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IN THIS CHAPTER , we learn about recursion, a powerful problem-solving 
technique, and run time analysis. 

Recursion is a problem-solving technique that expresses the solution 
to a problem in terms of solutions to subproblems of the original problem. 
Recursion can be used to solve problems that might otherwise be quite 
challenging. The functions developed by solving a problem recursively will 
naturally call themselves, and we refer to them as recursive functions. We 
also show how namespaces and the program stack support the execution 
of recursive functions. 

We demonstrate the wide use of recursion in number patterns, 
fractals, virus scanners, and searching. We differentiate between linear 
and nonlinear recursion and illustrate the close relationship between 
iteration and linear recursion. 

As we discuss when recursion should and should not be used, the 
issue of program run time comes up. So far we have not worried much 
about the efficiency of our programs. We now rectify this situation and use 
the opportunity to analyze several fundamental search tasks. We develop 
a tool that can be used to analyze experimentally the running time of 
functions with respect to the size of the input. 
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330 Chapter 10 Recursion 

Module: ch10.py 

10.1 Introduction to Recursion 
A recursive function is a function that calls itself. In this section we explain what this means 
and how recursive functions get executed. We also introduce recursive thinking as an ap
proach to problem solving. In the next section, we apply recursive thinking and how to 
develop recursive functions. 

Functions that Call Themselves 
Here is an example that illustrates what we mean by a function that calls itself: 

def countdown(n): 
2 print(n) 
3 countdown(n-1) 

In the implementation of function countdown (), the function countdown () is called. So, 
function countdown () calls itself. When a function calls itself, we say that it makes a 
recursive call. 

Let's understand the behavior of this function by tracing the execution of function call 
countdown(3): 

• When we execute countdown (3), the input 3 is printed and then countdown() is 
called on the input decremented by 1-that is, 3 - 1 = 2. We have 3 printed on the 
screen, and we continue tracing the execution of countdown (2). 

• When we execute countdown(2), the input 2 is printed and then countdown() is 
called on the input decremented by 1-that is, 2 - 1 = 1. We now have 3 and 2 printed 
on the screen, and we continue tracing the execution of countdown ( 1). 

• When we execute countdown (1), the input 1 is printed and then countdown() is 
called on the input decremented by 1-that is, 1 - 1 = 0. We now have 3, 2, and 1 
printed on the screen, and we continue tracing the execution of countdown ( 0). 

• When we execute countdown(O), the input O is printed and then countdown() is 
called on the input, 0, decremented by 1-thatis, 0-1 = -1. We now have 3, 2, 1, and 
0 printed on the screen, and we continue tracing the execution of countdown ( -1). 

• When we execute countdown(-1), ... 

It seems that the execution will never end. Let's check: 

>>> countdown(3) 
3 
2 

1 
0 
-1 

-2 
-3 

The behavior of the function is to count down, starting with the original input number. If 
we let the function call countdown (3) execute for a while, we get: 
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-973 
-974 
Traceback (most recent call last): 

File "<pyshell#2>" , line 1, in <module> 
countdown(3) 

File "/Users/me/ch10.py" ... 
countdown(n-1) 

And after getting many lines of error messages, we end up with: 

RuntimeError: maximum recursion depth exceeded 

Section 10.1 Introduction to Recursion 331 

OK, so the execution was going to go on forever, but the Python interpreter stopped it. We 
will explain why the Python VM does this soon. The main point to understand right now is 
that a recursive function will call itself forever unless we modify the function so there is a 
stopping condition. 

Stopping Condition 
To show this, suppose that the behavior we wanted to achieve with the countdown () func
tion is really: 

or 

>>> countdown(3) 
3 
2 
1 
Blastoff!!! 

>>> countdown(O) 
Blastoff!!! 

Function countdown () is supposed to count down to 0, starting from a given input n; when 
0 is reached, Blastoff! ! ! should be printed. 

To implement this version of countdown (), we consider two cases that depend on 
the value of the input n. When the input n is O or negative, all we need to do is print 
'Blastoff!!!': 

def countdown(n): 
'counts down to 0' 
if n <= 0: 

print( 'Blastoff!!! ' ) 
else: 
# remainder of function 

# base case 

We call this case the base case of the recursion; it is the condition that will ensure that the 
recursive function is not going to call itself forever. 

The second case is when the input n is positive. In that case we do the same thing we 
did before: 

print(n) 
countdown(n-1) 
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Module: ch1 O.py 

How does this code implement the function countdown () for input value n > 0? The 
insight used in the code is this: Counting down from (positive number) n can be done by 
printing n first and then counting down from n - l. This fragment of code is called the 
recursive step. 

With the two cases resolved, we obtain the recursive function: 

def countdown(n): 
'counts down from n to 0' 

if n <= 0: 
print( 'Blastoff!!! ' ) 

else: 

# base case 

# n > 0: recursive 

# print n first 

step 

and then print(n) 
countdown(n-1) # count down from n-1 to 

# recursively 

Properties of Recursive Functions 
A recursive function that terminates will always have: 

0 

1. One or more base cases, which provide the stopping condition for the recursion. In 
function countdown (), the base case is the condition n S: 0, where n is the input. 

2. One or more recursive calls, which must be on arguments that are "closer" to the 
base case than the function input. In function countdown (), the sole recursive call 
is made on n - l, which is "closer" to the base case than input n. 

What is meant by "closer" depends on the problem solved by the recursive function. The 
idea is that each recursive call should be made on problem inputs that are closer to the base 
case; this will ensure that the recursive calls eventually will get to the base case that will 
stop the execution. 

In the remainder of this section and the next, we present many more examples of recur
sion. The goal is to learn how to develop recursive functions. To do this, we need to learn 
how to think recursively-that is, to describe the solution to a problem in terms of solutions 
of its subproblems. Why do we need to bother? After all, function countdown () could have 
been implemented easily using iteration. (Do it!) The thing is that recursive functions pro
vide us with an approach that is an alternative to the iterative approach we used in Chapter 5. 
For some problems, this alternative approach actually is the easier, and sometimes, much 
easier approach. When you start writing programs that search the Web, for example, you 
will appreciate having mastered recursion. 

Recursive Thinking 
We use recursive thinking to develop recursive function vertical() that takes a nonneg
ative integer as input and prints its digits stacked vertically. For example: 

>>> vertical(3124) 
3 
1 
2 

4 

To develop vertical () as a recursive function, the first thing we need to do is decide the 
base case of the recursion. This is typically done by answering the question: When is the 
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problem of printing vertically easy? For what kind of nonnegative number? 

The problem is certainly easy if the input n has only one digit. In that case, we just 
output n itself: 

»> vertical(6) 
6 

So we make the decision that the base case is when n < 10. Let's start the implementation 
of the function vertical O: 

def vertical(n): 
'prints digits of n vertically' 

if n < 10: # base case: n has 1 digit 
print(n) 

else: 
# just print n 

# recursive step: n has 2 or more digits 

# remainder of function 

Function vertical() prints n if n is less than 10 (i.e., n is a single digit number). 

Now that we have a base case done, we consider the case when the input n has two or 
more digits. In that case, we would like to break up the problem of printing vertically number 
n into "easier" subproblems, involving the vertical printing of numbers "smaller" than n. 
In this problem, "smaller'' should get us closer to the base case, a single-digit number. This 
suggests that our recursive call should be on a number that has fewer digits than n. 

This insight leads to the following algorithm: Since n has at least two digits, we break 
the problem: 

a. Print vertically the number obtained by removing the last digit of n; this number 
is "smaller" because it has one less digit. For n = 3124, this would mean calling 
function vertical() on 312. 

b. Print the last digit. For n = 3124, this would mean printing 4. 

The last thing to figure out is the math formulas for (1) the last digit of n and (2) the number 
obtained by removing the last digit. The last digit is obtained using the modulus (%) operator: 

»> n = 3124 
»> n%10 
4 

We can "remove" the last digit of n using the integer division operator (/ /): 

»> n//10 
312 

With all the pieces we have come up with, we can write the recursive function: 

def vertical(n): 
'prints digits 

if n < 10: 
of n vertically' 

print(n) 
else: 

vertical(n//10) 

# base case: n has 1 digit 

# just print n 

# recursive step: n has 2 or more digits 

# recursively print all but last digit 

Module: ch10.py 
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Practice Problem 
10.1 

Practice Problem 
10.2 

Practice Problem 
10.3 

Implement recursive method reverse () that takes a nonnegative integer as input and prints 
its digits vertically, starting with the low-order digit. 

