
Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Recursion
10.1 Introduction to Recursion 330

10.2 Examples of Recursion 336

10.3 Run Time Analysis 347

10.4 Searching 354

Case Study: Tower of Hanoi 359

Chapter Summary 360

Solutions to Practice Problems 360

Exercises 362

Problems 363

IN THIS CHAPTER , we learn about recursion, a powerful problem-solving
technique, and run time analysis.

Recursion is a problem-solving technique that expresses the solution
to a problem in terms of solutions to subproblems of the original problem.
Recursion can be used to solve problems that might otherwise be quite
challenging. The functions developed by solving a problem recursively will
naturally call themselves, and we refer to them as recursive functions. We
also show how namespaces and the program stack support the execution
of recursive functions.

We demonstrate the wide use of recursion in number patterns,
fractals, virus scanners, and searching. We differentiate between linear
and nonlinear recursion and illustrate the close relationship between
iteration and linear recursion.

As we discuss when recursion should and should not be used, the
issue of program run time comes up. So far we have not worried much
about the efficiency of our programs. We now rectify this situation and use
the opportunity to analyze several fundamental search tasks. We develop
a tool that can be used to analyze experimentally the running time of
functions with respect to the size of the input.

CHAPTER

10

329

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

330 Chapter 10 Recursion

Module: ch10.py

10.1 Introduction to Recursion
A recursive function is a function that calls itself. In this section we explain what this means
and how recursive functions get executed. We also introduce recursive thinking as an ap
proach to problem solving. In the next section, we apply recursive thinking and how to
develop recursive functions.

Functions that Call Themselves
Here is an example that illustrates what we mean by a function that calls itself:

def countdown(n):
2 print(n)
3 countdown(n-1)

In the implementation of function countdown (), the function countdown () is called. So,
function countdown () calls itself. When a function calls itself, we say that it makes a
recursive call.

Let's understand the behavior of this function by tracing the execution of function call
countdown(3):

• When we execute countdown (3), the input 3 is printed and then countdown() is
called on the input decremented by 1-that is, 3 - 1 = 2. We have 3 printed on the
screen, and we continue tracing the execution of countdown (2).

• When we execute countdown(2), the input 2 is printed and then countdown() is
called on the input decremented by 1-that is, 2 - 1 = 1. We now have 3 and 2 printed
on the screen, and we continue tracing the execution of countdown (1).

• When we execute countdown (1), the input 1 is printed and then countdown() is
called on the input decremented by 1-that is, 1 - 1 = 0. We now have 3, 2, and 1
printed on the screen, and we continue tracing the execution of countdown (0).

• When we execute countdown(O), the input O is printed and then countdown() is
called on the input, 0, decremented by 1-thatis, 0-1 = -1. We now have 3, 2, 1, and
0 printed on the screen, and we continue tracing the execution of countdown (-1).

• When we execute countdown(-1), ...

It seems that the execution will never end. Let's check:

>>> countdown(3)
3
2

1
0
-1

-2
-3

The behavior of the function is to count down, starting with the original input number. If
we let the function call countdown (3) execute for a while, we get:

1187313 2015/06/18 78.174.124.130

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

-973
-974
Traceback (most recent call last):

File "<pyshell#2>" , line 1, in <module>
countdown(3)

File "/Users/me/ch10.py" ...
countdown(n-1)

And after getting many lines of error messages, we end up with:

RuntimeError: maximum recursion depth exceeded

Section 10.1 Introduction to Recursion 331

OK, so the execution was going to go on forever, but the Python interpreter stopped it. We
will explain why the Python VM does this soon. The main point to understand right now is
that a recursive function will call itself forever unless we modify the function so there is a
stopping condition.

Stopping Condition
To show this, suppose that the behavior we wanted to achieve with the countdown () func
tion is really:

or

>>> countdown(3)
3
2
1
Blastoff!!!

>>> countdown(O)
Blastoff!!!

Function countdown () is supposed to count down to 0, starting from a given input n; when
0 is reached, Blastoff! ! ! should be printed.

To implement this version of countdown (), we consider two cases that depend on
the value of the input n. When the input n is O or negative, all we need to do is print
'Blastoff!!!':

def countdown(n):
'counts down to 0'
if n <= 0:

print('Blastoff!!! ')
else:
remainder of function

base case

We call this case the base case of the recursion; it is the condition that will ensure that the
recursive function is not going to call itself forever.

The second case is when the input n is positive. In that case we do the same thing we
did before:

print(n)
countdown(n-1)

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

332 Chapter 1 O Recursion

Module: ch1 O.py

How does this code implement the function countdown () for input value n > 0? The
insight used in the code is this: Counting down from (positive number) n can be done by
printing n first and then counting down from n - l. This fragment of code is called the
recursive step.

With the two cases resolved, we obtain the recursive function:

def countdown(n):
'counts down from n to 0'

if n <= 0:
print('Blastoff!!! ')

else:

base case

n > 0: recursive

print n first

step

and then print(n)
countdown(n-1) # count down from n-1 to

recursively

Properties of Recursive Functions
A recursive function that terminates will always have:

0

1. One or more base cases, which provide the stopping condition for the recursion. In
function countdown (), the base case is the condition n S: 0, where n is the input.

2. One or more recursive calls, which must be on arguments that are "closer" to the
base case than the function input. In function countdown (), the sole recursive call
is made on n - l, which is "closer" to the base case than input n.

What is meant by "closer" depends on the problem solved by the recursive function. The
idea is that each recursive call should be made on problem inputs that are closer to the base
case; this will ensure that the recursive calls eventually will get to the base case that will
stop the execution.

In the remainder of this section and the next, we present many more examples of recur
sion. The goal is to learn how to develop recursive functions. To do this, we need to learn
how to think recursively-that is, to describe the solution to a problem in terms of solutions
of its subproblems. Why do we need to bother? After all, function countdown () could have
been implemented easily using iteration. (Do it!) The thing is that recursive functions pro
vide us with an approach that is an alternative to the iterative approach we used in Chapter 5.
For some problems, this alternative approach actually is the easier, and sometimes, much
easier approach. When you start writing programs that search the Web, for example, you
will appreciate having mastered recursion.

Recursive Thinking
We use recursive thinking to develop recursive function vertical() that takes a nonneg
ative integer as input and prints its digits stacked vertically. For example:

>>> vertical(3124)
3
1
2

4

To develop vertical () as a recursive function, the first thing we need to do is decide the
base case of the recursion. This is typically done by answering the question: When is the

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Section 10.1 Introduction to Recursion 333

problem of printing vertically easy? For what kind of nonnegative number?

The problem is certainly easy if the input n has only one digit. In that case, we just
output n itself:

»> vertical(6)
6

So we make the decision that the base case is when n < 10. Let's start the implementation
of the function vertical O:

def vertical(n):
'prints digits of n vertically'

if n < 10: # base case: n has 1 digit
print(n)

else:
just print n

recursive step: n has 2 or more digits

remainder of function

Function vertical() prints n if n is less than 10 (i.e., n is a single digit number).

Now that we have a base case done, we consider the case when the input n has two or
more digits. In that case, we would like to break up the problem of printing vertically number
n into "easier" subproblems, involving the vertical printing of numbers "smaller" than n.
In this problem, "smaller'' should get us closer to the base case, a single-digit number. This
suggests that our recursive call should be on a number that has fewer digits than n.

This insight leads to the following algorithm: Since n has at least two digits, we break
the problem:

a. Print vertically the number obtained by removing the last digit of n; this number
is "smaller" because it has one less digit. For n = 3124, this would mean calling
function vertical() on 312.

b. Print the last digit. For n = 3124, this would mean printing 4.

The last thing to figure out is the math formulas for (1) the last digit of n and (2) the number
obtained by removing the last digit. The last digit is obtained using the modulus (%) operator:

»> n = 3124
»> n%10
4

We can "remove" the last digit of n using the integer division operator (/ /):

»> n//10
312

With all the pieces we have come up with, we can write the recursive function:

def vertical(n):
'prints digits

if n < 10:
of n vertically'

print(n)
else:

vertical(n//10)

base case: n has 1 digit

just print n

recursive step: n has 2 or more digits

recursively print all but last digit

Module: ch10.py

1187313 2015/06/18 78.174.124.130

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

334 Chapter 10 Recursion

Practice Problem
10.1

Practice Problem
10.2

Practice Problem
10.3

Implement recursive method reverse () that takes a nonnegative integer as input and prints
its digits vertically, starting with the low-order digit.

>>> reverse(3124)
4
2
1
3

Let's summarize the process of solving a problem recursively:
1. First decide on the base case or cases of the problem that can be solved directly,

without recursion.

2. Figure out how to break the problem into one or more subproblems that are closer
to the base case; the subproblems are to be solved recursively. The solutions to the
subproblems are used to construct the solution to the original problem.

Use recursive thinking to implement recursive function cheers () that, on integer input n,
outputs n strings 'Hip ' followed by 'Hurray! ! ! '

»> cheers(O)
Hurray!!!
»> cheers(1)
Hip Hurray! ! !
>» cheers(4)
Hip Hip Hip Hip Hurray!!!

The base case of the recursion should be when n is O; your function should then print
Hurrah. When n > l, your function should print 'Hip ' and then recursively call itself on
integer input n - 1.

In Chapter 5, we implemented function factorial() iteratively. The factorial function n!
has a natural recursive definition:

n! 1 if n = 0
n·(n-1)! ifn>O

Reimplement function factorial() function using recursion. Also, estimate how many
calls to factorial() are made for some input value n > 0.

Recursive Function Calls and the Program Stack
Before we practice solving problems using recursion, we take a step back and take a closer
look at what happens when a recursive function gets executed. Doing so should help us
recognize that recursion does work.

