
Chapter	6:	Lists

Chapter	Goals
• To	collect	elements	 using	lists

• To	use	the	for loop	for	traversing	 lists

• To	learn	common	algorithms	for	processing	 lists

• To	use	lists	with	functions

• To	work	with	tables	of	data

4/20/16 Page 2

Contents
• Basic	Properties	 of	Lists
• List	Operations
• Common	List	Algorithms
• Using	Lists	with	Functions
• Problem	Solving:	Adapting	Algorithms
• Problem	Solving:	Discovering	Algorithms	by	Manipulating	Physical	
Objects

• Tables

4/20/16 Page 3

Basic	Properties	of	Lists
SECTION	6.1

4/20/16 Page 4

Creating	a	List
• Specify	a	list	variable	with	the	subscript	operator	 []	

4/20/16 Page 5

Accessing	List	Elements
• A	list	is	a	sequence	 of	elements,	each	of	which	has	an	integer	position	
or	index

• To	access	a	list	element,	you	specify	which	index	you	want	to	use.	That	
is	done	with	the	subscript	operator	 in	the	same	way	that	you	access	
individual	characters	 in	a	string

print(values[5]) values[5] = 87

Accessing list
elements

Replacing list
elements

4/20/16 Page 6

Creating	Lists/Accessing	 Elements

1: Creating a list
values = [32, 54, 67.5, 29, 35, 80, 115, 44.5, 100, 65]

2: Accessing a list element
values[5] = 87

4/20/16 Page 7

Lists	Vs.	Strings
• Both	lists	and	strings	are	sequences,	and	the	[]	operator	 is	used	 to	
access	an	element	 in	any	sequence

• There	are	two	differences	 between	 lists	and	strings:	
• Lists	can	hold	values	of	any	type,	whereas	 strings	are	sequences	 of	
characters	

• Moreover:	
• strings	are	immutable— you	cannot	change	the	characters	 in	the	
sequence	

• Lists	are	mutable

4/20/16 Page 8

Out	of	Range	Errors
• Out-of-Range	 Errors:

• Perhaps	 the	most	common	error	 in	using	lists	is	accessing	a	
nonexistent	element

• If	your	program	accesses	 a	list	through	an	out-of-range	 index,	the	
program	will	generate	an	exception	at	run	time

4/20/16 Page 9

values = [2.3, 4.5, 7.2, 1.0, 12.2, 9.0, 15.2, 0.5]
values[8] = 5.4
Error––values has 8 elements,
and the index can range from 0 to 7

Determining	List	Length
• You	can	use	 the	len()	 function	 to	obtain	the	length	of	the	list;	that	is,	
the	number	of	elements:

4/20/16 Page 10

numElements = len(values)

Using	The	Square	Brackets
• Note	that	there	are	two	distinct	uses	of	the	square	brackets.	When	the	
square	brackets	 immediately	follow	a	variable	name,	 they	are	treated	
as	the	subscript	operator:

values[4]

values = [4]

4/20/16 Page 11

• When	the	square	brackets	 follow	an	“=“	they	create	a	list:

Loop	Over	the	Index	Values
• Given	 the	values	list	that	contains	10	elements,	 we	will	want	to	set	a	
variable,	 say	i,	to	0,	1,	2,	and	so	on,	up	to	9

First version (list index used)
for i in range(10) :

print(i, values[i])

Better version (list index used)
for i in range(len(values)) :

print(i, values[i])

Third version: index values not needed (traverse
list elements)
for element in values :

print(element)

4/20/16 Page 12

List	References
• Make	sure	you	see	 the	difference	 between	 the:

• List	variable:	 	The	named	‘alias’	or	pointer	to	the	list
• List	contents:		Memory	where	 the	values	are	stored

4/20/16 Page 13

values = [32, 54, 67.5, 29, 35, 80, 115, 44.5, 100, 65]

A list variable contains a reference to the list
contents. The reference is the location of the
list contents (in memory).

List variable List contents

Reference

Values

List	Aliases
• When	you	copy a	list	variable	 into	another,	both	variables	 refer	 to	the	same	
list
• The	second	variable	 is	an	alias	for	the	first	because	both	variables	
reference	 the	same	list

scores = [10, 9, 7, 4, 5]
values = scores # Copying list reference

A list variable specifies
the location of a list.
Copying the reference
yields a second
reference to the same
list.

