learn	how	to	program	simple	and	complex	
decisions.	You	will	apply	what	you	learn	to	the	task	of	checking	

user	input.

4/6/16 2

Contents
• The if Statement

• Relational	Operators

• Nested	Branches

• Multiple	Alternatives

• Problem	Solving:	Flowcharts

• Problem	Solving:	Test	Cases

• Boolean	Variables	and	Operators

• Analyzing	Strings

• Application:		Input	Validation

4/6/16 3

The	if Statement
• A	computer	program	often	needs	to	make	decisions	based	on	input,	or	
circumstances

• For	example,	buildings	often	‘skip’ the	13th floor,	and	elevators	should	
too
• The	14th floor	is	really	the	13th floor
• So	every	floor	above	12	is	really	‘floor	- 1’

• If	floor	>	12,	Actual	floor	=	floor	- 1

• The	two	keywords	of	the	if	statement	are:
• if
• else

The if statement allows a program to
carry out different actions depending on
the nature of the data to be processed.

4/6/16 4

Flowchart	of	the	if Statement
• One	of	the	two	branches	is	executed	once

• True	(if)	branch	 or	 False	(else)	branch

4/6/16 5

Flowchart	with	only	a	True	Branch
• An	if statement	may	not	need	a	‘False’ (else)	branch

4/6/16 6

Syntax	3.1:	The	if Statement

4/6/16 7

Elevatorsim.py

4/6/16 8

Our	First	Example
• Open	the	file:

• elevatorsim.py
• This	is	a	slightly	modified	program	

• Run	the	program
• Try	a	value	that	is	less	that	13

• What	is	the	result?
• Run	the	program	again	with	a	value	that	is	greater	than	13

• What	is	the	result?

• What	happens	if	you	enter	13?

4/6/16 9

Our	First	Example	 (2)
• Revised	Problem	Statement	(1):

• Check	the	input	entered	by	the	user:
• If	the	input	is	13,	set	the	value	to	14	and	print	a	message
• Modify	the	elevatorsimprogram	to	test	the	input

The	relational	operator	for	equal	is	“==“

• Modified	Problem	Statement	(2)
• In	some	countries	the	number	14	is	considered	unlucky.
• What	is	the	revised	algorithm?
• Modify	the	elevatorsimprogram	to	“skip”	both	the	13th and	14th
floor

4/6/16 10

Compound	Statements
• Some	constructs	in	Python	are	compound	statements.

• compound	statements	span	multiple	lines	and	consist	of	a	header and	
a	statement	block

The	if	statement	is	an	example	of	a	compound	statement

• Compound	statements	require	a	colon	“:”	at	the	end	of	the	header.

• The	statement	block	is	a	group	of	one	or	more	statements,	all	indented	
to	the	same	column

• The	statement	block	starts	on	the	line	after	the	header	and	ends	at	
the	first	statement	indented	less	than	the	first	statement	in	the	block

4/6/16 11

Compound	Statements
• Statement	blocks	can	be	nested	inside	other	types	of	blocks	(we	will	
learn	about	more	blocks	later)	

• Statement	blocks	signal	that	one	or	more	statements	are	part	of	a	
given	compound	statement

• In	the	case	of	the	if	construct	the	statement	block	specifies:
• The	instructions	that	are	executed	if	the	condition	is	true
• Or	skipped	if	the	condition	is	false

Statement	blocks	are	visual	cues	that	allow	you	to	follow	the	login	and	
flow	of	a	program

4/6/16 12

Tips	on	Indenting	Blocks
• Let	IDLE	do	the	indenting	for	you…

This	is	referred	to	as	“block	structured”	code.		Indenting	consistently	is	not	
only	syntactically	required	in	Python,	it	also	makes	code	much	easier	to	

follow.

4/6/16 13

A	Common	Error
• Avoid	duplication	in	branches

• If	the	same	code	is	duplicated	in	each	branch	then	move	it	out	of	the	
if statement.

4/6/16 14

The	Conditional	Operator
• A	“shortcut”	you	may	find	in	existing	code

• It	is	not	used	in	this	book
• The	shortcut	notation	canbe	used	anywhere	that	a	value	is	
expected

ConditionTrue branch False branch

Complexity	is	BAD….
This	“shortcut”	is	difficult	to	read	and	a	poor	programming	practice

4/6/16 15

Relational	Operators
• Every	if statement	has	a	condition

• Usually	compares	two	values	with	an	operator

4/6/16 16

if floor > 13 :
..
if floor >= 13 :

..
if floor < 13 :

..
if floor <= 13 :

..
if floor == 13 :

..