>>> reverse(3124) 
4 
2 
1 
3 

Let's summarize the process of solving a problem recursively: 
1. First decide on the base case or cases of the problem that can be solved directly, 

without recursion. 

2. Figure out how to break the problem into one or more subproblems that are closer 
to the base case; the subproblems are to be solved recursively. The solutions to the 
subproblems are used to construct the solution to the original problem. 

Use recursive thinking to implement recursive function cheers () that, on integer input n, 
outputs n strings 'Hip ' followed by 'Hurray! ! ! ' 

»> cheers(O) 
Hurray!!! 
»> cheers(1) 
Hip Hurray! ! ! 
>» cheers(4) 
Hip Hip Hip Hip Hurray!!! 

The base case of the recursion should be when n is O; your function should then print 
Hurrah. When n > l, your function should print 'Hip ' and then recursively call itself on 
integer input n - 1. 

In Chapter 5, we implemented function factorial() iteratively. The factorial function n! 
has a natural recursive definition: 

n! 1 if n = 0 
n·(n-1)! ifn>O 

Reimplement function factorial() function using recursion. Also, estimate how many 
calls to factorial() are made for some input value n > 0. 

Recursive Function Calls and the Program Stack 
Before we practice solving problems using recursion, we take a step back and take a closer 
look at what happens when a recursive function gets executed. Doing so should help us 
recognize that recursion does work. 
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We consider what happens when function vertical() is executed on input n = 3124. 
In Chapter 7, we saw how namespaces and the program stack support function calls and the 
normal execution control flow of a program. Figure 10.1 illustrates the sequence of recursive 
function calls, the associated namespaces, and the state of the program stack during the 
execution of vertical (3124). 

def vertical(n): 
'prints digits 

if n < 10: 
of n vertically' 

# base case: n has 1 digit 

print(n) # just print n 

else: 
vertical(n//10) 
print(n%10) 

# recursive step: n has 2 or more digits 

# recursively print all but last digit 

# print last digit of n 

The difference between the execution shown in Figure 10.1 and Figure 7 .5 in Chapter 7 is 
that in Figure 10.1, the same function gets called: function vertical() calls vertical(), 
which calls vertical(), which calls vertical(). In Figure 7.5, function f () calls g(), 
which calls h (). Figure 10.1 thus underlines that a namespace is associated with every 
function call rather than with the function itself. 

I I 

1 Execution of 1 Execution of Execution of Execution of 
I I 

1 vertical (3124) 1 vertical (312) vertical(31) vertical(3) 
I I 

I 

vertical(3124) 

n = 3124 
vertical(312) 

n = 312 
vertical (31) 

n = 31 
vertical(3) 

line 7 
print(2) 

n = 31 

line 7 line 7 
print(4) 

n = 312 n = 312 

line? line? line 7 

n = 3124 n = 3124 n = 3124 

Program stack Program stack Program stack 

Module: ch10.py 

Figure 10.1 Recursive 
function execution. 
vertical (3124) executes 
in a namespace in which 
n is 3124. Just before call 
vertical (312) is made, 
values in the namespace 
(3124) and the next line to 
execute (line 7) are stored 
in the program stack. Then 
vertical (312) executes 
in a new namespace in 
which n is 312. Stack 
frames are similarly added 
just before recursive calls 
vertical(31) and 
vertical (3). Call 
vertical (3) executes in a 
new namespace in which n 
is 3 and 3 is printed. When 
vertical (3) terminates, 
the namespace of 
vertical(31) is restored: 
n is 31, and the statement in 
line 7, print(n%10), prints 
1. Similarly, namespaces of 
vertical (312) and 
vertical (3124) are 
restored as well. 
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Figure 10.2 Output of 
pattern (3). The output of 

10.2 Examples of Recursion 
In the previous section, we introduced recursion and how to solve problems using recursive 
thinking. The problems we used did not really showcase the power of recursion: Each prob
lem could have been solved as easily using iteration. In this section, we consider problems 
that are far easier to solve with recursion. 

Recursive Number Sequence Pattern 

We start by implementing function pattern() that takes a nonnegative integer n and prints 
a number pattern: 

»> pattern(O) 
0 
»> pattern(1) 
0 1 0 
»> pattern(2) 
0 1 0 2 0 1 0 
»> pattern(3) 
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 
»> pattern(4) 
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 

How do we even know that this problem should be solved recursively? A priori, we do not, 
and we need to just try it and see whether it works. Let's first identify the base case. Based 
on the examples shown, we can decide that the base case is input O for which the function 
pattern () should just print 0. We start the implementation of the function: 

def pattern(n): 
'prints the nth pattern' 
if n == 0: 

print(O) 
else: 

# remainder of function 

We now need to describe what the function pattern() does for positive input n. Let's 
look at the output of pattern(3), for example 

»> pattern(3) 
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 

and compare it to the output of pattern(2) 

»> pattern(2) 
0 1 0 2 0 1 0 

As Figure 10.2 illustrates, the output ofpattern(2) appears in the output of pattern(3), 
not once but twice: 

pattern(3) 10102010 1 3 10102010 1 

pattern(2) pattern(2) 
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It seems that the correct output of pattern (3) can be obtained by calling the func
tion pattern(2), then printing 3, and then calling pattern(2) again. In Figure 10.3, we 
illustrate the similar behavior for the outputs of pattern (2) and pattern (1): 

pattern(2) 1010 1 2 1010 1 

pattern(!) pattern(!) 

pattern(!) @] 1 @] 
pattern(0) pattern(0) 

In general, the output for pattern(n) is obtained by executing pattern(n-1), then 
printing the value of n, and then executing pattern(n-1) again: 

..• # base case of function 

else 
pattern(n-1) 
print(n) 
pattern(n-1) 

Let's try the function as implemented so far: 

>» pattern(!) 
0 
1 
0 

Almost done. In order to get the output in one line, we need to remain in the same line after 
each print statement. So the final solution is: 

def pattern(n): 
'prints the nth pattern' 

if n == 0: # base case 

print(0, end= ' ' ) 
else: # recursive step: n > 0 

pattern(n-1) # print n-lst pattern 

print(n, end= ' I ) # print n 

pattern(n-1) # print n-lst pattern 

Implement recursive method pattern2 () that takes a nonnegative integer as input and 
prints the pattern shown next. The patterns for inputs O and 1 are nothing and one star, 
respectively: 

»> pattern2(0) 
»> pattern2 ( 1) 

* 

The patterns for inputs 2 and 3 are shown next. 

Figure 10.3 Outputs of 
pattern(2) and 
pattern(!). The output 
of pattern(2) can be 
obtained from the output of 
pattern(!). The output 
of pattern(!) can be 
obtained from the output 
of pattern(O). 

Module: ch10.py 

Practice Problem 
10.4 
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Figure 10.4 Koch curve 
Ks. A fractal curve often 
resembles a snowflake. 

Figure 10.5 Koch curves 
with drawing instructions. 
On the left, from top to 
bottom, are Koch curves 
Ko, K1, K2, and K3. The 
drawing instructions for 
Koch curves Ko, K1, and 
K2 are shown as well. The 
instructions are encoded 
using letters F, L, and R 
corresponding to "move 
forward," "rotate left 60 
degrees," and "rotate right 
120 degrees." 

>>> pattern2(2) 

* 
** 
* 
>>> pattern2(3) 

* 
** 
* 
*** 
* 
** 
* 

Fractals 
In our next example of recursion, we will also print a pattern, but this time it will be a 
graphical pattern drawn by a Turtle graphics object. For every nonnegative integer n, the 
printed pattern will be a curve called the Koch curve Kn. For example, Figure 10.4 shows 
Koch curve K 5 • 

We will use recursion to draw Koch curves such as K 5 • To develop the function that is 
used to draw this and other Koch curves, we look at the first few Koch curves. Koch curves 
Ko, K 1 , K 2 , and K 3 are shown on the left of Figure 10.5. 