References

List contents

4/20/16 Page 14

Modifying	Aliased	Lists
• You	can	modify the	list	through	either	of	the	variables:

scores[3] = 10
print(values[3]) # Prints 10

4/20/16 Page 15

Reverse	Subscripts
• Python,	unlike	other	 languages,	uses	
negative	subscripts	 to	provide	access	
to	the	list	elements	 in	reverse	 order.
• For	example,	a	subscript	of	–1	
provides	access	 to	the	last	element	
in	the	list:

• Similarly,	values[-2]	 is	the	second-
to-last	element.

Just	because	you	can	do	this,	does	not	
mean	you	should…

last = values[-1]
print("The last element in the
list is", last)

4/20/16 Page 16

List	Operations
SECTION	6.2

4/20/16 Page 17

List	Operations
• Appending	Elements

• Inserting	an	Element

• Finding	an	Element

• Removing	an	Element

• Concatenation	

• Equality	/	Inequality	Testing

• Sum,	Maximum,	Minimum,	and	Sorting

• Copying	Lists

4/20/16 Page 18

Appending Elements
• Sometimes	we	may	not	know	the	values	that	will	be	contained	in	the	
list	when	it’s	created	

• In	this	case,	we	can	create	an	empty	list	and	add	elements to	the	end	
as	needed

#1
friends = []

#2
friends.append("Harry")

#3
friends.append("Emily")
friends.append("Bob")
friends.append("Cari")

4/20/16

Page 19

Inserting an	Element
• Sometimes	 the	order	 in	which	elements	 are	added	to	a	list	is	
important
• A	new	element	has	to	be	inserted	at	a	specific	position	 in	the	list

#1
friends = ["Harry",
"Emily", "Bob", "Cari"]

#2
friends.insert(1,
"Cindy")

4/20/16 Page 20

Finding an	Element
• If	you	simply	want	to	know	whether	 an	element	 is	present	 in	a	list,	use	
the	in operator:

if "Cindy" in friends :
print("She's a friend")

friends = ["Harry", "Emily", "Bob", "Cari", "Emily"]
n = friends.index("Emily") # Sets n to 1

4/20/16 Page 21

• Often,	you	want	to	know	the	position	at	which	an	element	 occurs
• The	index() method	yields	the	index	of	the	first	match

Removing an	Element
• The	pop() method	removes	 the	element	at	a	given	position

friends = ["Harry", "Cindy", "Emily", "Bob", "Cari","Bill"]
friends.pop(1)

4/20/16 Page 22

• All	of	the	elements	 following	the	removed	element	are	moved	up	
one	position	to	close	the	gap

• The	length	of	the	list	is	reduced	by	1

Concatenation
• The	concatenation of	two	lists	is	a	new	list	that	contains	the	elements	
of	the	first	list,	followed	by	the	elements	of	the	second

myFriends = ["Fritz", "Cindy"]
yourFriends = ["Lee", "Pat", "Phuong"]

ourFriends = myFriends + yourFriends
Sets ourFriends to ["Fritz", "Cindy", "Lee", "Pat","Phuong"]

4/20/16 Page 23

• Two	lists	can	be	concatenated	by	using	the	plus	(+)	operator:

Replication
• As	with	string	replication of	two	lists	is	a	new	list	that	contains	the	
elements	 of	the	first	list,	followed	by	the	elements	 of	the	second

monthInQuarter = [1, 2, 3] * 4

4/20/16 Page 24

monthlyScores = [0] * 12

• Results	 in	the	list	[1,	2,	3,	1,	2,	3,	1,	2,	3,	1,	2	,3]

• You	can	place	the	integer	on	either	 side	of	the	“*”	operator

• The	integer	 specifies	 how	many	copies	of	the	list	should	be	
concatenated

• One	common	use	of	replication	 is	to	initialize	a	list	with	a	fixed	value

Equality /	Inequality Testing
• You	can	use	 the	== operator	 to	compare	whether	 two	lists	have	the	
same	elements,	 in	the	same	order.

[1, 4, 9] == [1, 4, 9] # True
[1, 4, 9] == [4, 1, 9] # False.

[1, 4, 9] != [4, 9] # True.

4/20/16 Page 25

• The	opposite	of	== is	!=.

Sum,	Maximum,	Minimum
• If	you	have	a	list	of	numbers,	 the	sum()	 function	yields	the	sum	of	all	
values	 in	the	list.

sum([1, 4, 9, 16]) # Yields 30

max([1, 16, 9, 4]) # Yields 16
min("Fred", "Ann", "Sue") # Yields "Ann"

4/20/16 Page 26

• For	a	list	of	numbers	or	strings,	 the	max()	and	min()	functions	 return	
the	largest	and	smallest	value:

Sorting
• The	sort()	method	sorts	a	list	of	numbers	or	strings.