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Section 10.1 Introduction to Recursion 335

We consider what happens when function vertical() is executed on input n = 3124.
In Chapter 7, we saw how namespaces and the program stack support function calls and the
normal execution control flow of a program. Figure 10.1 illustrates the sequence of recursive
function calls, the associated namespaces, and the state of the program stack during the
execution of vertical (3124).

def vertical(n):
'prints digits

if n < 10:
of n vertically'

base case: n has 1 digit

print(n) # just print n

else:
vertical(n//10)
print(n%10)

recursive step: n has 2 or more digits

recursively print all but last digit

print last digit of n

The difference between the execution shown in Figure 10.1 and Figure 7 .5 in Chapter 7 is
that in Figure 10.1, the same function gets called: function vertical() calls vertical(),
which calls vertical(), which calls vertical(). In Figure 7.5, function f () calls g(),
which calls h (). Figure 10.1 thus underlines that a namespace is associated with every
function call rather than with the function itself.

I I

1 Execution of 1 Execution of Execution of Execution of
I I

1 vertical (3124) 1 vertical (312) vertical(31) vertical(3)
I I

I

vertical(3124)

n = 3124
vertical(312)

n = 312
vertical (31)

n = 31
vertical(3)

line 7
print(2)

n = 31

line 7 line 7
print(4)

n = 312 n = 312

line? line? line 7

n = 3124 n = 3124 n = 3124

Program stack Program stack Program stack

Module: ch10.py

Figure 10.1 Recursive
function execution.
vertical (3124) executes
in a namespace in which
n is 3124. Just before call
vertical (312) is made,
values in the namespace
(3124) and the next line to
execute (line 7) are stored
in the program stack. Then
vertical (312) executes
in a new namespace in
which n is 312. Stack
frames are similarly added
just before recursive calls
vertical(31) and
vertical (3). Call
vertical (3) executes in a
new namespace in which n
is 3 and 3 is printed. When
vertical (3) terminates,
the namespace of
vertical(31) is restored:
n is 31, and the statement in
line 7, print(n%10), prints
1. Similarly, namespaces of
vertical (312) and
vertical (3124) are
restored as well.

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

336 Chapter 10 Recursion

Figure 10.2 Output of
pattern (3). The output of

10.2 Examples of Recursion
In the previous section, we introduced recursion and how to solve problems using recursive
thinking. The problems we used did not really showcase the power of recursion: Each prob
lem could have been solved as easily using iteration. In this section, we consider problems
that are far easier to solve with recursion.

Recursive Number Sequence Pattern

We start by implementing function pattern() that takes a nonnegative integer n and prints
a number pattern:

»> pattern(O)
0
»> pattern(1)
0 1 0
»> pattern(2)
0 1 0 2 0 1 0
»> pattern(3)
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0
»> pattern(4)
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

How do we even know that this problem should be solved recursively? A priori, we do not,
and we need to just try it and see whether it works. Let's first identify the base case. Based
on the examples shown, we can decide that the base case is input O for which the function
pattern () should just print 0. We start the implementation of the function:

def pattern(n):
'prints the nth pattern'
if n == 0:

print(O)
else:

remainder of function

We now need to describe what the function pattern() does for positive input n. Let's
look at the output of pattern(3), for example

»> pattern(3)
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

and compare it to the output of pattern(2)

»> pattern(2)
0 1 0 2 0 1 0

As Figure 10.2 illustrates, the output ofpattern(2) appears in the output of pattern(3),
not once but twice:

pattern(3) 10102010 1 3 10102010 1

pattern(2) pattern(2)

1187313 2015/06/18 78.174.124.130

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Section 10.2 Examples of Recursion 337

It seems that the correct output of pattern (3) can be obtained by calling the func
tion pattern(2), then printing 3, and then calling pattern(2) again. In Figure 10.3, we
illustrate the similar behavior for the outputs of pattern (2) and pattern (1):

pattern(2) 1010 1 2 1010 1

pattern(!) pattern(!)

pattern(!) @] 1 @]
pattern(0) pattern(0)

In general, the output for pattern(n) is obtained by executing pattern(n-1), then
printing the value of n, and then executing pattern(n-1) again:

..• # base case of function

else
pattern(n-1)
print(n)
pattern(n-1)

Let's try the function as implemented so far:

>» pattern(!)
0
1
0

Almost done. In order to get the output in one line, we need to remain in the same line after
each print statement. So the final solution is:

def pattern(n):
'prints the nth pattern'

if n == 0: # base case

print(0, end= ' ')
else: # recursive step: n > 0

pattern(n-1) # print n-lst pattern

print(n, end= ' I) # print n

pattern(n-1) # print n-lst pattern

Implement recursive method pattern2 () that takes a nonnegative integer as input and
prints the pattern shown next. The patterns for inputs O and 1 are nothing and one star,
respectively:

»> pattern2(0)
»> pattern2 (1)

*

The patterns for inputs 2 and 3 are shown next.

Figure 10.3 Outputs of
pattern(2) and
pattern(!). The output
of pattern(2) can be
obtained from the output of
pattern(!). The output
of pattern(!) can be
obtained from the output
of pattern(O).

Module: ch10.py

Practice Problem
10.4

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

338 Chapter 10 Recursion

Figure 10.4 Koch curve
Ks. A fractal curve often
resembles a snowflake.

Figure 10.5 Koch curves
with drawing instructions.
On the left, from top to
bottom, are Koch curves
Ko, K1, K2, and K3. The
drawing instructions for
Koch curves Ko, K1, and
K2 are shown as well. The
instructions are encoded
using letters F, L, and R
corresponding to "move
forward," "rotate left 60
degrees," and "rotate right
120 degrees."

>>> pattern2(2)

*
**
*
>>> pattern2(3)

*
**
*

*
**
*

Fractals
In our next example of recursion, we will also print a pattern, but this time it will be a
graphical pattern drawn by a Turtle graphics object. For every nonnegative integer n, the
printed pattern will be a curve called the Koch curve Kn. For example, Figure 10.4 shows
Koch curve K 5 •

We will use recursion to draw Koch curves such as K 5 • To develop the function that is
used to draw this and other Koch curves, we look at the first few Koch curves. Koch curves
Ko, K 1 , K 2 , and K 3 are shown on the left of Figure 10.5.

If you look carefully at the patterns, you might notice that each Koch curve Ki, for i > 0,
contains within itself several copies of Koch curve Ki-l · For example, curve K 2 contains
four copies of (smaller versions of) curve K 1 .

Koch curve turtle instructions

Ko: F

K1:
/

FLFRFLF

K2: ~ FLFRFLFLFLFRFLFRFLFRFLFLFLFRFLF

K ~

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Section 10.2 Examples of Recursion 339

More precisely, to draw Koch curve K 2 , a Turtle object should follow these instruc-
tions:

1. Draw Koch curve K 1.

2. Rotate left 60 degrees.

3. Draw Koch curve K 1 ·

4. Rotate right 120 degrees.

5. Draw Koch curve K 1.

6. Rotate left 60 degrees.

7. Draw Koch curve K 1.

Note that these instructions are described recursively. This suggests that what we need to
do is develop a recursive function koch (n) that takes as input a nonnegative integer n and
returns instructions that a Turtle object can use to draw Koch curve Kn, The instructions
can be encoded as a string of letters F, L, and R corresponding to instructions "move for
ward," "rotate left 60 degrees," and "rotate right 120 degrees," respectively. For example,
instructions for drawing Koch curves Ko, K 1 , and K 2 are shown on the right of Figure 10.5.
The function koch() should have this behavior:

>» koch(O)

'F'
»> koch(1)
'FLFRFLF'
»> koch(2)

'FLFRFLFLFLFRFLFRFLFRFLFLFLFRFLF'

Now let's use the insight we developed about drawing curve K 2 in terms of drawing K 1

to understand how the instructions to draw K 2 (computed by function call koch (2)) are ob
tained using instructions to draw K 1 (computed by function call koch(1)). As Figure 10.6
illustrates, the instructions for curve K 1 appear in the instructions of curve K 2 four times:

koch(2) IFLFRFLFI L IFLFRFLFI R IFLFRFLFI L IFLFRFLFI

koch(1) koch(1) koch(1) koch(1)

Similarly, the instructions to draw K 1 , output by ko ch (1) , contain the instructions to
draw Ko, output by koch(O), as shown in Figure 10.7:

koch(1) IT] L IT] R IT] L IT]
koch(O) koch(O) koch(O) koch(O)

Now we can implement function koch () recursively. The base case corresponds to input
0. In that case, the function should just return instruction ' F' :

def koch(n):
if n == 0:

return 'F'
remainder of function

Figure 10.6 Output of
Koch(2). Koch(1) can be
used to construct the output
ofKoch(2).

Figure 10.7 Output of
Koch(1). Koch(O) can be
used to construct the output
ofKoch(1).

1187313 2015/06/18 78.174.124.130

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

340 Chapter 10 Recursion

CAUTION

&
Module: ch10.py

Module: ch10.py

For input n > 0, we generalize the insight illustrated in Figures 10.6 and 10.7. The instruc
tions output by koch (n) should be the concatenation:

koch(n-1) + 'L' + koch(n-1) + 'R' + koch(n-1) + 'L' + koch(n-1)

and the function koch () is then

def koch(n):
if n == 0:

return 'F'

return koch(n-1) + 'L' + koch(n-1) + 'R' + koch(n-1) + 'L' + \
koch(n-1)

If you test this function, you will see that it works. There is an efficiency issue with this
implementation, however. In the last line, we call function koch () on the same input four
times. Of course, each time the returned value (the instructions) is the same. Our implemen
tation is very wasteful.