Assignment	vs.	Equality	Testing
• Assignment:	makes something	true.

floor = 13

if floor == 13 :

4/6/16 17

• Equality	testing:	checks if	something	is	true.

Comparing	 Strings
• Checking	if	two	strings	are	equal

if name1 == name2 :
print("The strings are identical")

if name1 != name2 :
print("The strings are not identical")

4/6/16 18

• Checking	if	two	strings	are	not	equal

Checking	for	String	Equality	(1)
• For	two	strings	to	be	equal,	they	must	be	of	the	same	length	and	
contain	the	same	sequence	of	characters:

4/6/16 19

Checking	for	String	Equality	(2)
• If	any	character	is	different,	the	two	strings	will	not	be	equal:

4/6/16 20

Relational	Operator	 Examples	 (1)

4/6/16 21

Relational	Operator	 Examples	 (2)

4/6/16 22

Another	Example
• Open	the	file:

• compare.py

• Run	the	program
• What	are	the	results?

4/6/16 23

Common	Error	(Floating	Point)
• Floating-point	numbers	have	only	a	limited	precision,	and	calculations	
can	introduce	roundoff	errors.	

• You	must	take	these	inevitable	roundoffs	into	account	when	
comparing	floating	point	numbers.

4/6/16 24

Common	Error	(Floating	Point,	2)	
• For	example,	the	following	code	multiplies	the	square	root	of	2	by	
itself.	

• Ideally,	we	expect	to	get	the	answer	2:

r = math.sqrt(2.0)
if r * r == 2.0 :

print("sqrt(2.0) squared is 2.0")
else :

print("sqrt(2.0) squared is not 2.0 but", r * r)

Output:
sqrt(2.0) squared is not 2.0 but 2.0000000000000004

4/6/16 25

The	Use	of	EPSILON
• Use	a	very	small	value	to	compare	the	difference	to	determine	if	
floating-point	values	are	‘close	enough’
• The	magnitude	of	their	difference	should	be	less	than	some	
threshold	

• Mathematically,	we	would	write	that	x	and	y	are	close	enough	if:

EPSILON = 1E-14
r = math.sqrt(2.0)
if abs(r * r - 2.0) < EPSILON :

print("sqrt(2.0) squared is approximately 2.0")

4/6/16 26

Lexicographical	Order
• To	compare	Strings	in	‘dictionary’	like	order:

string1	<	string2

• Notes
• All	UPPERCASE	letters	come	before	lowercase
• ‘space’	comes	before	all	other	printable	characters
• Digits	(0-9)	come	before	all	letters
• See	Appendix	A	for	the	Basic	Latin	(ASCII)	Subset	of	Unicode

4/6/16 27

Operator	Precedence
• The	comparison	operators	have	lower	precedence	than	arithmetic	
operators
• Calculations	are	done	before	the	comparison
• Normally	your	calculations	are	on	the	‘right	side’	of	the	comparison	
or	assignment	operator

actualFloor = floor + 1

Calculations

if floor > height + 1 :

4/6/16 28

Implementing	 an	if Statement	(1)

1) Decide	on	a	branching	condition

4/6/16 29

2) Write	pseudocode	for	the	true	branch

3)	 Write	pseudocode	for	the	false	branch

Implementing	 an	if Statement	(2)

4) Double-check	relational	operators
• Test	values	below,	at,	and	above	the	comparison	(127,	128,	129)

5) Remove	duplication

4/6/16 30

6)	 Test	both	branches

Implementing	 an	if Statement	(3)
7.	 Write	the	code	in	Python

4/6/16 31

A	Third	Example
• The	university	bookstore	has	a	Kilobyte	Day	sale	every	October	24	
(10.24),	giving	an	8	percent	discount	on	all	computer	accessory	
purchases	if	the	price	is	less	than	$128,	and	a	16	percent	discount	if	
the	price	is	at	least	$128.

if originalPrice < 128 :
discountRate = 0.92

else :
discountRate = 0.84

discountedPrice = discountRate * originalPrice

4/6/16 32

The	Sale	Example
• Open	the	file:

• sale.py

• Run	the	program	several	time	using	different	values
• Use	values	less	than	128
• Use	values	greater	that	128
• Enter	128

• What	results	do	you	get?