4/20/16 Page 27

values = [1, 16, 9, 4]
values.sort() # Now values is [1, 4 , 9, 16]

Copying	Lists
• As	discussed,	 list	variables	do	not	themselves	 hold	list	elements

• They	hold	a	reference	 to	the	actual	list

• If	you	copy	the	reference,	 you	get	another	 reference	 to	the	same	list:

4/20/16 Page 28

prices = values

Copying	Lists	(2)
• Sometimes,	you	want	to	make	a	copy	of	a	list;	that	is,	a	new	list	that	
has	the	same	elements	 in	the	same	order	as	a	given	list

• Use	 the	list()	function:

4/20/16 Page 29

prices = list(values)

Slices	of	a	List
• Sometimes	you	want	to	look	at	a	part	of	a	list.		Suppose	you	are	given	
a	list	of	temperatures,	 one	per	month:

temperatures = [18, 21, 24, 33, 39, 40, 39, 36, 30, 22, 18]

• You	are	only	interested	 in	the	temperatures	 for	the	third	quarter,	 with	
index	values	6,	7,	and	8

• You	can	use	 the	slice	operator	 to	obtain	them:

thirdQuarter = temperatures[6 : 9]

• The	arguments	are	the	first	element	 to	include,	and	the	first	to	exclude
• So	in	our	example	we	get	elements	 6,	7,	and	8

4/20/16 Page 30

Slices	(2)
• Both	indexes	used	with	the	slice	operator	are	optional

• If	the	first	index	is	omitted,	all	elements	 from	the	first	are	included

• The	slice

temperatures[: 6]

• Includes	all	elements	 up	to,	but	not	including,	position	6

• The	slice	

temperatures[6 :]

• Includes	all	elements	 starting	at	position	6	to	the	end	of	the	list

• You	can	assign	values	to	a	slice:

temperatures[6 : 9] = [45, 44, 40]

• Replaces	 the	values	 in	elements	 6,	7,	and	8

4/20/16 Page 31

Common	List	Functions	And	Operators

4/20/16 Page 32

Common	List	Functions	And	Operators	 (2)

4/20/16 Page 33

Common	List	Methods

4/20/16 Page 34

Common	List	Algorithms
SECTION	6.3

4/20/16 Page 35

Common	List	Algorithms
• Filling	a	List

• Combining	List	Elements

• Element	Separators

• Maximum	and	Minimum

• Linear	Search

• Collecting	and	Counting	Matches

• Removing	Matches

• Swapping	Elements

• Reading	Input

4/20/16 Page 36

Filling a	List
• This	loop	creates	and	fills	a	list	with	squares	 (0,	1,	4,	9,	16,	...)

values = []
for i in range(n) :

values.append(i * i)

4/20/16 Page 37

Combining List	Elements
• Here	 is	how	to	compute	a	sum	of	numbers:

result = 0.0
for element in values :

result = result + element

result = ""
for element in names :

result = result + element

4/20/16 Page 38

• To	concatenate	strings,	you	only	need	to	change	 the	initial	value:

Element	Separators
• When	you	display	the	elements	of	a	list,	you	usually	want	to	separate	
them,	often	with	commas	or	vertical	 lines,	like	this:

Harry, Emily, Bob

4/20/16 Page 39

Element	Separators	(2)
• Add	the	separator	before	each	element	 (there’s	 one	fewer	 separator	
than	there	are	numbers)	 in	the	sequence	 except	the	initial	one	(with	
index	0),	like	this:

4/20/16 Page 40

for i in range(len(names)) :
if i > 0 :

result = result + ", "
result = result + names[i]

Element	Separators	(3)
• If	you	want	to	print	values	without	adding	them	to	a	string:

4/20/16 Page 41

for i in range(len(values)) :
if i > 0 :

print(" | ", end="")
print(values[i], end="")

print()

Maximum	and	Minimum
• Here	 is	the	implementation	of	the	max	algorithm	(already	covered	 in	
Chapter	4,	this	one	is	just	specific	 to	a	list):

4/20/16 Page 42

largest = values[0]
for i in range(1, len(values)) :

if values[i] > largest :
largest = values[i]

smallest = values[0]
for i in range(1, len(values)) :

if values[i] < smallest :
smallest = values[i]

Linear	Search
• Finding	the	first	value	that	is	>	100.	You	need	 to	visit	all	elements	 until	
you	have	found	a	match	or	you	have	come	to	the	end	of	the	list:

4/20/16 Page 43

limit = 100
pos = 0
found = False
while pos < len(values) and not found :

if values[pos] > limit :
found = True

else :
pos = pos + 1

if found :
print("Found at position:", pos)

else :
print("Not found")

A linear search
inspects
elements
in sequence
until a
match is found.