Avoid Repeating the Same Recursive Calls

Often, a recursive solution is most naturally described using several identical recur
sive calls. We just saw this with the recursive function koch (). Instead of repeatedly
calling the same function on the same input, we can call it just once and reuse its
output multiple times.

The better implementation of function koch () is then:

def koch(n):
'returns turtle directions for drawing curve Koch(n)'

4 if n == 0: # base case

s return 'F'

7 tmp = koch(n-1) # recursive step: get directions for Koch(n-1)

e # use them to construct directions for Koch(n)

10 return tmp + 'L' + tmp + 'R' + tmp + 'L' + tmp

The last thing we have to do is develop a function that uses the instructions returned by
function koch () and draws the corresponding Koch curve using a Turtle graphics object.
Here it is:

from turtle import Screen, Turtle
2 def drawKoch (n) :
3 'draws nth Koch curve using instructions from function koch()'

s = Screen()
t = Turtle()
directions= koch(n)

create screen

create turtle

obtain directions to draw Koch(n)

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Section 10.2 Examples of Recursion 341

9 for move in directions: # follow the specified moves

10 if move == ' F ' :

11 t. forward(300/3**n) # move forward, length normalized

12 if move == ' L ' :

13

14

15

t.lt(60)
if move == ' R' :

t. rt (120)

rotate left 60 degrees

rotate right 60 degrees
1s s. bye()

Line 11 requires some explanation. The value 300/3**n is the length of a forward turtle
move. It depends on the value of n so that, no matter what the value of n is, the Koch curve
has width 300 pixels and fits in the screen. Check this for n equal to O and 1.

Koch Curves and Other Fractals

The Koch curves Kn were first described in a 1904 paper by the Swedish math
ematician Helge von Koch. He was particularly interested in the curve K 00 that is
obtained by pushing n to oo.

The Koch curve is an example of a fractal. The term fractal was coined by French
mathematician Benoit Mandelbrot in 1975 and refers to curves that:

• Appear "fractured" rather than smooth

• Are self-similar (i.e., they look the same at different levels of magnification)

• Are naturally described recursively

Physical fractals, developed through recursive physical processes, appear in nature
as snowflakes and frost crystals on cold glass, lightning and clouds, shorelines and
river systems, cauliflower and broccoli, trees and ferns, and blood and pulmonary
vessels.

Implement function snowflake() that takes a nonnegative integer n as input and prints a
snowflake pattern by combining three Koch curves Kn in this way: When the turtle is fin
ished drawing the first and the second Koch curve, the turtle should rotate right 120 degrees
and start drawing a new Koch curve. Shown here is the output of snowflake (4).

DETOUR

C i

Practice Problem
10.5

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

342 Chapter 10 Recursion

DETOUR

File: test.zip

Virus Scanner
We now use recursion to develop a virus scanner, that is, a program that systematically
looks at every file in the filesystem and prints the names of the files that contain a known
computer virus signature. The signature is a specific string that is evidence of the presence
of the virus in the file.

Viruses and Virus Scanners

A computer virus is a small program that, usually without the user's knowledge,
is attached to or incorporated in a file hosted on the user's computer and does
nefarious things to the host computer when executed. A computer virus may corrupt
or delete data on a computer, for example.

A virus is an executable program, stored in a file as a sequence of bytes just like
any other program. If the computer virus is identified by a computer security expert
and the sequence of bytes is known, all that needs to be done to check whether
a file contains the virus is to check whether that sequence of bytes appears in the
file. In fact, finding the entire sequence of bytes is not really necessary; searching
for a carefully chosen fragment of this sequence is enough to identify the virus with
high probability. This fragment is called the signature of the virus: It is a sequence
of bytes that appears in the virus code but is unlikely to appear in an uninfected file.

A virus scanner is a program that periodically and systematically scans every
file in the computer filesystem and checks each for viruses. The scanner application
will have a list of virus signatures that is updated regularly and automatically. Each
file is checked for the presence of some signature in the list and flagged if it contains
that signature.

We use a dictionary to store the various virus signatures. It maps virus names to virus
signatures:

>>>signatures= { 'Creeper' : 'ye8009g2h1azzx33' ,
'Code Red' : '99dh1cz963bsscs3' ,
'Blaster' : 'fdp1102k1ks6hgbc' }

(While the names in this dictionary are names of real viruses, the signatures are completely
fake.)

The virus scanner function takes, as input, the dictionary of virus signatures and the
pathname (a string) of the top folder or file. It then visits every file contained in the top
folder, its subfolders, subfolders of its subfolders, and so on. An example folder 'test' is
shown in Figure 10.8 together with all the files and folders that are contained in it, directly or
indirectly. The virus scanner would visit every file shown in Figure 10.8 and could produce,
for example, this output:

>>> scan('test' , signatures)
test/fileA.txt, found virus Creeper
test/folder1/fileB.txt, found virus Creeper
test/folder1/fileC.txt, found virus Code Red
test/folder1/folder11/fileD.txt, found virus Code Red
test/folder2/fileD.txt, found virus Blaster
test/folder2/fileE.txt, found virus Blaster

1187313 2015/06/18 95.13.15.159

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Section 10.2 Examples of Recursion 343

test

folderl fileA.txt folder2

fileB.txt fileC.txt folderll fileD.txt fileE.txt

fileD.txt

Because of the recursive structure of a filesystem (a folder contains files and other fold
ers), we use recursion to develop the virus scanner function scan (). When the input path
name is the pathname of a file, the function should open, read, and search the file for virus
signatures; this is the base case. When the input pathname is the pathname of a folder,
scan() should recursively call itself on every file and subfolder of the input folder; this is
the recursive step. The complete implementation is:

import os
2 def scan(pathname, signatures):
3 '' 'scans pathname or, if pathname is a folder, scans all files
4 contained, directly or indirectly, in the folder pathname'''
5 if os.path.isfile(pathname): # base case, scan pathname
s infile = open(pathname)
7 content= infile.read()
a infile.close()

10

11

12

13

14

15

for virus in signatures:
check whether virus signature appears in content
if content.find(signatures[virus]) >= 0:

print('{}, found virus{}' .format(pathname, virus))
return

1s # pathname is a folder so recursively scan every item in it
17 for i tern in os. listdir (pathname) :
18

19

20

21

22

23

24

25

create pathname for item relative
to current working directory
fullpath =pathname+ '/' + item
fullpath =pathname+ '\' + item
fullpath = os.path.join(pathname, item)

scan(fullpath, signatures)

Mac only
Windows only
any OS

This program uses functions from the Standard Library module os. The module os
contains functions that provide access to operating system resources such as the filesystem.
The three os module functions we are using are:

a. listdir (). Takes, as input, an absolute or relative pathname (as a string) of a folder
and returns the list of all files and subfolders contained in the input folder.

Figure 10.8 Filesystem
fragment. Illustrated is
folder 'test' and all its
descendant folders and
files.

Module: ch10.py

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

344 Chapter 10 Recursion

b. path. isf ile (). Takes, as input, an absolute or relative pathname (as a string) and
returns True if the pathname refers to a regular file, False otherwise.

c. path.join(). Takes as input two pathnames, joins them into a new pathname, in-
serting \ or / as needed, and returns it.

We explain further why we need the third function. The function listdir () does not return
a list of pathnames but just a list of file and folder names. For example, when we start
executing scan ('test ') (we ignore the second argument of scan() in this discussion),
the function listdir () will get called in this way:

>>> os.listdir('test')
['fileA.txt' , 'folder!' , 'folder2']

If we were to make the recursive call scan(' folder!'), then, when this function call
starts executing, the function listdir () would get called on pathname 'folder!', with
this result:

>>> os.listdir('folder1')
Traceback (most recent call last):

File "<pyshell#387>" , line 1, in <module>
os.listdir('folder1')

OSError: [Errno 2] No such file or directory: 'folder!'

The problem is that the current working directory during the execution of scan ('test')
is the folder that contains the folder test; the folder 'folder!' is not in there, thus the
error.

Instead of making the call scan ('folder!'), we need to make the call on a pathname
that is either absolute or relative with respect to the current working directory. The pathname
of 'folder!' can be be obtained by concatenating 'test' and 'folder!' as follows

'test' + '\' + ' folder! '

(on a Windows box) or, more generally, concatenating pathname and i tern as follows

path= pathname+ '\' + item

This works on Windows machines but not on UNIX, Linux, or MAC OS X machines be
cause pathnames use the forward slashes(/) in those operating systems. A better, portable
solution is to use the path.join () function from module os. It will work for all operating
systems and thus be system independent. For example, on a Mac:

>>>pathname= 'test'
>>>item= 'folder!'
>>> os.path.join(pathname, item)
'test/folder!'

Here is a similar example executed on a Windows box:

>>>pathname= 'C://Test/virus'
>>>item= 'folder!'
>>> os.path.join(pathname, item)

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Section 10.2 Examples of Recursion 345

Linear recursion
The three problems we have considered in this section-printing the number sequence pat
tern, drawing the Koch curve, and scanning the filesystem for viruses-could all have been
solved without recursion. Iterative solutions for these problems really do exist. The iterative
solutions, however, require algorithms that are more complex than recursion and that are
beyond the scope of an introductory computer science textbook.

The problems we considered in Section 10.1, on the other hand, have simple iterative so
lutions. Recursive functions vertical(), reverse(), cheers(), and factorial() from
Section 10.1 could have as easily been developed using iteration. In fact, the recursive and
iterative solutions are closely related. The two implementations of function factorial()
from Practice Problem 10.3 and Practice Problem 5.4 can be used to illustrate this. While one
implementation is recursive and the other is iterative, both functions use a similar process to
compute n!: they both compute a sequence of intermediate results i!, for i = 1, ... , n, ob
tained by multiplying the previous intermediate result (i - 1) ! with i. The recursive function
can thus be viewed as a recursive implementation of this idea.