4/6/16 33

Nested	Branches
• You	can	nest	an	if inside	either	branch	of	an	if statement.	
• Simple	example:		Ordering	drinks

• Ask	the	customer	for	their	drink	order
• if customer	orders	wine

• Ask	customer	for	ID
• if customer’s	age	is	21	or	over

• Serve	wine
• Else

• Politely	explain	the	law	to	the	customer
• Else

• Serve	customers	a	non-alcoholic	drink

4/6/16 34

Flowchart	of	a	Nested	 if

• Nested if-else inside	true	branch	of	
an	if statement.	
• Three	paths

Ask	for	order

Wine? Check	 ID

>=	
21?

Serve	wine

Read	 law

True

False True

Done

False
Serve	non-
alcoholic	
drink

4/6/16 35

Tax	Example:	 	nested	ifs
• Four	outcomes	(branches)

4/6/16 36

• Single
• <=	32000
• >	32000

• Married
• <=	64000
• >	64000

Flowchart	for	the	Tax	Example

• Four	branches

4/6/16 37

Taxes.py (1)

4/6/16 38

Taxes.py	(2)
• The	‘True’	branch	(Single)

• Two	branches	within	this	branch

4/6/16 39

Taxes.py (3)
• The	‘False’	branch	(Married)

4/6/16 40

Running	the	Tax	Example
• Open	the	file:

• taxes.py

• Run	the	program	several	time	using	different	values	for	income	and	
marital	status
• Use	income	values	less	than	$32,000
• Use	income	values	greater	than	$64,000
• Enter	“&”	as	the	marital	status

• What	results	do	you	get?

4/6/16 41

Hand-tracing
• Hand-tracing	helps	you	understand	whether	a	program	works	correctly

• Create	a	table	of	key	variables
• Use	pencil	and	paper	to	track	their	values

• Works	with	pseudocode	or	code
• Track	location	with	a	marker	

• Use	example	input	values	that:
• You	know	what	the	correct	outcome	should	be
• Will	test	each	branch	of	your	code

4/6/16 42

Hand-tracing	 the	Tax	Example	

• Setup
• Table	of	variables
• Initial	values

4/6/16 43

Hand-tracing	 the	Tax	Example	 (2)

• Input	variables
• From	user	
• Update	table

• Because	marital	status	is	not	“s”	we	skip	to	the	else	on	line	25	

4/6/16 44

Hand-tracing	 the	Tax	Example	 (3)
• Because	income	is	not	<=	64000,	we	move	to	the	else	clause	on	line	28

• Update	variables	on	lines	29	and	30
• Use	constants

4/6/16 45

Incremental	Code	and	Test
• Using	the	flag	problem	statement	as	an	example:

• Compute	the	data	for	the	first	panel
• Print	out	the	data

• Color
• The	X	and	Y	coordinates	of	the	top	left	corner	of	the	panel
• The	width	of	the	panel
• The	height	of	the	panel

• Check	the	data
• If	the	data	is	correct:

• Draw	the	panel
• Else

• Look	at	your	equations
• Find	and	fix	any	errors
• Check	the	data	again

• Do	the	next	panel

4/6/16 46

Multiple	Alternatives

4/6/16 47

3.4	Multiple	Alternatives
• What	if	you	have	more	than	two	branches?

• Count	the	branches	for	the	following	earthquake	effect	example:
• 8	(or	greater)
• 7	to	7.99
• 6	to	6.99
• 4.5	to	5.99
• Less	than	4.5

When using multiple if statements,
test the general conditions after the
more specific conditions.

4/6/16 48

Flowchart	of	Multiway	Branching

>=	8.0? Most	Structures	Fall
True

False

>=	7.0? Many	Buildings	Destroyed
True

False

>=	6.0? Many	buildings	considerably	damaged,	
some	collapse

True

False

>=	4.5? Damage	 to	poorly	constructed	buildings
True

False

No	destruction	of	buildings

4/6/16 49

elif Statement
• Short	for	Else,	if…

• As	soon	as	one	on	the	test	conditions	succeeds,	the	statement	block	is	
executed
• No	other	tests	are	attempted

• If	none	of	the	test	conditions	succeed	the	final	else	clause	is	executed

4/6/16 50

if, elif Multiway	Branching

4/6/16 51

if richter >= 8.0 : # Handle the ‘special case’ first
print("Most structures fall")

elif richter >= 7.0 :
print("Many buildings destroyed")

elif richter >= 6.0 :
print("Many buildings damaged, some collapse")

elif richter >= 4.5 :
print("Damage to poorly constructed buildings")

else : # so that the ‘general case’ can be handled last
print("No destruction of buildings")