If you look carefully at the patterns, you might notice that each Koch curve Ki, for i > 0, 
contains within itself several copies of Koch curve Ki-l · For example, curve K 2 contains 
four copies of (smaller versions of) curve K 1 . 

Koch curve turtle instructions 

Ko: F 

K1: 
_/\_ 

FLFRFLF 

K2: ~ FLFRFLFLFLFRFLFRFLFRFLFLFLFRFLF 

K ~ 
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More precisely, to draw Koch curve K 2 , a Turtle object should follow these instruc-
tions: 

1. Draw Koch curve K 1. 

2. Rotate left 60 degrees. 

3. Draw Koch curve K 1 · 

4. Rotate right 120 degrees. 

5. Draw Koch curve K 1. 

6. Rotate left 60 degrees. 

7. Draw Koch curve K 1. 

Note that these instructions are described recursively. This suggests that what we need to 
do is develop a recursive function koch (n) that takes as input a nonnegative integer n and 
returns instructions that a Turtle object can use to draw Koch curve Kn, The instructions 
can be encoded as a string of letters F, L, and R corresponding to instructions "move for
ward," "rotate left 60 degrees," and "rotate right 120 degrees," respectively. For example, 
instructions for drawing Koch curves Ko, K 1 , and K 2 are shown on the right of Figure 10.5. 
The function koch() should have this behavior: 

>» koch(O) 

'F' 
»> koch(1) 
'FLFRFLF' 
»> koch(2) 

'FLFRFLFLFLFRFLFRFLFRFLFLFLFRFLF' 

Now let's use the insight we developed about drawing curve K 2 in terms of drawing K 1 

to understand how the instructions to draw K 2 (computed by function call koch (2)) are ob
tained using instructions to draw K 1 (computed by function call koch(1) ). As Figure 10.6 
illustrates, the instructions for curve K 1 appear in the instructions of curve K 2 four times: 

koch(2) IFLFRFLFI L IFLFRFLFI R IFLFRFLFI L IFLFRFLFI 

koch(1) koch(1) koch(1) koch(1) 

Similarly, the instructions to draw K 1 , output by ko ch (1) , contain the instructions to 
draw Ko, output by koch(O), as shown in Figure 10.7: 

koch(1) IT] L IT] R IT] L IT] 
koch(O) koch(O) koch(O) koch(O) 

Now we can implement function koch () recursively. The base case corresponds to input 
0. In that case, the function should just return instruction ' F' : 

def koch(n): 
if n == 0: 

return 'F' 
# remainder of function 

Figure 10.6 Output of 
Koch(2). Koch(1) can be 
used to construct the output 
ofKoch(2). 

Figure 10.7 Output of 
Koch(1). Koch(O) can be 
used to construct the output 
ofKoch(1). 
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CAUTION 

& 
Module: ch10.py 

Module: ch10.py 

For input n > 0, we generalize the insight illustrated in Figures 10.6 and 10.7. The instruc
tions output by koch (n) should be the concatenation: 

koch(n-1) + 'L' + koch(n-1) + 'R' + koch(n-1) + 'L' + koch(n-1) 

and the function koch () is then 

def koch(n): 
if n == 0: 

return 'F' 

return koch(n-1) + 'L' + koch(n-1) + 'R' + koch(n-1) + 'L' + \ 
koch(n-1) 

If you test this function, you will see that it works. There is an efficiency issue with this 
implementation, however. In the last line, we call function koch () on the same input four 
times. Of course, each time the returned value (the instructions) is the same. Our implemen
tation is very wasteful. 

Avoid Repeating the Same Recursive Calls 

Often, a recursive solution is most naturally described using several identical recur
sive calls. We just saw this with the recursive function koch (). Instead of repeatedly 
calling the same function on the same input, we can call it just once and reuse its 
output multiple times. 

The better implementation of function koch () is then: 

def koch(n): 
'returns turtle directions for drawing curve Koch(n)' 

4 if n == 0: # base case 

s return 'F' 

7 tmp = koch(n-1) # recursive step: get directions for Koch(n-1) 

e # use them to construct directions for Koch(n) 

10 return tmp + 'L' + tmp + 'R' + tmp + 'L' + tmp 

The last thing we have to do is develop a function that uses the instructions returned by 
function koch () and draws the corresponding Koch curve using a Turtle graphics object. 
Here it is: 

from turtle import Screen, Turtle 
2 def drawKoch (n) : 
3 'draws nth Koch curve using instructions from function koch()' 

s = Screen() 
t = Turtle() 
directions= koch(n) 

# create screen 

# create turtle 

# obtain directions to draw Koch(n) 
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9 for move in directions: # follow the specified moves 

10 if move == ' F ' : 

11 t. forward(300/3**n) # move forward, length normalized 

12 if move == ' L ' : 

13 

14 

15 

t.lt(60) 
if move == ' R' : 

t. rt (120) 

# rotate left 60 degrees 

# rotate right 60 degrees 
1s s. bye() 

Line 11 requires some explanation. The value 300/3**n is the length of a forward turtle 
move. It depends on the value of n so that, no matter what the value of n is, the Koch curve 
has width 300 pixels and fits in the screen. Check this for n equal to O and 1. 

Koch Curves and Other Fractals 

The Koch curves Kn were first described in a 1904 paper by the Swedish math
ematician Helge von Koch. He was particularly interested in the curve K 00 that is 
obtained by pushing n to oo. 

The Koch curve is an example of a fractal. The term fractal was coined by French 
mathematician Benoit Mandelbrot in 1975 and refers to curves that: 

• Appear "fractured" rather than smooth 

• Are self-similar (i.e., they look the same at different levels of magnification) 

• Are naturally described recursively 

Physical fractals, developed through recursive physical processes, appear in nature 
as snowflakes and frost crystals on cold glass, lightning and clouds, shorelines and 
river systems, cauliflower and broccoli, trees and ferns, and blood and pulmonary 
vessels. 

Implement function snowflake() that takes a nonnegative integer n as input and prints a 
snowflake pattern by combining three Koch curves Kn in this way: When the turtle is fin
ished drawing the first and the second Koch curve, the turtle should rotate right 120 degrees 
and start drawing a new Koch curve. Shown here is the output of snowflake (4). 

DETOUR 

C i 

Practice Problem 
10.5 
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File: test.zip 

Virus Scanner 
We now use recursion to develop a virus scanner, that is, a program that systematically 
looks at every file in the filesystem and prints the names of the files that contain a known 
computer virus signature. The signature is a specific string that is evidence of the presence 
of the virus in the file. 

Viruses and Virus Scanners 

A computer virus is a small program that, usually without the user's knowledge, 
is attached to or incorporated in a file hosted on the user's computer and does 
nefarious things to the host computer when executed. A computer virus may corrupt 
or delete data on a computer, for example. 

A virus is an executable program, stored in a file as a sequence of bytes just like 
any other program. If the computer virus is identified by a computer security expert 
and the sequence of bytes is known, all that needs to be done to check whether 
a file contains the virus is to check whether that sequence of bytes appears in the 
file. In fact, finding the entire sequence of bytes is not really necessary; searching 
for a carefully chosen fragment of this sequence is enough to identify the virus with 
high probability. This fragment is called the signature of the virus: It is a sequence 
of bytes that appears in the virus code but is unlikely to appear in an uninfected file. 

A virus scanner is a program that periodically and systematically scans every 
file in the computer filesystem and checks each for viruses. The scanner application 
will have a list of virus signatures that is updated regularly and automatically. Each 
file is checked for the presence of some signature in the list and flagged if it contains 
that signature. 

We use a dictionary to store the various virus signatures. It maps virus names to virus 
signatures: 

>>>signatures= { 'Creeper' : 'ye8009g2h1azzx33' , 
'Code Red' : '99dh1cz963bsscs3' , 
'Blaster' : 'fdp1102k1ks6hgbc' } 

(While the names in this dictionary are names of real viruses, the signatures are completely 
fake.) 