Collecting	and	Counting	Matches
• Collecting	all	matches

4/20/16 Page 44

limit = 100
result = []
for element in values :

if (element > limit) :
result.append(element)

limit = 100
counter = 0
for element in values :

if (element > limit) :
counter = counter + 1

• Counting	matches

Removing	Matches
• Remove	all	elements	 that	match	a	particular	condition

• Example:	remove	all	strings	of	length	<	4	from	a	list

4/20/16 Page 45

i = 0
while i < len(words) :

word = words[i]
if len(word) < 4 :

words.pop(i)
else :

i = i + 1

Swapping	Elements
• For	example,	you	can	sort	a	list	by	repeatedly	 swapping	elements	 that	
are	not	in	order

• Swap	the	elements	 at	positions	i	and	j	of	a	list	values

• We’d	like	to	set	values[i]	 to	values[j].	 But	that	overwrites	 the	value	 that	
is	currently	 stored	in	values[i],	 so	we	want	to	save	 that	first:

4/20/16 Page 46

Before moving a new value into a
location (say blue) copy blue’s value
elsewhere and then move black’s value
into blue. Then move the temporary
value (originally in blue) into black.

Swapping	Elements	(2)
• Swapping	elements	 [1]	and	[3]

• This	sets	up	the	scenario	 for	the	actual	code	that	will	follows

4/20/16 Page 47

Swapping	Elements	(3)
Step 2
temp = values[i]

Step 3
values[i] = values[j]

4/20/16 Page 48

Swapping	Elements	(4)
Step 4
temp contains values[i]
values[j] = temp

4/20/16 Page 49

Reading	Input
• It	is	very	common	to	read	 input	from	a	user	and	store	 it	in	a	list	for	
later	processing.

4/20/16 Page 50

values = []
print("Please enter values, Q to quit:")
userInput = input("")
while userInput.upper() != "Q" :

values.append(float(userInput))
userInput = input("")

Please enter values, Q to quit:
32
29
67.5
Q

Program execution

Example	One
• Open	the	file	largest.py	in	Wing

4/20/16 Page 51

Built-In	Operations	For	Lists
• Use	 the	insert()	method	to	insert	a	new	element	at	any	position	in	a	
list

• The	in	operator	 tests	whether	 an	element	 is	contained	in	a	list

• Use	 the	pop()	method	 to	remove	an	element	 from	any	position	in	a	list

• Use	 the	remove()	method	to	remove	an	element	 from	a	list	by	value

• Two	lists	can	be	concatenated	using	the	plus	(+)	operator

• Use	 the	list()	function	to	copy	lists

4/20/16 Page 52

Built-In	Operations	For	Lists
• Use	 the	slice	operator	(:)	to	extract	a	sublist or	substrings

4/20/16 Page 53

Example	Problems
• Open	the	file	largest.py	in	Wing

• Modify	the	program	to	find	and	print	both	the	largest	and	smallest	
number
• Find	the	largest	number
• Print	the	list

• Print	the	string	"	<==	largest	value“	next	to	the	largest	number
• Find	the	smallest	number
• Print	the	list

• Print	the	string	"	<==	smallest	value“	next	to	the	smallest	number

• Modify	the	program	again
• Find	the	largest	number
• Find	the	smallest	number
• Print	the	list

• Print	the	string	"	<==	largest	value“	next	to	the	largest	number
• Print	the	string	"	<==	smallest	value“	next	to	the	smallest	number

4/20/16 Page 54

Using	Lists	With	Functions
SECTION	6.4

4/20/16 Page 55

Using	Lists	With	Functions
• A	function	can	accept	a	list	as	an	argument

• The	following	function	visits	 the	list	elements,	 but	it	does	not	modify	
them

def sum(values) :
total = 0
for element in values :

total = total + element
return total

4/20/16 Page 56

Modifying	List	Elements
• The	following	function	multiplies	all	elements	of	a	list	by	a	given	
factor:

def multiply(values, factor) :
for i in range(len(values)) :

values[i] = values[i] * factor

4/20/16 Page 57

Example:	Step	1
• The	parameter	 variables	values and	factor are	created

4/20/16 Page 58

Example:	Step	2
• The	parameter	 variables	are	initialized	with	the	arguments	 that	are	
passed	 in	the	call