When the recursive step of a function is implemented using a single recursive call that
computes the "previous" intermediate result and a "basic," nonrecursive (problem specific)
operation that computes the "next" intermediate result, the function is said to use linear re
cursion. In function vertical (), for example, the recursive step consists of a single recur
sive call vertical (n/ /10) that prints all but the last digit ofn and statement print (n%10)
that prints the last digit.

Linear recursion is a particularly useful technique for implementing fundamental func
tions on lists. For example, a function that adds the numbers in a list of numbers can be
implemented using linear recursion as follows:

def recSum(lst):
'returns the sum of items in list 1st'

if len(lst) == 0:
return 0

return recSum(lst[:-1]) + lst[-1]

Note that the recursive step consists of a single recursive call that sums all the numbers in
the list but the last and a "basic" operation that adds the last number to this sum.

Using linear recursion, implement function recNeg() that takes a list of numbers as input
and returns True if some number in the list is negative, and False otherwise.

>>> recNeg([3, 1, -1, 5])
True
>>> recNeg([3, 1, 0, 5])
False

In the next example, we implement function recincr () that takes a list of numbers as
input and returns a copy of the list with every number in the list incremented by one:

>>>1st= [1, 4, 9, 16, 25]
>>> recincr(lst)
[2, 5, 10, 17, 26]

Module: ch1 O.py

Practice Problem
10.6

1187313 2015/06/18 95.13.15.159

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

346 Chapter 10 Recursion

Module: ch10.py

Module: ch10.py

DETOUR

We choose to implement the function using linear recursion instead of iteration:

def recincr(lst):
'returns list [lst[0]+1, lst[1]+1, ... , lst[n-1]+1]'

if len(lst) == 0:
return []

return recincr(lst[:-1]) + [lst[-1]+1]

The recursive step consists of concatenating the list obtained by the recursive call and the
list containing the last number in the list incremented by one.

The function rec Iner () is an example of a function that takes a list and returns a copy
of it in which the same operation was performed on every list item. Incrementing every
number in the list by one is just one of the many operations one may wish to perform on
items of a list. It would thus be useful to implement a more abstract function recMap 0
that takes, as input, the operation as well as the list and then applies the operation to every
item in the list. What "operation" really means, of course, is a function. For example, if we
wanted to use function recMap () to increment every number in a list of numbers, we would
first have to define the function that we want to apply to every number:

»> def f(i):
return i + 1

Then we would use recMap () to apply function f to every number in the list:

>>> recMap(lst, f)
[2, 5, 10, 17, 26]

If, instead, we wanted to obtain a list containing the square roots of the numbers in list 1st,
we would apply the math. sqrt function instead:

>>> from math import sqrt
>>> recMap(lst, sqrt)
[1.0, 2.0, 3.0, 4.0, 5.0]

Note that the input argument of recMap O is f, not f O, or sqrt, not sqrt O. This is
because we are simply passing a reference to the function object, not making a function
call.

We can implement recMap () using linear recursion:

def recMap(lst, f):
'returns list [f(lst[O]), f(lst[1]), ... , f(lst[n-1])]'

if len(lst) == 0:
return []

return recMap(lst[:-1], f) + [f(lst[-1])]

Higher-Order Functions

In function recMap O, the second input argument is a function. A function that takes
another function as input or that returns a function is called a higher-order function.
Treating a function like a value is a style of programming that is used extensively in

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Section 10.3 Run Time Analysis 347

the functional programming paradigm which we introduce in Section 12.3.
Python supports higher-order functions because the name of a function is

treated no differently from the name of any other object, so it can be treated as
a value. Not all languages support higher-order functions. A few other ones that do
are LISP, Perl, Ruby, and JavaScript.

Using function recMap (), write a short statement that evaluates to a list containing the
sums of the rows of a two-dimensional table of numbers called table.

10.3 Run Time Analysis
The correctness of a program is of course our main concern. However, it is also important
that the program is usable or even efficient. In this section, we continue the use of recursion
to solve problems, but this time with an eye on efficiency. In our first example, we apply
recursion to a problem that does not seem to need it and get a surprising gain in efficiency.
In the second example, we take a problem that seems tailored for recursion and obtain an
extremely inefficient recursive program.

The Exponent Function
We consider next the implementation of the exponent function an. As we have seen already,
Python provides the exponentiation operator**:

>>> 2**4
16

But how is the operator * * implemented? How would we implement it if it was not available?
The straightforward approach is to just multiply the value of a n times. The accumulator
pattern can be used to implement this idea:

def power(a, n):
'returns a to the nth power'

res= 1
for i in range(n):

res*= a
return res

You should convince yourself that the function power () works correctly. But is this the best
way to implement the function power () ? Is there an implementation that would run faster?
It is clear that the function power() will perform n multiplications to compute an. If n is
10,000, then 10,000 multiplications are done. Can we implement power() so significantly
fewer multiplications are done, say about 20 instead of 10,000?

Let's see what the recursive approach will give us. We are going to develop a recursive
function rpower () that takes inputs a and nonnegative integer n and returns a

Practice Problem
10.7

Module: ch10.py

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

348 Chapter 10 Recursion

Figure 10.9 Computing an
recursively. When n is
even, an= an/ 2 X an/ 2 .

Figure 10.10 Computing
an recursively. When n is
odd,
an = aln/2J X aln/2J X a.

Module: ch10.py

The natural base case is when the input n is 0. Then an = land so 1 must be returned:

def rpower(a, n):
'returns a to the nth power'
if n == 0: # base case: n 0

return 1
remainder of function

Now let's handle the recursive step. To do this, we need to express an, for n > 0,
recursively in terms of smaller powers of a (i.e., "closer" to the base case). That is actually
not hard, and there are many ways to do it:

an an-l X a

an an-2 X a2

an an-3 X a3

an an/2 X an/2

The appealing thing about the last expression is that the two terms, an/ 2 and an/ 2, are the
same; therefore, we can compute an by making only one recursive call to compute an/ 2.
The only problem is that n/2 is not an integer when n is odd. So we consider two cases.

As we just discovered, when the value of n is even, we can compute rpower (a, n)
using the result of rpower(a, n//2) as shown in Figure 10.9:

rpower(2, n) l2x2x ... x2 1 x l2x2x ... x2 1

power(2, n//2) power(2, n//2)

When the value of n is odd, we still can use the result ofrecursive call rpower (a, n/ /2)
to compute rpower (a, n), albeit with an additional factor a, as illustrated in Figure 10.10:

rpower(2, n) l2x2x ... x2 1 x l2x2x ... x2 1 x

power(2, n//2) power(2, n//2)

These insights lead us to the recursive implementation of rpower () shown next. Note
that only one recursive call rpower(a, n//2) is made.

10

11

def rpower(a, n):
'returns a to the nth power'
if n == 0: # base case: n 0

return 1

tmp = rpower(a, n//2)

if n % 2 == 0:
return tmp*tmp

else: # n % 2 == 1

return a*tmp*tmp

recursive step: n > 0

a**(n//2) * a**a(n//2)

a**n = a**(n//2) * a**a(n//2) * a

We now have two implementations of the exponentiation function, power () and rpower () .
How can we tell which is more efficient?

1187313 2015/06/18 95.13.15.159

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Section 10.3 Run Time Analysis 349

Counting Operations
One way to compare the efficiency of two functions is to count the number of operations
executed by each function on the same input. In the case of power () and rpower (), we
limit ourselves to counting just the number of multiplications

Clearly, power(2, 10000) will need 10,000 multiplications. What about rpower(2,
10000)? To answer this question, we modify rpower () so it counts the number of mul
tiplications performed. We do this by incrementing a global variable counter, defined
outside the function, each time a multiplication is done:

def rpower(a, n):
2 'returns a to the nth power'

3 global counter # counts number of multiplications

s if n==0:
s return 1
7 # if n > 0:

s tmp = rpower(a, n//2)

10 if n % 2 == 0 :
11 counter += 1
12

13

return tmp*tmp

14 else: # n % 2 == 1

15

16

counter+= 2
return a*tmp*tmp

Now we can do the counting:

>>>counter= 0
>>> rpower(2, 10000)
199506311688 ... 792596709376
>>> counter
19

1 multiplication

2 multiplications

Thus, recursion led us to a way to do exponentiation that reduced the number of multipli
cations from 10,000 to 23.

Fibonacci Sequence
We introduced the Fibonacci sequence of integers in Chapter 5:

1,1,2,3,5,8,13,21,34,55,89, ...

We also described a method to construct the Fibonacci sequence: A number in the se
quence is the sum of the previous two numbers in the sequence (except for the first two ls).
This rule is recursive in nature. So, if we are to implement a function rf i b () that takes a
nonnegative integer n as input and returns the nth Fibonacci number, a recursive implemen
tation seems natural. Let's do it.