The virus scanner function takes, as input, the dictionary of virus signatures and the 
pathname (a string) of the top folder or file. It then visits every file contained in the top 
folder, its subfolders, subfolders of its subfolders, and so on. An example folder 'test' is 
shown in Figure 10.8 together with all the files and folders that are contained in it, directly or 
indirectly. The virus scanner would visit every file shown in Figure 10.8 and could produce, 
for example, this output: 

>>> scan( 'test' , signatures) 
test/fileA.txt, found virus Creeper 
test/folder1/fileB.txt, found virus Creeper 
test/folder1/fileC.txt, found virus Code Red 
test/folder1/folder11/fileD.txt, found virus Code Red 
test/folder2/fileD.txt, found virus Blaster 
test/folder2/fileE.txt, found virus Blaster 
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test 

folderl fileA.txt folder2 

fileB.txt fileC.txt folderll fileD.txt fileE.txt 

fileD.txt 

Because of the recursive structure of a filesystem (a folder contains files and other fold
ers), we use recursion to develop the virus scanner function scan (). When the input path
name is the pathname of a file, the function should open, read, and search the file for virus 
signatures; this is the base case. When the input pathname is the pathname of a folder, 
scan() should recursively call itself on every file and subfolder of the input folder; this is 
the recursive step. The complete implementation is: 

import os 
2 def scan(pathname, signatures): 
3 '' 'scans pathname or, if pathname is a folder, scans all files 
4 contained, directly or indirectly, in the folder pathname''' 
5 if os.path.isfile(pathname): # base case, scan pathname 
s infile = open(pathname) 
7 content= infile.read() 
a infile.close() 

10 

11 

12 

13 

14 

15 

for virus in signatures: 
# check whether virus signature appears in content 
if content.find(signatures[virus]) >= 0: 

print( '{}, found virus{}' .format(pathname, virus)) 
return 

1s # pathname is a folder so recursively scan every item in it 
17 for i tern in os. listdir (pathname) : 
18 

19 

20 

21 

22 

23 

24 

25 

# create pathname for item relative 
# to current working directory 
# fullpath =pathname+ '/' + item 
# fullpath =pathname+ '\' + item 
fullpath = os.path.join(pathname, item) 

scan(fullpath, signatures) 

# Mac only 
# Windows only 
# any OS 

This program uses functions from the Standard Library module os. The module os 
contains functions that provide access to operating system resources such as the filesystem. 
The three os module functions we are using are: 

a. listdir (). Takes, as input, an absolute or relative pathname (as a string) of a folder 
and returns the list of all files and subfolders contained in the input folder. 

Figure 10.8 Filesystem 
fragment. Illustrated is 
folder 'test' and all its 
descendant folders and 
files. 

Module: ch10.py 
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b. path. isf ile (). Takes, as input, an absolute or relative pathname (as a string) and 
returns True if the pathname refers to a regular file, False otherwise. 

c. path.join(). Takes as input two pathnames, joins them into a new pathname, in-
serting \ or / as needed, and returns it. 

We explain further why we need the third function. The function listdir () does not return 
a list of pathnames but just a list of file and folder names. For example, when we start 
executing scan ('test ') (we ignore the second argument of scan() in this discussion), 
the function listdir () will get called in this way: 

>>> os.listdir( 'test' ) 
[ 'fileA.txt' , 'folder!' , 'folder2' ] 

If we were to make the recursive call scan(' folder!'), then, when this function call 
starts executing, the function listdir () would get called on pathname 'folder!', with 
this result: 

>>> os.listdir( 'folder1' ) 
Traceback (most recent call last): 

File "<pyshell#387>" , line 1, in <module> 
os.listdir( 'folder1' ) 

OSError: [Errno 2] No such file or directory: 'folder!' 

The problem is that the current working directory during the execution of scan ('test') 
is the folder that contains the folder test; the folder 'folder!' is not in there, thus the 
error. 

Instead of making the call scan ('folder!'), we need to make the call on a pathname 
that is either absolute or relative with respect to the current working directory. The pathname 
of 'folder!' can be be obtained by concatenating 'test' and 'folder!' as follows 

'test' + '\' + ' folder! ' 

(on a Windows box) or, more generally, concatenating pathname and i tern as follows 

path= pathname+ '\' + item 

This works on Windows machines but not on UNIX, Linux, or MAC OS X machines be
cause pathnames use the forward slashes(/) in those operating systems. A better, portable 
solution is to use the path.join () function from module os. It will work for all operating 
systems and thus be system independent. For example, on a Mac: 

>>>pathname= 'test' 
>>>item= 'folder!' 
>>> os.path.join(pathname, item) 
'test/folder!' 

Here is a similar example executed on a Windows box: 

>>>pathname= 'C://Test/virus' 
>>>item= 'folder!' 
>>> os.path.join(pathname, item) 
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Linear recursion 
The three problems we have considered in this section-printing the number sequence pat
tern, drawing the Koch curve, and scanning the filesystem for viruses-could all have been 
solved without recursion. Iterative solutions for these problems really do exist. The iterative 
solutions, however, require algorithms that are more complex than recursion and that are 
beyond the scope of an introductory computer science textbook. 

The problems we considered in Section 10.1, on the other hand, have simple iterative so
lutions. Recursive functions vertical(), reverse(), cheers(), and factorial() from 
Section 10.1 could have as easily been developed using iteration. In fact, the recursive and 
iterative solutions are closely related. The two implementations of function factorial() 
from Practice Problem 10.3 and Practice Problem 5.4 can be used to illustrate this. While one 
implementation is recursive and the other is iterative, both functions use a similar process to 
compute n!: they both compute a sequence of intermediate results i!, for i = 1, ... , n, ob
tained by multiplying the previous intermediate result ( i - 1) ! with i. The recursive function 
can thus be viewed as a recursive implementation of this idea. 

When the recursive step of a function is implemented using a single recursive call that 
computes the "previous" intermediate result and a "basic," nonrecursive (problem specific) 
operation that computes the "next" intermediate result, the function is said to use linear re
cursion. In function vertical (), for example, the recursive step consists of a single recur
sive call vertical (n/ /10) that prints all but the last digit ofn and statement print (n%10) 
that prints the last digit. 

Linear recursion is a particularly useful technique for implementing fundamental func
tions on lists. For example, a function that adds the numbers in a list of numbers can be 
implemented using linear recursion as follows: 

def recSum(lst): 
'returns the sum of items in list 1st' 

if len(lst) == 0: 
return 0 

return recSum(lst[:-1]) + lst[-1] 

Note that the recursive step consists of a single recursive call that sums all the numbers in 
the list but the last and a "basic" operation that adds the last number to this sum. 

Using linear recursion, implement function recNeg() that takes a list of numbers as input 
and returns True if some number in the list is negative, and False otherwise. 

>>> recNeg([3, 1, -1, 5]) 
True 
>>> recNeg([3, 1, 0, 5]) 
False 

In the next example, we implement function recincr () that takes a list of numbers as 
input and returns a copy of the list with every number in the list incremented by one: 

>>>1st= [1, 4, 9, 16, 25] 
>>> recincr(lst) 
[2, 5, 10, 17, 26] 

Module: ch1 O.py 

Practice Problem 
10.6 
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Module: ch10.py 

Module: ch10.py 

DETOUR 

We choose to implement the function using linear recursion instead of iteration: 

def recincr(lst): 
'returns list [lst[0]+1, lst[1]+1, ... , lst[n-1]+1]' 

if len(lst) == 0: 
return [] 

return recincr(lst[:-1]) + [lst[-1]+1] 

The recursive step consists of concatenating the list obtained by the recursive call and the 
list containing the last number in the list incremented by one. 

The function rec Iner () is an example of a function that takes a list and returns a copy 
of it in which the same operation was performed on every list item. Incrementing every 
number in the list by one is just one of the many operations one may wish to perform on 
items of a list. It would thus be useful to implement a more abstract function recMap 0 
that takes, as input, the operation as well as the list and then applies the operation to every 
item in the list. What "operation" really means, of course, is a function. For example, if we 
wanted to use function recMap () to increment every number in a list of numbers, we would 
first have to define the function that we want to apply to every number: 

»> def f(i): 
return i + 1 

Then we would use recMap () to apply function f to every number in the list: 

>>> recMap(lst, f) 
[2, 5, 10, 17, 26] 

If, instead, we wanted to obtain a list containing the square roots of the numbers in list 1st, 
we would apply the math. sqrt function instead: 

>>> from math import sqrt 
>>> recMap(lst, sqrt) 
[1.0, 2.0, 3.0, 4.0, 5.0] 

Note that the input argument of recMap O is f, not f O, or sqrt, not sqrt O. This is 
because we are simply passing a reference to the function object, not making a function 
call. 