• In	our	case,	values is	set	to	scores and	factor is	set	to	10
• Note	that	values and	scores are	references	 to	the	same	list

Function call
multiply(scores, 10)

4/20/16 Page 59

Example:	Step	3
• The	function	multiplies	all	list	elements	 by	10

def multiply(values, factor) :
for i in range(len(values)) :

values[i] = values[i] * factor

4/20/16 Page 60

Example:	Step	4
• The	function	 returns.	 Its	parameter	 variables	are	removed

• However,	 scores	still	refers	 to	the	list	with	the	modified	elements

4/20/16 Page 61

Returning	 Lists	From	Functions
• Simply	build	up	the	result	 in	the	function	and	return	 it	

• In	this	example,	 the	squares() function	 returns	a	list	of	squares	 from	02
up	to	(n	– 1)2:

4/20/16 Page 62

def squares(n) :
result = []
for i in range(n) :

result.append(i * i)
return result

Example	One
• Open	the	file	reverse.py

• This	program	reads	values	 from	the	user,	multiplies	 them	by	10,	and	
prints	them	in	reverse	 order

• The	readFloats function	 returns	a	list

• The	multiply	function	has	a	list	argument,	 it	modifies	 the	list	elements

• The	printReversed function	has	a	list	argument,	but	it	does	not	modify	
the	list	elements

4/20/16 Page 63

Call	By:	Value	Vs.	Reference
• Call	by	value:

• When	the	contents	of	a	variable	 that	was	passed	 to	a	function	can	
never	be	changed	by	that	function

• Call	by	reference:
• Function	can	change	the	arguments	of	a	method	call
• A	Python	method	can	mutate	the	contents	of	a	list	when	it	receives	
an	reference	 to

4/20/16 Page 64

Tuples
• A	tuple	is	similar	to	a	list,	but	once	created,	 its	contents	cannot	be	
modified	 (a	tuple	 is	an	immutable	version	of	a	list).

• A	tuple	is	created	by	specifying	 its	contents	as	a	comma-separated	
sequence.	 You	can	enclose	 the	sequence	 in	parentheses:

triple = (5, 10, 15)

triple = 5, 10, 15

4/20/16 Page 65

• If	you	prefer,	 you	can	omit	the	parentheses:

Returning	Multiple	Values
• It	is	common	practice	 in	Python,	however,	 to	use	tuples	to	return	
multiple	values.

4/20/16 Page 66

Function definition
def readDate() :

print("Enter a date:")
month = int(input(" month: "))
day = int(input(" day: "))
year = int(input(" year: "))
return (month, day, year) # Returns a tuple.

Function call: assign entire value to a tuple
date = readDate()

Function call: use tuple assignment:
(month, day, year) = readDate()

Problem	Solving
SECTION	6.5:	ADAPTING	ALGORITHMS

4/20/16 Page 67

Adapting	Algorithms
• Consider	 this	example	problem:	You	are	given	the	quiz	scores	of	a	
student.	You	are	to	compute	the	final	quiz	score,	which	is	the	sum	of	
all	scores	after	dropping	 the	lowest	one
• For	example,	 if	the	scores	are

8				7				8.5				9.5				7					5				10
• then	the	final	score	is	50

4/20/16 Page 68

Adapting	a	Solution
• What	steps	will	we	need?

• Find	the	minimum
• Remove	 it	from	the	list
• Calculate	the	sum

• What	tools	do	we	know?
• Finding	the	minimum	value	(Section	6.3.4)
• Removing	matches	(Section	6.3.7)
• Calculating	the	sum	(Section	6.4)

• But	wait…	We	need	to	find	the	POSITION	of	the	minimum	value,	not	
the	value	itself
• Hmmm.		Time	to	adapt

4/20/16 Page 69

Planning	a	Solution
• Refined	Steps:

• Find	the	minimum	value
• Find	its	position
• Remove	 it	from	the	list
• Calculate	the	sum

• Let’s	try	it
• Find	the	position	of	the	minimum:

• At	position	5

• Remove	 it	from	the	list
• Calculate	the	sum

4/20/16 Page 70

Adapting	 the	code
• Adapt	smallest	value	to	smallest	position:

smallestPosition = 0
for i in range(1, len(values)) :

if values[i] < values[smallestPosition] :
smallestPosition = i

smallest = values[0]
for i in range(1, len(values)) :

if values[i] < smallest :
smallest = values[i]