Since the recursive rule applies to the numbers after the 0th and 1st Fibonacci number,
it makes sense that the base case is when n ::; 1 (i.e., n = 0 or n = 1). In that case, rf i b ()
should return 1:

Module: ch10.py

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

350 Chapter 10 Recursion

Module: ch10.py

Module: ch10.py

def rfib(n):
'returns nth Fibonacci number'
if n < 2: # base case

return 1
remainder of function

The recursive step applies to input n > 1. In that case, the nth Fibonacci number is the sum
of then - 1st and n - 2nd:

def rfib(n):
'returns nth Fibonacci number'
if n < 2: # base case

return 1

return rfib(n-1) + rfib(n-2) # recursive step

Let's check that function rfib() works:

>>> rfib(O)
1
>>> rfib(1)
1
>>> rfib(4)
5
>>> rfib(8)
34

The function seems correct. Let's try to compute a larger Fibonacci number:

»> rfib(35)
14930352

Hmmm. It's correct, but it took a while to compute. (Try it.) If you try

»> rfib(100)

you will be waiting for a very long time. (Remember that you can always stop the program

execution by hitting I Ctrl 1-@J simultaneously.)
Is computing the 36th Fibonacci number really that time consuming? Recall that we

already implemented a function in Chapter 5 that returns the nth Fibonacci number:

10

def fib(n):
'returns nth Fibonacci number'
previous= 1
current= 1
i = 1

0th Fibonacci number
1st Fibonacci number
index of current Fibonacci number

while i < n: # while current is not nth Fibonacci number
previous, current= current, previous+current
i += 1

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Section 10.3 Run Time Analysis 351

Let's see how it does:

»> fib(35)
14930352
>» fib(100)
573147844013817084101
>» fib(10000)
54438373113565 ...

Instantaneous in all cases. Let's investigate what is wrong with rf i b ().

Experimental Analysis of Run Time
One way to precisely compare functions fib () and rf i b ()-or other functions for that
matter-is to run them on the same input and compare their run times. As good (lazy)
programmers, we like to automate this process, so we develop an application that can be
used to analyze the run time of a function. We will make this application generic in the
sense that it can be used on functions other than just fib () and rf i b ().

Our application consists of several functions. The key one that measures the run time on
one input is timing(): It is a higher-order function that takes as input (1) a function func
and (2) an "input size" (as an integer), runs function func on an input of the given size, and
returns the execution time.

import time
2 def timing(func, n):
3 'runs func on input returned by buildinput'

4 funcinput = buildinput(n) # obtain input for func

s start= time.time() # take start time

s func (funcinput) # run func on funcinput

1 end = time. time() # take end time

return end - start # return execution time

Function timing () uses the time () function from the time module to obtain the current
time before and after the execution of the function func; the difference between the two will
be the execution time. (Note: The timing can be affected by other tasks the computer may
be doing, but we avoid dealing with this issue.)

The function buildinput () takes an input size and returns an object that is an appro
priate input for function func () and has the right input size. This function is dependent on
the function func () we are analyzing. In the case of the Fibonacci functions fib () and
rf i b (), the input corresponding to input size n is just n:

def buildinput(n):
2 'returns input for Fibonacci functions'

3 return n

Comparing the run times of two functions on the same input does not tell us much about
which function is better (i.e., faster). It is more useful to compare the run times of the two
functions on several different inputs. In this way, we can attempt to understand the behavior
of the two functions as the input size (i.e., the problem size) becomes larger. We develop,
for that purpose, function timingAnalysis that runs an arbitrary function on a series of
inputs of increasing size and report run times.

Module: ch10.py

Module: ch10.py

1187313 2015/06/18 95.13.15.159

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

352 Chapter 10 Recursion

Module: ch10.py

Figure 10.11 Run time
graph. Shown are the
average run times, in

10

11

12

def timingAnalysis(func, start, stop, inc, runs):
'' 'prints average run times of function func on inputs of

size start, start+inc, start+2*inc, ... , up to stop'''
for n in range(start, stop, inc): # for every input size n

ace= 0.0 # initialize accumulator

for i in range(runs): # repeat runs times:
ace+= timing(func, n) # run func on input of size n

and accumulates run times
print average run times for input size n
formatStr = 'Run time of{}({}) is {:.7f} seconds.'
print(formatStr.format(func. __ name __ , n, ace/runs))

Function timingAnalysis takes, as input, function func and numbers start, stop, inc,
and runs. It first runs func on several inputs of size start and prints the average run time.
Then it repeats that for input sizes start+inc, start+2*inc, ... up to input size stop.

When we run timinAnalysis () on function fib() with input sizes 24, 26, 28, 30, 32,
34, we get:

>>> timingAnalysis(fib, 24, 35, 2, 10)
Run time of fib(24) is 0.0000173 seconds.
Run time of fib(26) is 0. 0000119 seconds.
Run time of fib(28) is 0.0000127 seconds.
Run time of fib(30) is 0.0000136 seconds.
Run time of fib(32) is 0.0000144 seconds.
Run time of fib(34) is 0.0000151 seconds.

When we do the same on function rf i b (), we get:

>>> timingAnalysis(rfib, 24, 35, 2, 10)
Run time of fibonacci(24) is 0.0797332 seconds.
Run time of fibonacci(26) is 0.2037848 seconds.
Run time of fibonacci(28) is 0.5337492 seconds.
Run time of fibonacci(30) is 1.4083670 seconds.
Run time of fibonacci(32) is 3.6589111 seconds.
Run time of fibonacci(34) is 9.5540136 seconds.

We graph the results of the two experiments in Figure 10.11.

time (sec)
rfib(n)

seconds,offib() and 8
rf i b O for inputs n = 24,
26, 28, 32, and 34. 6

4

2
fib(n)

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Section 10.3 Run Time Analysis 353

rfib(n)

/~
rfib(n-1)

/~
rfib(n-2) rfib(n-3)

,,,,!, 1~ ,~-" II ,.,:,£ 1 ~ ':-''
/ ~,._,: ' , ' , ' a I\

rfib(n-2)

,men(~
/ ~ (n-S) ' ' a I\

The run times off i b () are negligible. However, the run times of rf i b () are increasing
rapidly as the input size increases. In fact, the run time more than doubles between succes
sive input sizes. This means that the run time increases exponentially with respect to the
input size. In order to understand the reason behind the poor performance of the recursive
function rf i b (), we illustrate its execution in Figure 10.12.

Figure 10.12 shows some of the recursive calls made when computing rfib (n). To
compute rfib(n), recursive calls rfib(n-1) and rfib(n-2) must be made; to com
pute rfib (n-1) and rf ib (n-2), separate recursive calls rfib (n-2) and rf ib (n-3), and
rfib(n-2) and rfib(n-3), respectively, must be made. And so on.

The computation of rf i b () includes two separate computations of rf i b (n-2) and
should therefore take more than twice as long as rf i b (n-2). This explains the exponential
growth in run time. It also shows the problem with the recursive solution rfib (): It keeps
making and executing the same function calls, over and over. The function call rfib (n-4),
for example, is made and executed five times, even though the result is always the same.

Using the run time analysis application developed in this section, analyze the run time of
functions power() and rpower () as well as built-in operator**· You will do this by run
ning timingAnalysis () on functions power2 (), rpower2 (), and pow2 () defined next
and using input sizes 20,000 through 80,000 with a step size of 20,000.

def power2(n):
return power(2,n)

def rpower2(n):
return rpower(2,n)

def pow2(n):
return 2**n

When done, argue which approach the built-in operator** likely uses.

Figure 10.12 Tree of
recursive calls. Computing
rfib(n) requires making
two recursive calls:
rfib(n-1) and
rfib(b-2). Computing
rfib(n-1) requires making
recursive calls rfib(n-2)

and rfib(n-3); computing
rfib(n-2) requires
recursive calls rfib(n-3)

and rfib(n-4). The same
recursive calls will be made
multiple times. For example,
rfib(n-4) will be
recomputed five times.

Practice Problem
10.8

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

354 Chapter 10 Recursion

10.4 Searching
In the last section, we learned that the way we design an algorithm and implement a program
can have a significant effect on the program's run time and ultimately its usefulness with
large data sets. In this section, we consider how reorganizing the input data set and adding
structure to it can dramatically improve the run time, and usefulness, of a program. We focus
on several fundamental search tasks and usually use sorting to give structure to the data set.
We start with the fundamental problem of checking whether a value is contained in a list.

Linear Search
Both the in operator and the index() method of the list class search a list for a given
item. Because we have been (and will be) using them a lot, it is important to understand
how fast they execute.

Recall that the in operator is used to check whether an item is in the list or not:

>>>1st= random.sample(range(1,100), 17)
>>> 1st
[28, 72, 2, 73, 89, 90, 99, 13, 24, 5, 57, 41, 16, 43, 45, 42, 11]
»> 45 in 1st
True
»> 75 in 1st
False

The index () method is similar: Instead of returning True or False, it returns the index of
the first occurrence of the item (or raises an exception if the item is not in the list).

If the data in the list is not structured in some way, there is really only one way to
implement in and index () : a systematic search through the items in the list, whether from
index O and up, from index -1 and down, or something equivalent. This type of search is
called linear search. Assuming the search is done from index O and up, linear search would
look at 15 elements in the list to find 45 and all of them to find that 75 is not in the list.

A linear search may need to look at every item in the list. Its run time, in the worst case,
is thus proportional to the size of the list. If the data set is not structured and the data items
cannot be compared, linear search is really the only way search can be done on a list.

Binary Search
If the data in the list is comparable, we can improve the search run time by sorting the list
first. To illustrate this, we use the same list 1st as used in linear search, but now sorted:

»> 1st. sort()
>>> 1st
[2, 5, 11, 13, 16, 24, 28, 41, 42, 43, 45, 57, 72, 73, 89, 90, 99]

Suppose we are searching for the value of target in list 1st. Linear search compares
target with the item at index O of 1st, then with the item at index 1, 2, 3, and so on.
Suppose, instead, we start the search by comparing target with the item at index i, for
some arbitrary index i of 1st. Well, there are three possible outcomes:

• We are lucky: 1st [i] == target is true, or

• target < 1st [i] is true, or

• target > 1st [i] is true.