We can implement recMap () using linear recursion: 

def recMap(lst, f): 
'returns list [f(lst[O]), f(lst[1]), ... , f(lst[n-1])]' 

if len(lst) == 0: 
return [] 

return recMap(lst[:-1], f) + [f(lst[-1])] 

Higher-Order Functions 

In function recMap O, the second input argument is a function. A function that takes 
another function as input or that returns a function is called a higher-order function. 
Treating a function like a value is a style of programming that is used extensively in 
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the functional programming paradigm which we introduce in Section 12.3. 
Python supports higher-order functions because the name of a function is 

treated no differently from the name of any other object, so it can be treated as 
a value. Not all languages support higher-order functions. A few other ones that do 
are LISP, Perl, Ruby, and JavaScript. 

Using function recMap (), write a short statement that evaluates to a list containing the 
sums of the rows of a two-dimensional table of numbers called table. 

10.3 Run Time Analysis 
The correctness of a program is of course our main concern. However, it is also important 
that the program is usable or even efficient. In this section, we continue the use of recursion 
to solve problems, but this time with an eye on efficiency. In our first example, we apply 
recursion to a problem that does not seem to need it and get a surprising gain in efficiency. 
In the second example, we take a problem that seems tailored for recursion and obtain an 
extremely inefficient recursive program. 

The Exponent Function 
We consider next the implementation of the exponent function an. As we have seen already, 
Python provides the exponentiation operator**: 

>>> 2**4 
16 

But how is the operator * * implemented? How would we implement it if it was not available? 
The straightforward approach is to just multiply the value of a n times. The accumulator 
pattern can be used to implement this idea: 

def power(a, n): 
'returns a to the nth power' 

res= 1 
for i in range(n): 

res*= a 
return res 

You should convince yourself that the function power () works correctly. But is this the best 
way to implement the function power () ? Is there an implementation that would run faster? 
It is clear that the function power() will perform n multiplications to compute an. If n is 
10,000, then 10,000 multiplications are done. Can we implement power() so significantly 
fewer multiplications are done, say about 20 instead of 10,000? 

Let's see what the recursive approach will give us. We are going to develop a recursive 
function rpower () that takes inputs a and nonnegative integer n and returns a 

Practice Problem 
10.7 

Module: ch10.py 
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Figure 10.9 Computing an 
recursively. When n is 
even, an= an/ 2 X an/ 2 . 

Figure 10.10 Computing 
an recursively. When n is 
odd, 
an = aln/2J X aln/2J X a. 

Module: ch10.py 

The natural base case is when the input n is 0. Then an = land so 1 must be returned: 

def rpower(a, n): 
'returns a to the nth power' 
if n == 0: # base case: n 0 

return 1 
# remainder of function 

Now let's handle the recursive step. To do this, we need to express an, for n > 0, 
recursively in terms of smaller powers of a (i.e., "closer" to the base case). That is actually 
not hard, and there are many ways to do it: 

an an-l X a 

an an-2 X a2 

an an-3 X a3 

an an/2 X an/2 

The appealing thing about the last expression is that the two terms, an/ 2 and an/ 2, are the 
same; therefore, we can compute an by making only one recursive call to compute an/ 2. 
The only problem is that n/2 is not an integer when n is odd. So we consider two cases. 

As we just discovered, when the value of n is even, we can compute rpower (a, n) 
using the result of rpower(a, n//2) as shown in Figure 10.9: 

rpower(2, n) l2x2x ... x2 1 x l2x2x ... x2 1 

power(2, n//2) power(2, n//2) 

When the value of n is odd, we still can use the result ofrecursive call rpower (a, n/ /2) 
to compute rpower (a, n), albeit with an additional factor a, as illustrated in Figure 10.10: 

rpower(2, n) l2x2x ... x2 1 x l2x2x ... x2 1 x 

power(2, n//2) power(2, n//2) 

These insights lead us to the recursive implementation of rpower () shown next. Note 
that only one recursive call rpower(a, n//2) is made. 

10 

11 

def rpower(a, n): 
'returns a to the nth power' 
if n == 0: # base case: n 0 

return 1 

tmp = rpower(a, n//2) 

if n % 2 == 0: 
return tmp*tmp 

else: # n % 2 == 1 

return a*tmp*tmp 

# recursive step: n > 0 

a**(n//2) * a**a(n//2) 

# a**n = a**(n//2) * a**a(n//2) * a 

We now have two implementations of the exponentiation function, power () and rpower () . 
How can we tell which is more efficient? 
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Counting Operations 
One way to compare the efficiency of two functions is to count the number of operations 
executed by each function on the same input. In the case of power () and rpower (), we 
limit ourselves to counting just the number of multiplications 

Clearly, power(2, 10000) will need 10,000 multiplications. What about rpower(2, 
10000)? To answer this question, we modify rpower () so it counts the number of mul
tiplications performed. We do this by incrementing a global variable counter, defined 
outside the function, each time a multiplication is done: 

def rpower(a, n): 
2 'returns a to the nth power' 

3 global counter # counts number of multiplications 

s if n==0: 
s return 1 
7 # if n > 0: 

s tmp = rpower(a, n//2) 

10 if n % 2 == 0 : 
11 counter += 1 
12 

13 

return tmp*tmp 

14 else: # n % 2 == 1 

15 

16 

counter+= 2 
return a*tmp*tmp 

Now we can do the counting: 

>>>counter= 0 
>>> rpower(2, 10000) 
199506311688 ... 792596709376 
>>> counter 
19 

# 1 multiplication 

# 2 multiplications 

Thus, recursion led us to a way to do exponentiation that reduced the number of multipli
cations from 10,000 to 23. 

Fibonacci Sequence 
We introduced the Fibonacci sequence of integers in Chapter 5: 

1,1,2,3,5,8,13,21,34,55,89, ... 

We also described a method to construct the Fibonacci sequence: A number in the se
quence is the sum of the previous two numbers in the sequence (except for the first two ls). 
This rule is recursive in nature. So, if we are to implement a function rf i b () that takes a 
nonnegative integer n as input and returns the nth Fibonacci number, a recursive implemen
tation seems natural. Let's do it. 

Since the recursive rule applies to the numbers after the 0th and 1st Fibonacci number, 
it makes sense that the base case is when n ::; 1 (i.e., n = 0 or n = 1 ). In that case, rf i b () 
should return 1: 

Module: ch10.py 
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Module: ch10.py 

def rfib(n): 
'returns nth Fibonacci number' 
if n < 2: # base case 

return 1 
# remainder of function 

The recursive step applies to input n > 1. In that case, the nth Fibonacci number is the sum 
of then - 1st and n - 2nd: 

def rfib(n): 
'returns nth Fibonacci number' 
if n < 2: # base case 

return 1 

return rfib(n-1) + rfib(n-2) # recursive step 

Let's check that function rfib() works: 

>>> rfib(O) 
1 
>>> rfib(1) 
1 
>>> rfib(4) 
5 
>>> rfib(8) 
34 

The function seems correct. Let's try to compute a larger Fibonacci number: 

»> rfib(35) 
14930352 

Hmmm. It's correct, but it took a while to compute. (Try it.) If you try 

»> rfib(100) 

you will be waiting for a very long time. (Remember that you can always stop the program 

execution by hitting I Ctrl 1-@J simultaneously.) 
Is computing the 36th Fibonacci number really that time consuming? Recall that we 

already implemented a function in Chapter 5 that returns the nth Fibonacci number: 

10 

def fib(n): 
'returns nth Fibonacci number' 
previous= 1 
current= 1 
i = 1 

# 0th Fibonacci number 
# 1st Fibonacci number 
# index of current Fibonacci number 

while i < n: # while current is not nth Fibonacci number 
previous, current= current, previous+current 
i += 1 
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Let's see how it does: 

»> fib(35) 
14930352 
>» fib(100) 
573147844013817084101 
>» fib(10000) 
54438373113565 ... 

Instantaneous in all cases. Let's investigate what is wrong with rf i b (). 