Original algorithm

Adapted algorithm

4/20/16 Page 71

Working	Out	an	Example
Problem	Statement:	 	The	 final	quiz	score	for	a	student	 is	computed	by	
adding	up	all	of	the	scores	except	the	lowest	two

For	example,	 if	the	scores	are:	8,	4,	7,	9,	9,	7,	5,	10

The	final	score	is	50

We	are	going	develop	 the	algorithm	and	write	a	program	to	compute	the	
final	score

4/20/16 Page 72

Step	One
• We	want	to	start	with	a	high	level	decomposition	 of	the	problem:

• Read	the	data	into	a	list
• Process	 the	data
• Display	the	results

• We	will	refer	back	to	the	algorithms	and	list	operations	 to	help	guide	
our	design.		Most	of	the	tasks	associated	with	this	problem	can	be	
solved	by	using	or	adapting	one	or	more	of	the	algorithms

• Our	next	step	in	the	stepwise	 refine	 is	to	identify	the	step	we	need	 to	
process	 the	data:
1. Read	inputs
2. Remove	 the	minimum
3. Remove	 the	minimum	again
4. Calculate	the	sum

4/20/16 Page 73

Step	Two
• Now	we	start	to	determine	 the	algorithms	we	need

• We	have	working	algorithms	 for	reading	the	inputs,	and	calculating	the	
sum

• To	remove	 the	minimum	value	we	can	find	the	minimum	(we	have	an	
algorithm	for	that)	and	remove	 it.		
• It	is	a	bit	more	efficient	 to	find	the	position	of	the	minimum	value	
and	“pop”	that	position

4/20/16 Page 74

Step	Three
• Plan	the	functions	we	need	

• We	can	compute	the	sum	with	the	existing	sum	function
• We	need	a	function	 to	read	the	floating	point	numbers;	readFloats()
• We	need	a	function	 to	remove	 the	minimum;	removeMinimum()	 	
(we	will	call	this	twice)

• Our	main	function	can	be	structured	as:
scores = readFloats()
removeMinimum(scores)
removeMinimum(scores)
total = sum(scores)
print(“Final Score : “, total)

4/20/16 Page 75

Step	Four
• Assemble	 and	test	your	code

• Review	your	code	and	make	sure	you	handle	the	“normal”	and	
“exceptional”	cases.
• How	do	you	handle	an	empty	list?
• A	list	with	a	single	element?
• What	if	you	don’t	find	a	smallest	number?

• Remember	 in	our	problem	statement	we	are	dropping	two	grades

• It	is	not	possible	 to	compute	a	minimum	if	the	list	is	empty	or	has	a	
single	element
• In	that	case	we	should	terminate	 the	program	with	an	error	
message	before attempting	to	call	the	remove	minimum	function

• Develop	your	test	cases,	and	the	expected	outputs

4/20/16 Page 76

Testing
• Develop	your	test	cases,	and	the	expected	outputs

4/20/16 Page 77

Test	Case Expected Output Comment

8	4	7	8.5	9.5 7	5	10 50 Example	 case

8	7	7	7	9 24 Make	sure	only	two	
instances	 of	the	low	score	
are	removed

8	7 0 After	removing	the	two	low	
scores,	none	remain

(no	inputs) Error That	is	not	a	legal	 input

scores.py
• Open	the	file	scores.py	 in	Wing

4/20/16 Page 78

A	Second	Example
Problem	Statement:	 	Our	task	is	to	analyze	whether	 a	die	is	fair	by	
counting	how	often	each	value	(1,	2,	3,	4,	5,	6)	appears

Our	input	will	be	a	series	 of	die	toss	values

For	example,	 if	the	scores	are:	1,	2,	1,	3,	4,	6,	5,	6

The	result	 is	1:	2;	2:	1;	3:	1;	4:	1;	5:	1;	6:	2

We	are	going	develop	 the	algorithm	and	write	a	program	to	compute	
and	print	the	frequency	 of	each	die	value

4/20/16 Page 79

Step	One
• We	want	to	start	with	a	high	level	decomposition	 of	the	problem:

• Read	the	die	values
• Count	how	often	 the	values	 (1,	2,	…,	6)	appear
• Print	the	counts

• If	we	think	about	this	we	can	simplify;	do	we	need	 to	store	the	values?	 	
• We	are	only	counting	the	number	of	times	each	die	toss	occurs.	 	If	
we	create	a	list	of	counter	we	can	read	and	then	discard	the	inputs