1187313 2015/06/18 95.13.15.159

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Section 10.4 Searching 355

Let's do an example. Suppose the value of target is 45 and we compare it with the
item at index 5 (i.e., 24). It is clear that the third outcome, target > 1st [i], applies in
this case. Because list 1st is sorted, this tells us that target cannot possibly be to the left
of 24, that is, in sublist 1st [0: 5]. Therefore, we should continue our search for target to
the right of 24 (i.e., in sublist 1st [6: 17]), as illustrated in Figure 10.13.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5 11 13 16 ~ 28 41 42 43 45 57 72 73 89 90 99 1

128 41 42 43 45 57 12 73 89

The main insight we just made is this: With just one comparison, between target and
list [5], we have reduced our search space from 17 list items to 11. (In linear search, a
comparison reduces the search space by just 1.) Now we should ask ourselves whether a
different comparison would reduce the search space even further.

In a sense, the outcome target > 1st [5] was unlucky: target turns out to be in the
larger of 1st [0: 5] (with 5 items) and 1st [6: 17] (with 11 items). To reduce the role of
luck, we could ensure that both sublists are about the same size. We can achieve that by
comparing target to 42-that is, the item in the middle of the list (also called the median).

The insights we just developed are the basis of a search technique called binary search.
Given a list and a target, binary search returns the index of the target in the list, or -1 if the
target is not in the list.

Binary search is easy to implement recursively. The base case is when the list 1st is
empty: target cannot possibly be in it, and we return -1. Otherwise, we compare target
with the list median. Depending on the outcome of the comparison, we are either done or
continue the search, recursively, on a sublist of 1st.

We implement binary search as the recursive function search (). Because recursive
calls will be made on sublists 1st [i: j] of the original list 1st, the function search()
should take, as input, not just 1st and target but also indices i and j:

def search(lst, target, i, j):
2 '' 'attempts to find target in sorted sublist lst[i:j];

3 index of target is returned if found, -1 otherwise'''

if i == j:
return -1

mid= (i+j)//2

if lst[mid] == target:
10 return mid

base case: empty list

target cannot be in list

index of median of l[i:j]

target is the median

11 if target < 1st [mid] : # search left of median

12 return search (1st, target, i, mid)
13 else: # search right of median

14 return search(lst, target, mid+1, j)

To start the search for target in 1st, indices O and len(lst) should be given:

»>target= 45
>>> search(lst, target, 0, len(lst))
10

Figure 10.13 Binary
search. By comparing 45,
the value of target, with
the item at index 5 of 1st,
we have reduced the search
space to the sublist
lst[6:].

Module: ch10.py

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

356 Chapter 10 Recursion

Figure 10.14 Binary
search. The search for 45
starts in list 1st [O: 17].
After 45 is compared to the
list median (42), the search
continues in sublist
1st [9: 17] . After 45 is
compared to this list's
median (72), the search
continues in 1st [9: 12].
Since 45 is the median of
1st [9: 12], the search
ends.

Module: ch10.py

Module: ch1 O.py

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12 5 11 13 16 24 28 41 I 42 I 43 45 57 72 73 89 90 99 1

143 45 57 @] 73 89 90 99 1

143 [ill 57 1

Figure 10.14 illustrates the execution of this search.

Linear versus Binary Search
To convince ourselves that binary search is, on average, much faster than linear search, we
perform an experiment. Using the timingAna1ysis () application we developed in the last
section, we compare the performance of our function search () and the built-in list method
index (). To do this, we develop functions binary () and linear () that pick a random
item in the input list and call search() or invoke method index(), respectively, to find
the item:

def binary(1st):
'chooses item in list 1st at random and runs search() on it'

target=random.choice(1st)
return search(1st, target, 0, 1en(1st))

s def 1inear(1st):
'choose item in list 1st at random and runs index() on it'

target=random.choice(1st)
return 1st.index(target)

The list 1st of size n we will use is a random sample of n numbers in the range from Oto
2n - 1.

def bui1dlnput(n):
'returns a random sample of n numbers in range [O, 2n)'

1st= random.samp1e(range(2*n), n)
1st.sort()
return 1st

Here are the results:

>>> timingAna1ysis(1inear, 200000, 1000000, 200000, 20)
Run time of 1inear(200000) is 0.0046095
Run time of linear(400000) is 0. 0091411
Run time of linear(600000) is 0.0145864
Run time of linear(800000) is 0.0184283
>>> timingAna1ysis(binary, 200000, 1000000, 200000, 20)
Run time of binary(200000) is 0.0000681
Run time of binary(400000) is 0.0000762
Run time of binary(600000) is 0.0000943
Run time of binary(800000) is 0.0000933

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Section 10.4 Searching 357

It is clear that binary search is much faster and the run time of linear search grows propor
tionally with the list size. The interesting thing about the run time of binary search is that it
does not seem to be increasing much. Why is that?

Whereas linear search may end up looking at every item in the list, binary search will
look at far fewer list items. To see this, recall our insight that with every binary search
comparison, the search space decreases by more than a half. Of course, when the search
space becomes of size 1 or less, the search is over. The number of binary search comparisons
in a list of size n is bounded by this value: the number of times we can halve n division before
it becomes 1. In equation form, it is the value of x in

The solution to this equation is x = log2 n, the logarithm base two of n. This function does
indeed grow very slowly as n increases.

In the remainder of this section we look at several other fundamental search-like prob
lems and analyze different approaches to solving them.

Uniqueness Testing
We consider this problem: Given a list, is every item in it unique? One natural way to solve
this problem is to iterate over the list and for each list item check whether the item appears
more than once in the list. Function dup 1 implements this idea:

def dup1 (1st) :
2 'returns True if list 1st has duplicates, False otherwise'

3 for item in 1st:
4 if lst.count(item) > 1:
s return True
s return False

The list method count(), just like the in operator and the index method, must perform a
linear search through the list to count all occurrences of a target item. So, in duplicates!(),
linear search is performed for every list item. Can we do better?

What if we sorted the list first? The benefit of doing this is that duplicate items will be
next to each other in the sorted list. Therefore, to find out whether there are duplicates, all
we need to do is compare every item with the item before it:

def dup2(lst):
'returns True if list 1st has duplicates, False otherwise'

1st.sort()
for index in range(1, len(lst)):

if lst[index] == lst[index-1]:
return True

return False

The advantage of this approach is that it does only one pass through the list. Of course, there
is a cost to this approach: We have to sort the list first.

In Chapter 6, we saw that dictionaries and sets can be useful to check whether a list
contains duplicates. Functions dup30 and dup40 use a dictionary or a set, respectively,
to check whether the input list contains duplicates:

Module: ch1 O.py

Module: ch1 O.py

1187313 2015/06/18 95.13.15.159

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

358 Chapter 10 Recursion

Module: ch10.py

Practice Problem
10.9

Module: ch1 O.py

10

def dup3(lst):
'returns True if list 1st has duplicates, False otherwise'

s = set()
for item in 1st:

if item in s:
return False

else:
s.add(item)

return True

11 def dup4(lst):
12 'returns True if list 1st has duplicates, False otherwise'

13 return len(lst) != len(set(lst))

We leave the analysis of these four functions as an exercise.

Using an experiment, analyze the run time of functions dup10, dup20, dup30, and
dup40. You should test each function on 10 lists of size 2000, 4000, 6000, and 8000 ob
tained from:

import random
def buildinput(n):

'returns a list of n random integers in range [O, n**2)'
res = []

for 1 1n range(n):
res.append(random.choice(range(n**2)))

return res

Note that the list returned by this function is obtained by repeatedly choosing n numbers in
the range from Oto n 2 - 1 and may or may not contain duplicates. When done, comment
on the results.

Selecting the Jeth Largest (Smallest) Item

Finding the largest (or smallest) item in an unsorted list is best done with a linear search.
Finding the second, or third, largest (or smallest) kth smallest can be also done with a linear
search, though not as simply. Finding the kth largest (or smallest) item for large k can easily
be done by sorting the list first. (There are more efficient ways to do this, but they are beyond
the scope of this text.) Here is a function that returns the kth smallest value in a list:

def kthsmallest(lst, k):
'returns kth smallest item in list 1st'

1st. sort()
return 1st [k-1]

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Chapter 1 O Case Study: Tower of Hanoi 359

Computing the Most Frequently Occurring Item
The problem we consider next is searching for the most frequently occurring item in a list.
We actually know how to do this, and more: In Chapter 6, we saw how dictionaries can be
used to compute the frequency of all items in a sequence. However, if all we want is to find
the most frequent item, using a dictionary is overkill and a waste of memory space.

We have seen that by sorting a list, all the duplicate items will be next to each other. If
we iterate through the sorted list, we can count the length of each sequence of duplicates
and keep track of the longest. Here is the implementation of this idea:

def frequent(lst):
'' 'returns most frequently occurring item

in non-empty list 1st'''
1st.sort() # first sort list

currentLen
longestLen
mostFreq

1
1
1st [OJ

length of current sequence
length of longest sequence
item with longest sequence

10 for i in range (1, len (1st)) :
11 # compare current i tern with previous
12 if 1st [i] == 1st [i-1] : # if equal
13 # current sequence continues
14 currentLen+=1
15

16

17

18

19

20

21

22

23

24

else: # if not equal
update longest sequence if necessary
if currentLen > longestLen: # if sequence that ended

is longest so far
longestLen = currentLen # store its length
mostFreq = lst[i-1] # and the item

new sequence starts
currentLen = 1

25 return mostFreq

Implement function frequent2 () that uses a dictionary to compute the frequency of every
item in the input list and returns the item that occurs the most frequently. Then perform an
experiment and compare the run times of frequent () and frequent2 () on a list obtained
using the buildinput () function defined in Practice Problem 10.9.