Experimental Analysis of Run Time 
One way to precisely compare functions fib () and rf i b ( )-or other functions for that 
matter-is to run them on the same input and compare their run times. As good (lazy) 
programmers, we like to automate this process, so we develop an application that can be 
used to analyze the run time of a function. We will make this application generic in the 
sense that it can be used on functions other than just fib () and rf i b (). 

Our application consists of several functions. The key one that measures the run time on 
one input is timing(): It is a higher-order function that takes as input (1) a function func 
and (2) an "input size" (as an integer), runs function func on an input of the given size, and 
returns the execution time. 

import time 
2 def timing(func, n): 
3 'runs func on input returned by buildinput' 

4 funcinput = buildinput(n) # obtain input for func 

s start= time.time() # take start time 

s func (funcinput) # run func on funcinput 

1 end = time. time() # take end time 

return end - start # return execution time 

Function timing () uses the time () function from the time module to obtain the current 
time before and after the execution of the function func; the difference between the two will 
be the execution time. (Note: The timing can be affected by other tasks the computer may 
be doing, but we avoid dealing with this issue.) 

The function buildinput () takes an input size and returns an object that is an appro
priate input for function func () and has the right input size. This function is dependent on 
the function func () we are analyzing. In the case of the Fibonacci functions fib () and 
rf i b (), the input corresponding to input size n is just n: 

def buildinput(n): 
2 'returns input for Fibonacci functions' 

3 return n 

Comparing the run times of two functions on the same input does not tell us much about 
which function is better (i.e., faster). It is more useful to compare the run times of the two 
functions on several different inputs. In this way, we can attempt to understand the behavior 
of the two functions as the input size (i.e., the problem size) becomes larger. We develop, 
for that purpose, function timingAnalysis that runs an arbitrary function on a series of 
inputs of increasing size and report run times. 

Module: ch10.py 

Module: ch10.py 
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Module: ch10.py 

Figure 10.11 Run time 
graph. Shown are the 
average run times, in 

10 

11 

12 

def timingAnalysis(func, start, stop, inc, runs): 
'' 'prints average run times of function func on inputs of 

size start, start+inc, start+2*inc, ... , up to stop''' 
for n in range(start, stop, inc): # for every input size n 

ace= 0.0 # initialize accumulator 

for i in range(runs): # repeat runs times: 
ace+= timing(func, n) # run func on input of size n 

# and accumulates run times 
# print average run times for input size n 
formatStr = 'Run time of{}({}) is {:.7f} seconds.' 
print(formatStr.format(func. __ name __ , n, ace/runs)) 

Function timingAnalysis takes, as input, function func and numbers start, stop, inc, 
and runs. It first runs func on several inputs of size start and prints the average run time. 
Then it repeats that for input sizes start+inc, start+2*inc, ... up to input size stop. 

When we run timinAnalysis () on function fib() with input sizes 24, 26, 28, 30, 32, 
34, we get: 

>>> timingAnalysis(fib, 24, 35, 2, 10) 
Run time of fib(24) is 0.0000173 seconds. 
Run time of fib(26) is 0. 0000119 seconds. 
Run time of fib(28) is 0.0000127 seconds. 
Run time of fib(30) is 0.0000136 seconds. 
Run time of fib(32) is 0.0000144 seconds. 
Run time of fib(34) is 0.0000151 seconds. 

When we do the same on function rf i b (), we get: 

>>> timingAnalysis(rfib, 24, 35, 2, 10) 
Run time of fibonacci(24) is 0.0797332 seconds. 
Run time of fibonacci(26) is 0.2037848 seconds. 
Run time of fibonacci(28) is 0.5337492 seconds. 
Run time of fibonacci(30) is 1.4083670 seconds. 
Run time of fibonacci(32) is 3.6589111 seconds. 
Run time of fibonacci(34) is 9.5540136 seconds. 

We graph the results of the two experiments in Figure 10.11. 

time (sec) 
rfib(n) 

seconds,offib() and 8 
rf i b O for inputs n = 24, 
26, 28, 32, and 34. 6 

4 

2 
fib(n) 
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The run times off i b () are negligible. However, the run times of rf i b () are increasing 
rapidly as the input size increases. In fact, the run time more than doubles between succes
sive input sizes. This means that the run time increases exponentially with respect to the 
input size. In order to understand the reason behind the poor performance of the recursive 
function rf i b (), we illustrate its execution in Figure 10.12. 

Figure 10.12 shows some of the recursive calls made when computing rfib (n). To 
compute rfib(n), recursive calls rfib(n-1) and rfib(n-2) must be made; to com
pute rfib (n-1) and rf ib (n-2), separate recursive calls rfib (n-2) and rf ib (n-3), and 
rfib(n-2) and rfib(n-3), respectively, must be made. And so on. 

The computation of rf i b () includes two separate computations of rf i b (n-2) and 
should therefore take more than twice as long as rf i b (n-2). This explains the exponential 
growth in run time. It also shows the problem with the recursive solution rfib (): It keeps 
making and executing the same function calls, over and over. The function call rfib (n-4), 
for example, is made and executed five times, even though the result is always the same. 

Using the run time analysis application developed in this section, analyze the run time of 
functions power() and rpower () as well as built-in operator**· You will do this by run
ning timingAnalysis () on functions power2 (), rpower2 (), and pow2 () defined next 
and using input sizes 20,000 through 80,000 with a step size of 20,000. 

def power2(n): 
return power(2,n) 

def rpower2(n): 
return rpower(2,n) 

def pow2(n): 
return 2**n 

When done, argue which approach the built-in operator** likely uses. 

Figure 10.12 Tree of 
recursive calls. Computing 
rfib(n) requires making 
two recursive calls: 
rfib(n-1) and 
rfib(b-2). Computing 
rfib(n-1) requires making 
recursive calls rfib(n-2) 

and rfib(n-3); computing 
rfib(n-2) requires 
recursive calls rfib(n-3) 

and rfib(n-4). The same 
recursive calls will be made 
multiple times. For example, 
rfib(n-4) will be 
recomputed five times. 

Practice Problem 
10.8 
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10.4 Searching 
In the last section, we learned that the way we design an algorithm and implement a program 
can have a significant effect on the program's run time and ultimately its usefulness with 
large data sets. In this section, we consider how reorganizing the input data set and adding 
structure to it can dramatically improve the run time, and usefulness, of a program. We focus 
on several fundamental search tasks and usually use sorting to give structure to the data set. 
We start with the fundamental problem of checking whether a value is contained in a list. 

Linear Search 
Both the in operator and the index() method of the list class search a list for a given 
item. Because we have been (and will be) using them a lot, it is important to understand 
how fast they execute. 

Recall that the in operator is used to check whether an item is in the list or not: 

>>>1st= random.sample(range(1,100), 17) 
>>> 1st 
[28, 72, 2, 73, 89, 90, 99, 13, 24, 5, 57, 41, 16, 43, 45, 42, 11] 
»> 45 in 1st 
True 
»> 75 in 1st 
False 

The index () method is similar: Instead of returning True or False, it returns the index of 
the first occurrence of the item ( or raises an exception if the item is not in the list). 

If the data in the list is not structured in some way, there is really only one way to 
implement in and index () : a systematic search through the items in the list, whether from 
index O and up, from index -1 and down, or something equivalent. This type of search is 
called linear search. Assuming the search is done from index O and up, linear search would 
look at 15 elements in the list to find 45 and all of them to find that 75 is not in the list. 

A linear search may need to look at every item in the list. Its run time, in the worst case, 
is thus proportional to the size of the list. If the data set is not structured and the data items 
cannot be compared, linear search is really the only way search can be done on a list. 