• Our	next	step	in	the	stepwise	 refine	 is	to	identify	the	steps	we	need	to	
process	 the	data:
1. Read	input
2. For	each	input	value:
1. Increment	 the	corresponding	 counter

3. Print	the	counters

4/20/16 Page 80

Step	Two
• Determine	 the	algorithms	we	need:

• We	don’t	have	an	algorithm	for	reading	 inputs	and	incrementing	a	
counter	(yet)	but	it	is	easy	to	build	one
• If	we	have	a	list	of	length	6	we	can	simply

counters[value – 1] = counters[value – 1] + 1

• To	make	it	easier	was	can	can	not	use	 the	[0]	position	and	have

counters[value] = counters[value] + 1

• So,	if	we	define	counters	=	[0]	*	(sides	+	1)

• Now	we	can	focus	on	printing	the	counters

• We	can	use	a	count	controlled	loop	and	a	format	string	to	print	the	
results

4/20/16 Page 81

Step	Three
• Plan	the	Functions	we	need:

• countInputs(sides)	 													#	will	count	the	 inputs
• printCounters(counters)	 			#	will	print	the	counters

• The	main	function	calls	these	 functions:

counters = countInputs(6)
printCounters(counters)

4/20/16 Page 82

Step	Four
• Assemble	 and	test	your	program:

• When	updating	a	counter	we	have	to	make	sure	we	do	not	generate	
an	boundary	error;	we	have	to	reject	 inputs	<	1	and	>	6

4/20/16 Page 83

Test	Case Expected Output Comment

1	2	3	4	5	6 1	1	1	1	1	1	 Each	number	occurs	once

1	2	3 1	1	1	0	0	0 Numbers	that	do	not	appear	
have	a	count	of	“0”

1	2	3	1	2	3	4 2	2	2	1	0	0 The	counters	must	be	correct

No	input 0	0	0	0	0	0 All	counters	are	“0”

0	1	2	3	4	5	6	7 ERROR Inputs	out	of	bounds

dice.py
• Open	the	file	dice.py

4/20/16 Page 84

Discovering	Algorithms	by
Manipulating	Physical	Objects
SECTION	6.6

4/20/16 Page 85

Discovering	Algorithms
• Consider	 this	example	problem:	

• You	are	given	a	list	whose	size	is	an	even	number,	 and	you	are	to	
switch	the	first	and	the	second	half

• For	example,	 if	the	list	contains	the	eight	numbers:

• Rearrange	 it	to:

4/20/16 Page 86

Manipulating	Objects
• One	useful	 technique	 for	discovering	 an	algorithm	is	to	manipulate	physical	
objects

• Start	by	lining	up	some	objects	 to	denote	an	array	
• Coins,	playing	cards,	or	small	toys	are	good	choices

• Visualize	removing	one	object

4/20/16 Page 87

Manipulating	Objects
• Visualize	inserting	one	object

• How	about	swapping	two	coins?

4/20/16 Page 88

Manipulating	Objects
• Back	to	our	original	problem.	Which	tool(s)	 to	use?

• How	about	swapping	two	coins?		Four	times?

4/20/16 Page 89

Develop	an	Algorithm

• How	can	j be	set	 to	handle	any	number	of	items?
• …	if	size	is	8,	j is	index	4…

• And	when	do	we	stop	our	loop?...

i j

(size	/	2)
Also	(size	/	2)

4/20/16 Page 90

• Pick	two	locations	(indexes)	 for	the	first	swap	and	start	a	loop

swaphalves.py
• Open	the	file	swaphalves.py

4/20/16 Page 91

Tables
SECTION	6.7

4/20/16 Page 92

Tables
• Lists	can	be	used	to	store	data	in	two	dimensions	 (2D)	like	a	
spreadsheet
• Rows	and	Columns
• Also	known	as	a	‘matrix’

4/20/16 Page 93

Creating	Tables
• Here	 is	the	code	for	creating	a	table	that	contains	8	rows	and	3	
columns,	which	is	suitable	 for	holding	our	medal	count	data:

4/20/16 Page 94

Creating	Tables	(2)
• This	creates	a	list	in	which	each	element	 is	itself	another	 list:

4/20/16 Page 95

Creating	Tables	(3)
• Sometimes,	you	may	need	 to	create	a	table	with	a	size	that	is	too	large	
to	initialize	with	literal	values

• First,	create	a	list	that	will	be	used	to	store	the	individual	 rows

table = []