Case Study: Tower of Hanoi
In Case Study CS.10, we consider the Tower of Hanoi problem, the classic example of
a problem easily solved using recursion. We also use the opportunity to develop a visual
application by developing new classes and using object-oriented programming techniques.

Module: ch10.py

Practice Problem
10.10

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

360 Chapter 10 Recursion

Chapter Summary
The focus of this chapter is recursion and the process of developing a recursive function
that solves a problem. The chapter also introduces formal run time analysis of programs
and applies it to various search problems.

Recursion is a fundamental problem-solving technique that can be applied to problems
whose solution can be constructed from solutions of "easier" versions of the problem. Re
cursive functions are often far simpler to describe (i.e., implement) than nonrecursive solu
tions for the same problem because they leverage operating system resources, in particular
the program stack.

In this chapter, we devolop recursive functions for a variety of problems, such as the
visual display of fractals and the search for viruses in the files of a filesystem. The main
goal of the exposition, however, is to make explicit how to do recursive thinking, a way to
approach problems that leads to recursive solutions.

In some instances, recursive thinking offers insights that lead to solutions that are more
efficient than the obvious or original solution. In other instances, it will lead to a solution
that is far worse. We introduce run time analysis of programs as a way to quantify and com
pare the execution times of various programs. Run time analysis is not limited to recursive
functions, of course, and we use it to analyze various search problems as well.

Solutions to Practice Problems

10.1 The function reverse() is obtained by modifying function vertical() (and re
naming it, of course). Note that function vertical() prints the last digit after printing all
but the last digit. Function reverse () should just do the opposite:

def reverse(n):
'prints digits
if n < 10:

print(n)
else:

of n vertically starting with low-order digit'
base case: one-digit number

print(n%10)
reverse(n//10)

n has at least 2 digits
print last digit of n
recursively print in reverse all but
the last digit

10.2 In the base case, when n = 0, just 'Hurray! ! ! ' should be printed. When n > 0,
we know that at least one 'Hip' should be printed, which we do. That means that n - l
strings 'Hip' and then 'Hurray! ! ! ' remain to be printed. That is exactly what recursive
call cheers (n-1) will achieve.

def cheers(n):
'prints cheer'
if n == 0:

print('Hurray!!! ')
else: # n > 0

print ('Hip' , end= ' ')
cheers(n-1)

10.3 By the definition of the factorial function n ! , the base case of the recursion is n = 0 or
n = l. In those cases, the function factorial() should return 1. For n > l, the recursive

1187313 2015/06/18 95.13.15.159

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Chapter 10 Solutions to Practice Problems 361

definition of n! suggests that function factorial() should return n * factorial (n-1):

def factorial(n):
'returns n ! '
if n == 0: # base case

return 1
return factorial(n-1) * n # recursive step when n > 0

10.4 In the base case, when n = 0, nothing is printed. If n > 0, note that the output
of pattern2 (n) consists of the output of pattern2 (n-1), followed by a row of n stars,
followed by the output of pattern2 (n-1):

def pattern2(n):
'prints the nth pattern'
if n > 0:

pattern2(n-1) # prints pattern2(n-1)
print(n * '*') # print n stars
pattern2(n-1) # prints pattern2(n-1)

10.5 As Figure 10.15 of snowflake (4) illustrates, a snowflake pattern consists of three
patterns koch(3) drawn along the sides of an equilateral triangle.

To draw the pattern snowflake(n), all we need to do is draw pattern koch(n), turn
right 120 degrees, draw koch (n) again, turn right 120 degrees, and draw koch (n) one last
time.

def drawSnowflake(n):
'draws nth snowflake curve using function koch() 3 times'
s = Screen()
t = Turtle()
directions= koch(n)

for i in range(3):
for move in directions: # draw koch(n)

if move == ' F ' :
t. fd(300/3**n)

if move == ' L ' :
t.lt(60)

if move == ' R' :
t. rt (120)

t. rt (120) # turn right 120 degrees

Figure 10.15 The pattern
snowflake (4).

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

362 Chapter 10 Recursion

10.6 If the list is empty, the returned value should be False; otherwise, True should be
returned if and only if 1st [: -1] contains a negative number or 1st [-1] is negative:

def recNeg(lst):
'' 'returns True if some number in list 1st is negative,

False otherwise'''
if len(lst) == 0:

return False
return recNeg(lst[:-1]) or lst[-1] < 0

10.7 The buil-in function sum() should be applied to every item (row) of table:

>» table = [[1,2,3], [4,5,6]]
>>> recMap(table, sum)
[6, 15]

10.8 After running the tests, you will note that the run times of power2 () are significantly
worse than the run times of pow2 () and rpow2 () which are very, very close. It seems that
the built-in operator** uses an approach that is equivalent to our recursive solution.

10.9 Even though dup2 () has the additional sorting step, you will note that dup 1 () is much
slower. This means that the multiple linear searches approach of dup1 () is very inefficient.
The dictionary and set approaches in dup3 and dup4 0 did best, with the set approach
winning overall. The one issue with these last two approaches is that they both use an extra
container, so they take up more memory space.

10.10 You can use the function frequency from Chapter 6 to implement freqent2().

Exercises

10.11 Using Figure 10.1 as a model, draw all the steps that occur during the execution of
countdown(3), including the state of the program stack at the beginning and end of every
recursive call.

10.12 Swap statements in lines 6 and 7 of function countdown() to create function countdown2 ().
Explain how it differs from count down () .

10.13 Using Figure 10.1 as a model, draw all the steps that occur during the execution of
countdown2 (3), where countdown2 () is the function from Exercise 10.12.

10.14 Modify the function countdown () so it exhibits this behavior:

>>> countdown3(5)
5
4
3

B000M! ! !
Scared you ...

2
1
Blastoff! ! !

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Chapter 1 0 Problems 363

10.15 Using Figure 10.1 as a model, draw all the steps that occur during the execution of
pat t em (2) , including the state of the program stack at the beginning and end of every
recursive call.

10.16 The recursive formula for computing the number of ways of choosing k items out of
a set of n items, denoted C (n, k), is:

{
1 ifk=0

C(n,k) = 0 ifn < k
C(n - 1, k - 1) + C(n - 1, k) otherwise

The first case says there is one way to choose no item; the second says that there is no way
to choose more items than available in the set. The last case separates the counting of sets
of k items containing the last set item and the counting of sets of k items not containing the
last set item. Write a recursive function combinations() that computes C(n, k) using this
recursive formula.

>>> combinations(2, 1)

0
>>> combinations(1, 2)

2
>>> combinations(2, 5)

10

10.17 Just as we did for the function rpower (), modify function rf i b () so that it counts
the number of recursive calls made. Then use this function to count the number of calls
made for n = 10, 20, 30.

Problems

10.18 Write a recursive method silly () that takes one nonnegative integer n as input and
then prints n question marks, followed by n exclamation points. Your program should use
no loops.

»> silly(O)
»> silly(1)

* !
»> silly(10)

**********' ! ! ! ! ! ! ! ! !

10.19 Write a recursive method numOnes () that takes a nonnegative integer n as input and
returns the number of 1 s in the binary representation of n. Use the fact that this is equal to
the number of ls in the representation of n/ /2 (integer division), plus 1 if n is odd.

>>> numOnes(O)

0
>>> num0nes(1)
1
>>> num0nes(14)
3

1187313 2015/06/18 95.13.15.159

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

364 Chapter 10 Recursion

10.20 In Chapter 5 we developed Euclid's Greatest Common Divisor (GCD) algorithm
using iteration. Euclid's algorithm is naturally described recursively:

gcd(a, b) = { ;cd(b, a%b)
if b = 0
otherwise

Using this recursive definition, implement recursive function rgcd () that takes two non-
negative numbers a and b, with a > b, and returns the GCD of a and b:

»> rgcd(3,0)
3
»> rgcd(18,12)
6

10.21 Write a method rem () that takes as input a list containing, possibly, duplicate values
and returns a copy of the list in which one copy of every duplicate value was removed.

>>> rem([4])
[]
>>> rem([4, 4])
[4]
>>> rem([4, 1, 3, 2])
[]
>>> rem([2, 4, 2, 4, 4])

[2' 4, 4]

10.22 You're visiting your hometown and are planning to stay at a friend's house. It just
happens that all your friends live on the same street. In order to be efficient, you would
like to stay at the house of a friend who is in a central location in the following sense: the
same number of friends, within 1, live in either direction. If two friends' houses satisfy this
criterion, choose the friend with the smaller street address.

Write function address () that takes a list of street numbers and returns the street num
ber you should stay at.

>>> address ([2, 1, 8, 5, 9])
5
>>> address ([2, 1, 8, 5])
2
>>> address([!, 1, 1, 2, 3, 3, 4, 4, 4, 5])
3

10.23 Develop a recursive function tough () that takes two nonnegative integer arguments
and outputs a pattern as shown below. Hint: The first argument represents the indentation
of the pattern, whereas the second argument-always a power of 2-indicates the number
of "*"s in the longest line of "*"s in the pattern.

>>> f(O, 0)
>>> f(O, 1)

*
>>> f(O, 2)

*
**
*

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Chapter 10 Problems 365

»> f(0, 4)

*
**
*

*

**
*

10.24 Write a recursive method base() that takes a nonnegative integer n and a positive
integer 1 < b < 10 and prints the base-b representation of integer n.

>>> base(0, 2)
0
>>> base(1, 2)
1
>>> base(10, 2)
1010
>>> base(10, 3)
1 0 1

10.25 Implement function permutations() that takes a list 1st as input and returns a
list of all permutations of 1st (so the returned value is a list of lists). Do this recursively as
follows: If the input list 1st is of size 1 or O,justreturn a list containing list 1st. Otherwise,
make a recursive call on the sublist 1st [1: J to obtain the list of all permutations of all
items of 1st except 1st [OJ. Then, for each such permutation (i.e., list) perm, generate
permutations of 1st by inserting 1st [OJ into all possible positions of perm.