Binary Search 
If the data in the list is comparable, we can improve the search run time by sorting the list 
first. To illustrate this, we use the same list 1st as used in linear search, but now sorted: 

»> 1st. sort() 
>>> 1st 
[2, 5, 11, 13, 16, 24, 28, 41, 42, 43, 45, 57, 72, 73, 89, 90, 99] 

Suppose we are searching for the value of target in list 1st. Linear search compares 
target with the item at index O of 1st, then with the item at index 1, 2, 3, and so on. 
Suppose, instead, we start the search by comparing target with the item at index i, for 
some arbitrary index i of 1st. Well, there are three possible outcomes: 

• We are lucky: 1st [i] == target is true, or 

• target < 1st [i] is true, or 

• target > 1st [i] is true. 
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Let's do an example. Suppose the value of target is 45 and we compare it with the 
item at index 5 (i.e., 24). It is clear that the third outcome, target > 1st [i], applies in 
this case. Because list 1st is sorted, this tells us that target cannot possibly be to the left 
of 24, that is, in sublist 1st [0: 5]. Therefore, we should continue our search for target to 
the right of 24 (i.e., in sublist 1st [6: 17] ), as illustrated in Figure 10.13. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

5 11 13 16 ~ 28 41 42 43 45 57 72 73 89 90 99 1 

128 41 42 43 45 57 12 73 89 

The main insight we just made is this: With just one comparison, between target and 
list [5], we have reduced our search space from 17 list items to 11. (In linear search, a 
comparison reduces the search space by just 1.) Now we should ask ourselves whether a 
different comparison would reduce the search space even further. 

In a sense, the outcome target > 1st [5] was unlucky: target turns out to be in the 
larger of 1st [0: 5] (with 5 items) and 1st [6: 17] (with 11 items). To reduce the role of 
luck, we could ensure that both sublists are about the same size. We can achieve that by 
comparing target to 42-that is, the item in the middle of the list (also called the median). 

The insights we just developed are the basis of a search technique called binary search. 
Given a list and a target, binary search returns the index of the target in the list, or -1 if the 
target is not in the list. 

Binary search is easy to implement recursively. The base case is when the list 1st is 
empty: target cannot possibly be in it, and we return -1. Otherwise, we compare target 
with the list median. Depending on the outcome of the comparison, we are either done or 
continue the search, recursively, on a sublist of 1st. 

We implement binary search as the recursive function search (). Because recursive 
calls will be made on sublists 1st [i: j] of the original list 1st, the function search() 
should take, as input, not just 1st and target but also indices i and j: 

def search(lst, target, i, j): 
2 '' 'attempts to find target in sorted sublist lst[i:j]; 

3 index of target is returned if found, -1 otherwise''' 

if i == j: 
return -1 

mid= (i+j)//2 

if lst[mid] == target: 
10 return mid 

# base case: empty list 

# target cannot be in list 

# index of median of l[i:j] 

# target is the median 

11 if target < 1st [mid] : # search left of median 

12 return search (1st, target, i, mid) 
13 else: # search right of median 

14 return search(lst, target, mid+1, j) 

To start the search for target in 1st, indices O and len(lst) should be given: 

»>target= 45 
>>> search(lst, target, 0, len(lst)) 
10 

Figure 10.13 Binary 
search. By comparing 45, 
the value of target, with 
the item at index 5 of 1st, 
we have reduced the search 
space to the sublist 
lst[6:]. 

Module: ch10.py 
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Figure 10.14 Binary 
search. The search for 45 
starts in list 1st [O: 17]. 
After 45 is compared to the 
list median (42), the search 
continues in sublist 
1st [9: 17] . After 45 is 
compared to this list's 
median (72), the search 
continues in 1st [9: 12]. 
Since 45 is the median of 
1st [9: 12], the search 
ends. 

Module: ch10.py 

Module: ch1 O.py 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

12 5 11 13 16 24 28 41 I 42 I 43 45 57 72 73 89 90 99 1 

143 45 57 @] 73 89 90 99 1 

143 [ill 57 1 

Figure 10.14 illustrates the execution of this search. 

Linear versus Binary Search 
To convince ourselves that binary search is, on average, much faster than linear search, we 
perform an experiment. Using the timingAna1ysis () application we developed in the last 
section, we compare the performance of our function search () and the built-in list method 
index (). To do this, we develop functions binary () and linear () that pick a random 
item in the input list and call search() or invoke method index(), respectively, to find 
the item: 

def binary(1st): 
'chooses item in list 1st at random and runs search() on it' 

target=random.choice(1st) 
return search(1st, target, 0, 1en(1st)) 

s def 1inear(1st): 
'choose item in list 1st at random and runs index() on it' 

target=random.choice(1st) 
return 1st.index(target) 

The list 1st of size n we will use is a random sample of n numbers in the range from Oto 
2n - 1. 

def bui1dlnput(n): 
'returns a random sample of n numbers in range [O, 2n)' 

1st= random.samp1e(range(2*n), n) 
1st.sort() 
return 1st 

Here are the results: 

>>> timingAna1ysis(1inear, 200000, 1000000, 200000, 20) 
Run time of 1inear(200000) is 0.0046095 
Run time of linear(400000) is 0. 0091411 
Run time of linear(600000) is 0.0145864 
Run time of linear(800000) is 0.0184283 
>>> timingAna1ysis(binary, 200000, 1000000, 200000, 20) 
Run time of binary(200000) is 0.0000681 
Run time of binary(400000) is 0.0000762 
Run time of binary(600000) is 0.0000943 
Run time of binary(800000) is 0.0000933 
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It is clear that binary search is much faster and the run time of linear search grows propor
tionally with the list size. The interesting thing about the run time of binary search is that it 
does not seem to be increasing much. Why is that? 

Whereas linear search may end up looking at every item in the list, binary search will 
look at far fewer list items. To see this, recall our insight that with every binary search 
comparison, the search space decreases by more than a half. Of course, when the search 
space becomes of size 1 or less, the search is over. The number of binary search comparisons 
in a list of size n is bounded by this value: the number of times we can halve n division before 
it becomes 1. In equation form, it is the value of x in 

The solution to this equation is x = log2 n, the logarithm base two of n. This function does 
indeed grow very slowly as n increases. 

In the remainder of this section we look at several other fundamental search-like prob
lems and analyze different approaches to solving them. 

Uniqueness Testing 
We consider this problem: Given a list, is every item in it unique? One natural way to solve 
this problem is to iterate over the list and for each list item check whether the item appears 
more than once in the list. Function dup 1 implements this idea: 

def dup1 (1st) : 
2 'returns True if list 1st has duplicates, False otherwise' 

3 for item in 1st: 
4 if lst.count(item) > 1: 
s return True 
s return False 

The list method count(), just like the in operator and the index method, must perform a 
linear search through the list to count all occurrences of a target item. So, in duplicates!(), 
linear search is performed for every list item. Can we do better? 

What if we sorted the list first? The benefit of doing this is that duplicate items will be 
next to each other in the sorted list. Therefore, to find out whether there are duplicates, all 
we need to do is compare every item with the item before it: 

def dup2(lst): 
'returns True if list 1st has duplicates, False otherwise' 

1st.sort() 
for index in range(1, len(lst)): 

if lst[index] == lst[index-1]: 
return True 

return False 

The advantage of this approach is that it does only one pass through the list. Of course, there 
is a cost to this approach: We have to sort the list first. 

In Chapter 6, we saw that dictionaries and sets can be useful to check whether a list 
contains duplicates. Functions dup30 and dup40 use a dictionary or a set, respectively, 
to check whether the input list contains duplicates: 

Module: ch1 O.py 

Module: ch1 O.py 
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Module: ch10.py 

Practice Problem 
10.9 

Module: ch1 O.py 

10 

def dup3(lst): 
'returns True if list 1st has duplicates, False otherwise' 

s = set() 
for item in 1st: 

if item in s: 
return False 

else: 
s.add(item) 

return True 

11 def dup4(lst): 
12 'returns True if list 1st has duplicates, False otherwise' 

13 return len(lst) != len(set(lst)) 

We leave the analysis of these four functions as an exercise. 

Using an experiment, analyze the run time of functions dup10, dup20, dup30, and 
dup40. You should test each function on 10 lists of size 2000, 4000, 6000, and 8000 ob
tained from: 

import random 
def buildinput(n): 

'returns a list of n random integers in range [O, n**2)' 
res = [] 

for 1 1n range(n): 
res.append(random.choice(range(n**2))) 

return res 

Note that the list returned by this function is obtained by repeatedly choosing n numbers in 
the range from Oto n 2 - 1 and may or may not contain duplicates. When done, comment 
on the results. 