4/20/16 Page 96

Creating	Tables	(4)
• Then	create	a	new	list	using	replication	(with	the	number	of	columns	
as	the	size)	 for	each	row	in	the	table	and	append	 it	to	the	list	of	rows:

ROWS = 5
COLUMNS = 20
for i in range(ROWS) :

row = [0] * COLUMNS
table.append(row)

4/20/16 Page 97

• The	result	 is	a	table	that	consists	of	5	rows	and	20	columns

Accessing	Elements
• Use	 two	index	values:

• Row	then	column

4/20/16 Page 98

for i in range(COUNTRIES):
Process the ith row
for j in range(MEDALS) :

Process the jth column in the ith row
print("%8d" % counts[i][j], end="")

print() # Start a new line at the end of the row

medalCount = counts[3][1]

• To	print
• Use	nested	 for	loops
• Outer	row(i)	 ,	inner	column(j)	 :

Locating	Neighboring	Elements
• Some	programs	that	work	with	two-dimensional	 lists	need	 to	locate	
the	elements	 that	are	adjacent	 to	an	element	

• This	task	is	particularly	common	in	games

• You	are	at	loc i,	j

• Watch	out	for	edges!
• No	negative	 indexes!
• Not	off	the	‘board’

4/20/16 Page 99

Adding	Rows	and	Columns
• Rows	(x) Columns	 (y)

total = 0
for j in range(MEDALS):

total = total + counts[i][j]

total = 0
for i in range(MEDALS):

total = total + counts[i][j]

4/20/16 Page 100

Using	Tables	With	Functions
• When	you	pass	a	table	to	a	function,	you	will	want	to	recover	 the	
dimensions	of	the	table.	If	values is	a	table,	 then:

len(values) is the number of rows

len(values[0]) is the number of columns

• For	example,	 the	following	function	computes	 the	sum	of	all	elements	
in	a	table:

def sum(values) :
total = 0
for i in range(len(values)) :

for j in range(len(values[0])) :
total = total + values[i][j]

return total

4/20/16 Page 101

Example
• Open	the	file	medals.py

4/20/16 Page 102

Summary

4/20/16 Page 103

Summary:		Lists
• A	list	is	a	container	that	stores	a	sequence	 of	values

• Each	individual	element	 in	a	list	is	accessed	by	an	integer	 index	i,	using	
the	notation	list[i]

• A	list	index	must	be	at	least	zero	and	less	than	the	number	of	elements	
in	the	list

• An	out-of-range	 error,	which	occurs	if	you	supply	an	invalid	list	index,	
can	cause	your	program	to	terminate

• You	can	iterate	over	the	index	values	or	the	elements	 of	a	list

4/20/16 Page 104

Summary:		Lists
• A	list	reference	 specifies	 the	location	of	a	list.	Copying	the	reference	
yields	a	second	reference	 to	the	same	list

• A	linear	 search	inspects	elements	 in	sequence	 until	a	match	is	found

• Use	a	temporary	variable	when	swapping	elements

• Lists	can	occur	as	function	parameters	and	return	values

4/20/16 Page 105

Summary:	Lists
• When	calling	a	function	with	a	list	argument,	 the	function	 receives	 a	
list	reference,	 not	a	copy	of	the	list

• A	tuple	is	created	as	a	comma-separated	 sequence	 enclosed	 in	
parentheses

• By	combining	fundamental	algorithms,	you	can	solve	complex	
programming	tasks

• You	should	be	familiar	with	the	implementation	 of	fundamental	
algorithms	so	that	you	can	adapt	them

• Discover	algorithms	by	manipulating	physical	objects

4/20/16 Page 106

Summary:	Lists
• Use	a	two-dimensional	 list	to	store	tabular	data

• Individual	elements	 in	a	two-dimensional	 list	are	accessed	 by	using	
two	index	values,	table[i][j]

4/20/16 Page 107

Built-In	Operations	For	Lists
• Use	 the	insert() method	to	insert	a	new	element	at	any	position	in	
a	list

• The	in operator	 tests	whether	 an	element	 is	contained	in	a	list

• Use	 the	pop() method	to	remove	an	element	 from	any	position	in	a	
list

• Use	 the	remove() method	to	remove	an	element	 from	a	list	by	value

• Two	lists	can	be	concatenated	using	the	plus	(+)	operator

• Use	 the	list() function	to	copy	lists

4/20/16 Page 108

Built-In	Operations	For	Lists
• Use	 the	slice	operator	(:)	to	extract	a	sublist or	substrings

4/20/16 Page 109