>>> permutations([!, 2J)
[[1, 2J, [2, 1JJ
>>> permutations([!, 2, 3J)
[[1, 2, 3J , [2, 1, 3J , [2, 3, 1J , [1, 3, 2J , [3, 1, 2J , [3, 2, 1]]
>>> permutations([!, 2, 3, 4J)
[[1, 2, 3, 4J , [2, 1, 3, 4J , [2, 3, 1, 4J , [2, 3, 4, 1J ,
[1, 3, 2, 4J , [3, 1, 2, 4J , [3, 2, 1, 4J , [3, 2, 4, 1J ,
[1, 3, 4, 2J , [3, 1, 4, 2J , [3, 4, 1, 2J , [3, 4, 2, 1J ,
[1, 2, 4, 3J , [2, 1, 4, 3J , [2, 4, 1, 3J , [2, 4, 3, 1J ,
[1, 4, 2, 3J , [4, 1, 2, 3J , [4, 2, 1, 3J , [4, 2, 3, 1J ,
[1, 4, 3, 2J , [4, 1, 3, 2J , [4, 3, 1, 2J , [4, 3, 2, 1]]

10.26 Implement function anagrams () that computes anagrams of a given word. An ana
gram of word A is a word B that can be formed by rearranging the letters of A. For example,
the word pot is an anagram of the word top. Your function will take as input the name of a
file of words and as well as a word, and print all the words in the file that are anagrams of
the input word. In the next examples, use file words. txt as your file of words.

>>> anagrams('words.txt' , 'trace')
crate
cater
react

File: words.txt

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

366 Chapter 10 Recursion

File: files.zip

Figure 10.16 Pascal's
triangle. Only the first five
lines of Pascal's triangle are
shown.

10.27 Write a function pairs 1 () that takes as inputs a list of integers and an integer target
value and returns True if there are two numbers in the list that add up to the target and
False otherwise. Your implementation should use the nested loop pattern and check all
pairs of numbers in the list.

»>pairs1([4, 1, 9, 3, 5], 13)
True
»> pairs1([4, 1, 9, 3, 5], 11)
False

When done, reimplement the function so that it sorts the list first and then efficiently
searches for the pair. Analyze the run time of both implementations using the t imingAnalys is ()
app. (Function buildinput O should generate a tuple containing the list and the target.)

10.28 In this problem, you will develop a function that crawls through "linked" files. Every
file visited by the crawler will contain zero or more links, one per line, to other files and
nothing else. A link to a file is just the name of the file. For example, the content of file
fileO. txt is:

file1. txt
file2 .txt

The first line represents the link o file file1. txt and the second is a link to file2. txt.

Implement recursive method crawl O that takes as input a file name (as a string), prints
a message saying the file is being visited, opens the file, reads each link, and recursively
continues the crawl on each link. The below example uses a set of files packaged in archive
files. zip.

>>> crawl('fileO.txt')
Visiting fileO.txt
Visiting file1.txt
Visiting file3.txt
Visiting file4.txt
Visiting file8.txt
Visiting file9.txt
Visiting file2.txt
Visiting file5.txt
Visiting file6.txt
Visiting file7.txt

10.29 Pascal's triangle is an infinite two-dimensional pattern of numbers whose first five
lines are illustrated in Figure 10.16. The first line, line 0, contains just 1. All other lines start
and end with a 1 too. The other numbers in those lines are obtained using this rule: The
number at position i is the sum of the numbers in position i - 1 and i in the previous line.

1

1 1

1 2 1

y 3 1

1 6 4 1

1187313 2015/06/18 95.13.15.159

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Chapter 1 0 Problems 367

Implement recursive function pascalLine () that takes a nonnegative integer n as input
and returns a list containing the sequence of numbers appearing in the nth line of Pascal's
triangle.

>>> pascalLine(O)
[1]
>>> pasca1Line(2)
[1, 2, 1]

>>> pasca1Line(3)
[1, 3, 3, 1]

>>> pasca1Line(4)
[1, 4, 6, 4, 1]

10.30 Implement recursive function traverse () that takes as input a pathname of a folder
(as a string) and an integer d and prints on the screen the pathname of every file and subfolder
contained in the folder, directly or indirectly. The file and subfolder pathnames should be
output with an indentation that is proportional to their depth with respect to the topmost
folder. The next example illustrates the execution of traverse () on folder 'test' shown
in Figure 10.8.

>>> traverse('test' , 0)
test/fileA.txt
test/folder1

test/folder1/fileB.txt
test/folder1/fileC.txt
test/folder1/folder11

test/folder1/folder11/fileD.txt
test/folder2

test/folder2/fileD.txt
test/folder2/fileE.txt

10.31 Implement function search () that takes as input the name of a file and the pathname
of a folder and searches for the file in the folder and any folder contained in it, directly or
indirectly. The function should return the pathname of the file, if found; otherwise, None
should be returned. The below example illustrates the execution of search ('file. txt' ,
'test') from the parent folder of folder 'test ' shown in Figure 10.8.

>>> search('fileE.txt' , 'test')
test/folder2/fileE.txt

10.32 The Levy curves are fractal graphical patterns that can be defined recursively. Like
the Koch curves, for every nonnegative integer n > 0, the Levy curve Ln can be defined
in terms of Levy curve Ln-l; Levy curve Lo is just a straight line. Figure I 0.17 shows the
Levy curve L 8 •

(a) Find more information about the Levy curve online and use it to implement recursive
function levy() that takes a nonnegative integer n and returns turtle instructions
encoded with letters L, R and, F, where L means "rotate left 45 degrees," R means
"rotate right 90 degrees," and F means "go forward."

»> levy(O)

File: test.zip

File: test.zip

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

368 Chapter 10 Recursion

Figure 10.17 Levy curve
Ls.

>» levy(1)
'LFRFL'
»> levy(2)
'LLFRFLRLFRFLL'

(b) Implement function draw Levy ()) so that it takes nonnegative integer n as input and
draws the Levy curve Ln using instructions obtained from function levy ().

10.33 In the simple coin game you are given an initial number of coins and then, in every
iteration of the game, you are required to get rid of a certain number of coins using one of
the following rules. If n is the number of coins you have then:

• If n is divisible by 10, then you may give back 9 coins.

• If n is even, then you may give back exactly n/2 - 1 coins.

• If n is divisible by 3, then you may give back 7 coins.

• If n is divisible by 4, then you may give back 6 coins.

If none of the rules can be applied, you lose. The goal of the game is to end up with exactly
8 coins.

Note that more than one rule may be applied for some values of n. If n is 20, for example,
rule 1 could be applied to end up with 11 coins. Since no rule can be applied to 11 coins,
you would lose the game. Alternatively, rule 4 could be applied to end up with 14 coins, and
then rule 2 could be applied to end up with 8 coins and win the game.

Implement a function coins () that takes as input the initial number of coins and returns
True if there is some way to play the game and end up with 8 coins. The function should
return False only if there is no way to win.

»> coins(7)
False
»> coins(8)

True
»> coins(20)
True
»> coins(66)
False
»> coins(99)
True

10.34 Using linear recursion, implement function recoup() that takes a list as input and
returns a copy of it in which every list item has been duplicated.

>>> recDup(['ant' , 'bat' , 'cat' , 'dog'])
[

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

Chapter 10 Problems 369

10.35 Using linear recursion, implement function recReverse () that takes a list as input
and returns a reversed copy of the list.

>>>1st= [1, 3, 5, 7, 9]
>>> recReverse(lst)
[9, 7, 5, 3, 1]

10.36 Using linear recursion, implement function recSpli t () that takes, as input, a list
1st and a nonnegative integer i no greater than the size of 1st. The function should split
the list into two parts so that the second part contains exactly the last i items of the list. The
function should return a list containing the two parts.

>>> recSplit([l, 2, 3, 4, 5, 6, 7], 3)
[[1, 2, 3, 4] , [5, 6, 7]]

10.37 Implement a function that draws patterns of squares like this:

(a) To get started, first implement function square() that takes as input a Turtle object
and three integers x, y, and s and makes the Turtle object trace a square of side
length s centered at coordinates (x, y).

>>> from turtle import Screen, Turtle
>>> s = Screen()
»> t = Turtle()
»> t.pensize(2)
>>> square(t, 0, 0, 200) # draws the square

(b) Now implement recursive function squares() that takes the same inputs as function
square plus an integer n and draws a pattern of squares. When n = 0, nothing is
drawn. When n = 1, the same square drawn by square (t, 0, 0, 200) is drawn.
When n = 2 the pattern is:

Each of the four small squares is centered at an endpoint of the large square and has
length 1/2.2 of the original square. When n = 3, the pattern is:

1187313 2015/06/18 95.13.15.159

Username: CETIN KOCBook: Introduction to Computing Using Python: An Application Development Focus, 2nd Edition. No part
of any book may be reproduced or transmitted in any form by any means without the publisher's prior written permission. Use
(other than pursuant to the qualified fair use privilege) in violation of the law or these Terms of Service is prohibited. Violators will
be prosecuted to the full extent of the law.

	aaai
	aaxi
	axxi
	001
	011
	021
	031
	041
	051
	061
	071
	081
	091
	101
	111
	121
	131
	141
	151
	161
	171
	181
	191
	201
	203
	213
	223
	233
	243
	253
	263
	273
	283
	293
	303
	313
	323
	333
	343
	353
	363
	373
	383
	393
	403
	413
	423
	433
	443
	453
	463
	473
	483
	493
	503
	513
	523