What	is	Wrong	With	This	Code?

if richter >= 8.0 :
print("Most structures fall")

if richter >= 7.0 :
print("Many buildings destroyed")

if richter >= 6.0 :
print("Many buildings damaged, some collapse")

if richter >= 4.5 :
print("Damage to poorly constructed buildings")

4/6/16 52

earthquake	Example
• Open	the	file:

• earthquake.py

• Run	the	program	with	several	different	inputs

4/6/16 53

Using	Flowcharts	to	Develop	
and	Refine	Algorithms

4/6/16 54

3.5	Problem	Solving:	Flowcharts
• You	have	seen	a	few	basic	flowcharts

• A	flowchart	shows	the	structure	of	decisions	and	tasks	to	solve	a	
problem

• Basic	flowchart	elements:

Each	branch	of	a	decision	
can	contain	tasks	and	
further	decisions

4/6/16 55

• Connect	them	with	arrows

• But	never	point	an	arrow	inside	
another	branch!

Using	Flowcharts
• Flowcharts	are	an	excellent	tool	

• They	can	help	you	visualize	the	flow	of	your	algorithm

• Building	the	flowchart
• Link	your	tasks	and	input	/	output	boxes	in	the	sequence	they	need	
to	be	executed

• When	you	need	to	make	a	decision	use	the	diamond	(a	conditional	
statement)	with	two	outcomes	

• Never	point	an	arrow		inside	another	branch

4/6/16 56

Conditional	 Flowcharts
Two	Outcomes Multiple	Outcomes

4/6/16 57

Shipping	Cost	flowchart
Shipping	costs	are	$5	inside	the	contiguous	the	United	States	(Lower	48	
states),	and	$10	to	Hawaii	and	Alaska.	International	shippingcosts	are	
also	$10.

• Three	Branches:

International
Branch

Hawaii/Alaska
Branch

Lower	48
Branch

4/6/16 58

International
Branch

Hawaii/Alaska
Branch

Lower 48
Branch

Don’t	Connect	Branches!
Shipping	costs	are	$5	inside	the	United	States,	except	that	to	Hawaii	and	
Alaska	they	are	$10.	International	shipping	costs	are	also	$10.

• Don’t	do	this!

4/6/16 59

Shipping	Cost	Flowchart
Shipping	costs	are	$5	inside	the	United	States,	except	that	to	Hawaii	and	
Alaska	they	are	$10.	International	shippingcosts	are	also	$10.

4/6/16 60

Shipping	Example
• Open	the	file:

• Shipping.py

• Run	the	program	with	several	different	inputs?
• What	happens	if	you	enter	“usa”	as	the	country?

• We	will	learn	several	ways	to	correct	the	code	later	in	this	
chapter

4/6/16 61

Complex	Decision	Making	 is	Hard
• Computer	systems	are	used	to	help	sort	and	route	luggage	at	airports

• The	systems:
• Scan	the	baggage	tags
• Sorts	the	items
• Routes	the	items	to	conveyor	belts
• Humans	then	place	the	bags	on	trucks

• In	1993	Denver	built	a	new	airport	with	a	“state	of	the	art”		luggage	
system	that	replaced	the	human	operators	with	robotic	carts
• The	system	failed
• The	airport	could	not	open	with	out a	luggage	system
• The	system	was	replaced	(it	took	over	a	year)
• The	cost	was	almost	$1B….	(yes	one	billion…		1994	dollars)
• The	company	that	designed	the	system	went	bankrupt		

4/6/16 62

Building	Test	Cases

4/6/16 63

Problem	Solving:	Test	Cases
• Aim	for	complete	coverage	of	all	decision	points:

• There	are	two	possibilities	for	the	marital	status	and	two	tax	
brackets	for	each	status,	yielding	four	test	cases

• Test	a	handful	of	boundary	conditions,	such	as	an	income	that	is	at	
the	boundary	between	two	tax	brackets,	and	a	zero	income

• If	you	are	responsible	for	error	checking	(which	is	discussed	in	
Section	3.9),	also	test	an	invalid	input,	such	as	a	negative	income

• Each	branch	of	your	code	should	be	covered	with	a	test	case

4/6/16 64

Choosing	Test	Cases
• Choose	input	values	that:

• Test	boundary	cases	and	0	values
• Test	each	branch

4/6/16 65

Make	a	Schedule…
• Make	a	reasonable	estimate	of	the	time	it	will	take	you	to:

• Design	the	algorithm
• Develop	test	cases
• Translate	the	algorithm	to	code	and	enter	the	code
• Test	and	debug	your	program

• Leave	some	extra	time	for	unanticipated	problems

As	you	gain	more	experience	your	estimates	will	become	more	
accurate.		It	is	better	to	have	some	extra	time	than	to	be	late

4/6/16 66

Boolean	Variables	and	
Operators

4/6/16 67

Boolean	Variables
• Boolean	Variables

• A	Boolean	variable	is	often	called	a	flag	because	it	can	be	either	up	
(true)	or	down	(false)

• boolean is	a	Python	data	type
• failed = True

• Boolean	variables	can	be	either	True or	False
• There	are	two	Boolean	Operators:		and, or

• They	are	used	to	combine	multiple	conditions

4/6/16 68

Combined	Conditions:	 	and
• Combining	two	conditions	is	often	used	in	range	checking

• Is	a	value	between	two	other	values?

• Both	sides	of	the	andmust	be	true	for	the	result	to	be	true

if temp > 0 and temp < 100 :
print("Liquid")

4/6/16 69

Combined	Conditions:	 	or
• We	use	or if	only	one	of	two	conditions	need	to	be	true

• Use	a	compound	conditional	with	an	or:

• If	either	condition	is	true
• The	result	is	true

if temp <= 0 or temp >= 100
:
print("Not liquid")

4/6/16 70

The	not operator:	 	not
• If	you	need	to	invert	a	boolean	variable	or	comparison,	precede	it	with	
not

• If	you	are	using	not,	try	to	use	simpler	logic:

if not attending or grade < 60 :
print("Drop?")

if attending and not(grade < 60) :
print("Stay")

if attending and grade >= 60 :
print("Stay")

4/6/16 71

The	not operator:	 inequality	!
• A	slightly	different	operator	is	used	for	the	not when	checking	for	
inequality	rather	than	negation.

• Example	inequality:
• The	password	that	the	user	entered	is	not	equal	to	the	password	on	
file.

• if userPassword != filePassword :

4/6/16 72

and	Flowchart
• This	is	often	called	‘range	checking’

• Used	to	validate	that	the	input	is	
between	two	values

if temp > 0 and temp < 100 :
print("Liquid")

4/6/16 73

or flowchart
• Another	form	of	‘range	checking’

• Checks	if	value	is	outside	a	range

if temp <= 0 or temp >= 100 :
print("Not Liquid")

4/6/16 74

Comparison	Example
• Open	the	file:

• Compare2.py

• Run	the	program	with	several	inputs

4/6/16 75

Boolean	Operator	Examples

4/6/16 76

Common	Errors	with	Boolean	Conditions
Confusing	and and	or Conditions

• It	is	a	surprisingly	common	error	to	confuse	and and	or conditions.	
• A	value	lies	between	0	and	100	if	it	is	at	least	0	and at	most	100.	
• It	lies	outside	that	range	if	it	is	less	than	0	or greater	than	100.	

• There	is	no	golden	rule;	you	just	have	to	think	carefully.

4/6/16 77

Done!

Short-circuit	Evaluation:	 	and
• Combined	conditions	are	evaluated	from	left	to	right

• If	the	left	half	of	an	and condition	is	false,	why	look	further?	

if temp > 0 and temp < 100 :
print("Liquid")

4/6/16 78

Short-circuit	evaluation:	 	or
• If	the	left	half	of	the	or is	true,	why	look	further?

if temp <= 0 or temp >= 100 :
print("Not Liquid")

Done!

4/6/16 79

De	Morgan’s	 law
• De	Morgan’s	law	tells	you	how	to	negate	and and or conditions:

• not(A	and	B)	is	the	same	as	 notA or	notB
• not(A	or	B)	 is	the	same	as	 notA and	notB

• Example:		Shipping	is	higher	to	AK	and	HI

• To	simplify	conditions	with	negations	of	and or or expressions,	it’s	a	
good	idea	to	apply	De	Morgan’s	law	to	move	the	negations	to	the	
innermost	level.

if (country != "USA"
and state != "AK"
and state != "HI") :
shippingCharge = 20.00

if not(country=="USA"
or state=="AK"
or state=="HI") :
shippingCharge = 20.00

4/6/16 80

Analyzing	Strings

4/6/16 81

Analyzing	Strings	– The	in	Operator
• Sometimes	it’s	necessary	to	analyze	or	ask	certain	questions	about	a	
particular	string.
• Sometimes	it	is	necessary	to	determine	if	a	string	contains	a	given	
substring.	That	is,	one	string	contains	an	exact	match	of	another	
string.

• Given	this	code	segment,
name = "John Wayne"

• the	expression
"Way" in name

• yields	True because	the	substring	"Way"	occurs	within	the	string	
stored	in	variable	name.

• The not in operator	is	the	inverse	on	the	in	operator

4/6/16 82

Substring:	Suffixes
• Suppose	you	are	given	the	name	of	a	file	and	need	to	ensure	that	it	
has	the	correct	extension

if filename.endswith(".html") :

print("This is an HTML file.")

• The	endswith() string	method	is	applied	to	the	string	stored	in	
filename	and	returns	True if	the	string	ends	with	the	substring	
".html"	and	False otherwise.

4/6/16 83

Operations	 for	Testing	 Substrings

4/6/16 84

Methods:	Testing	String	Characteristics	 (1)

4/6/16 85

Methods	 for	Testing	 String	Characteristics	 (2)

4/6/16 86

Comparing	 and	Analyzing	 Strings	 (1)

4/6/16 87

Comparing	 and	Analyzing	 Strings	 (2)

4/6/16 88

Substring	Example
• Open	the	file:

• Substrings.ph

• Run	the	program	and	test	several	strings	and	substrings

4/6/16 89

Input	Validation

4/6/16 90

Input	Validation
• Accepting	user	input	is	dangerous

• Consider	the	Elevator	program:
• Assume	that	the	elevator	panel	has	buttons	labeled	1	through	20	
(but	not	13).

4/6/16 91

Input	Validation
• The	following	are	illegal	inputs:

• The	number	13

if floor == 13 :
print("Error: There is no thirteenth floor.")

if floor <= 0 or floor > 20 :
print("Error: The floor must be between 1 and 20.")

4/6/16 92

• Zero	or	a	negative	number
• A	number	larger	than	20

• An	input	that	is	not	a	sequence	of	digits,	such	as	five:
• Python’s	exception	mechanism	is	needed	to	help	verify	integer	
and	floating	point	values	(Chapter	7).

Elevatorsim2.py

4/6/16 93

Elevator	Simulation
• Open	the	file:

• elevatorsim2.py

• Test	the	program	with	a	range	of	inputs	including:
• 12
• 14
• 13
• -1
• 0
• 23
• 19

4/6/16 94

Chapter	Three	Review

4/6/16 95

Summary:	if Statement
• The	if statement	allows	a	program	to	carry	out	different	actions	
depending	on	the	nature	of	the	data	to	be	processed.

• Relational	operators	(< <= > >= == !=)	are	used	to	compare	
numbers	and	Strings.

• Strings	are	compared	in	lexicographic	order.

• Multiple	if statements	can	be	combined	to	evaluate	complex	
decisions.

• When	using	multiple	if statements,	test	general	conditions	after	
more	specific	conditions.

4/6/16 96

Summary:	 Flowcharts	 and	Testing

• When	a	decision	statement	is	contained	inside	the	branch	of	another	
decision	statement,	the	statements	are	nested.

• Nested	decisions	are	required	for	problems	that	have	two	levels	of	
decision	making.

• Flow	charts	are	made	up	of	elements	for	tasks,	input/output,	and	
decisions.

• Each	branch	of	a	decision	can	contain	tasks	and	further	decisions.

• Never	point	an	arrow	inside	another	branch.

• Each	branch	of	your	program	should	be	covered	by	a	test	case.

• It	is	a	good	idea	to	design	test	cases	before	implementing	a	program.

4/6/16 97

Summary:	Boolean
• The	type	boolean has	two	values,	true and	false.

• Python	has	two	Boolean	operators	that	combine	conditions:	and
andor.

• To	invert	a	condition,	use	the	not operator.	
• When	checking	for	equality	use	the	! operator.
• The	and andor operators	are	computed	lazily:	

• As	soon	as	the	truth	value	is	determined,	no	further	conditions	
are	evaluated.

• De	Morgan’s	law	tells	you	how	to	negate	and andor conditions.

4/6/16 98