Selecting the Jeth Largest (Smallest) Item 

Finding the largest (or smallest) item in an unsorted list is best done with a linear search. 
Finding the second, or third, largest (or smallest) kth smallest can be also done with a linear 
search, though not as simply. Finding the kth largest (or smallest) item for large k can easily 
be done by sorting the list first. (There are more efficient ways to do this, but they are beyond 
the scope of this text.) Here is a function that returns the kth smallest value in a list: 

def kthsmallest(lst, k): 
'returns kth smallest item in list 1st' 

1st. sort() 
return 1st [k-1] 
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Computing the Most Frequently Occurring Item 
The problem we consider next is searching for the most frequently occurring item in a list. 
We actually know how to do this, and more: In Chapter 6, we saw how dictionaries can be 
used to compute the frequency of all items in a sequence. However, if all we want is to find 
the most frequent item, using a dictionary is overkill and a waste of memory space. 

We have seen that by sorting a list, all the duplicate items will be next to each other. If 
we iterate through the sorted list, we can count the length of each sequence of duplicates 
and keep track of the longest. Here is the implementation of this idea: 

def frequent(lst): 
'' 'returns most frequently occurring item 

in non-empty list 1st''' 
1st.sort() # first sort list 

currentLen 
longestLen 
mostFreq 

1 
1 
1st [OJ 

# length of current sequence 
# length of longest sequence 
# item with longest sequence 

10 for i in range (1, len (1st)) : 
11 # compare current i tern with previous 
12 if 1st [i] == 1st [i-1] : # if equal 
13 # current sequence continues 
14 currentLen+=1 
15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

else: # if not equal 
# update longest sequence if necessary 
if currentLen > longestLen: # if sequence that ended 

# is longest so far 
longestLen = currentLen # store its length 
mostFreq = lst[i-1] # and the item 

# new sequence starts 
currentLen = 1 

25 return mostFreq 

Implement function frequent2 () that uses a dictionary to compute the frequency of every 
item in the input list and returns the item that occurs the most frequently. Then perform an 
experiment and compare the run times of frequent () and frequent2 () on a list obtained 
using the buildinput () function defined in Practice Problem 10.9. 

Case Study: Tower of Hanoi 
In Case Study CS.10, we consider the Tower of Hanoi problem, the classic example of 
a problem easily solved using recursion. We also use the opportunity to develop a visual 
application by developing new classes and using object-oriented programming techniques. 

Module: ch10.py 

Practice Problem 
10.10 
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Chapter Summary 
The focus of this chapter is recursion and the process of developing a recursive function 
that solves a problem. The chapter also introduces formal run time analysis of programs 
and applies it to various search problems. 

Recursion is a fundamental problem-solving technique that can be applied to problems 
whose solution can be constructed from solutions of "easier" versions of the problem. Re
cursive functions are often far simpler to describe (i.e., implement) than nonrecursive solu
tions for the same problem because they leverage operating system resources, in particular 
the program stack. 

In this chapter, we devolop recursive functions for a variety of problems, such as the 
visual display of fractals and the search for viruses in the files of a filesystem. The main 
goal of the exposition, however, is to make explicit how to do recursive thinking, a way to 
approach problems that leads to recursive solutions. 

In some instances, recursive thinking offers insights that lead to solutions that are more 
efficient than the obvious or original solution. In other instances, it will lead to a solution 
that is far worse. We introduce run time analysis of programs as a way to quantify and com
pare the execution times of various programs. Run time analysis is not limited to recursive 
functions, of course, and we use it to analyze various search problems as well. 

Solutions to Practice Problems 

10.1 The function reverse() is obtained by modifying function vertical() (and re
naming it, of course). Note that function vertical() prints the last digit after printing all 
but the last digit. Function reverse () should just do the opposite: 

def reverse(n): 
'prints digits 
if n < 10: 

print(n) 
else: 

of n vertically starting with low-order digit' 
# base case: one-digit number 

print(n%10) 
reverse(n//10) 

# n has at least 2 digits 
# print last digit of n 
# recursively print in reverse all but 
# the last digit 

10.2 In the base case, when n = 0, just 'Hurray! ! ! ' should be printed. When n > 0, 
we know that at least one 'Hip' should be printed, which we do. That means that n - l 
strings 'Hip' and then 'Hurray! ! ! ' remain to be printed. That is exactly what recursive 
call cheers (n-1) will achieve. 

def cheers(n): 
'prints cheer' 
if n == 0: 

print( 'Hurray!!! ' ) 
else: # n > 0 

print ( 'Hip' , end= ' ' ) 
cheers(n-1) 

10.3 By the definition of the factorial function n ! , the base case of the recursion is n = 0 or 
n = l. In those cases, the function factorial() should return 1. For n > l, the recursive 
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definition of n! suggests that function factorial() should return n * factorial (n-1): 

def factorial(n): 
'returns n ! ' 
if n == 0: # base case 

return 1 
return factorial(n-1) * n # recursive step when n > 0 

10.4 In the base case, when n = 0, nothing is printed. If n > 0, note that the output 
of pattern2 (n) consists of the output of pattern2 (n-1), followed by a row of n stars, 
followed by the output of pattern2 (n-1): 

def pattern2(n): 
'prints the nth pattern' 
if n > 0: 

pattern2(n-1) # prints pattern2(n-1) 
print(n * '*' ) # print n stars 
pattern2(n-1) # prints pattern2(n-1) 

10.5 As Figure 10.15 of snowflake ( 4) illustrates, a snowflake pattern consists of three 
patterns koch(3) drawn along the sides of an equilateral triangle. 

To draw the pattern snowflake(n), all we need to do is draw pattern koch(n), turn 
right 120 degrees, draw koch (n) again, turn right 120 degrees, and draw koch (n) one last 
time. 

def drawSnowflake(n): 
'draws nth snowflake curve using function koch() 3 times' 
s = Screen() 
t = Turtle() 
directions= koch(n) 

for i in range(3): 
for move in directions: # draw koch(n) 

if move == ' F ' : 
t. fd(300/3**n) 

if move == ' L ' : 
t.lt(60) 

if move == ' R' : 
t. rt (120) 

t. rt (120) # turn right 120 degrees 

Figure 10.15 The pattern 
snowflake (4). 
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10.6 If the list is empty, the returned value should be False; otherwise, True should be 
returned if and only if 1st [: -1] contains a negative number or 1st [-1] is negative: 

def recNeg(lst): 
'' 'returns True if some number in list 1st is negative, 

False otherwise''' 
if len(lst) == 0: 

return False 
return recNeg(lst[:-1]) or lst[-1] < 0 

10.7 The buil-in function sum() should be applied to every item (row) of table: 

>» table = [[1,2,3], [4,5,6]] 
>>> recMap(table, sum) 
[6, 15] 

10.8 After running the tests, you will note that the run times of power2 () are significantly 
worse than the run times of pow2 () and rpow2 () which are very, very close. It seems that 
the built-in operator** uses an approach that is equivalent to our recursive solution. 

10.9 Even though dup2 () has the additional sorting step, you will note that dup 1 () is much 
slower. This means that the multiple linear searches approach of dup1 () is very inefficient. 
The dictionary and set approaches in dup3 and dup4 0 did best, with the set approach 
winning overall. The one issue with these last two approaches is that they both use an extra 
container, so they take up more memory space. 

10.10 You can use the function frequency from Chapter 6 to implement freqent2(). 

Exercises 

10.11 Using Figure 10.1 as a model, draw all the steps that occur during the execution of 
countdown(3), including the state of the program stack at the beginning and end of every 
recursive call. 

10.12 Swap statements in lines 6 and 7 of function countdown() to create function countdown2 (). 
Explain how it differs from count down () . 

10.13 Using Figure 10.1 as a model, draw all the steps that occur during the execution of 
countdown2 (3), where countdown2 () is the function from Exercise 10.12. 

10.14 Modify the function countdown () so it exhibits this behavior: 

>>> countdown3(5) 
5 
4 
3 

B000M! ! ! 
Scared you ... 

2 
1 
Blastoff! ! ! 
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10.15 Using Figure 10.1 as a model, draw all the steps that occur during the execution of 
pat t em ( 2) , including the state of the program stack at the beginning and end of every 
recursive call. 

10.16 The recursive formula for computing the number of ways of choosing k items out of 
a set of n items, denoted C ( n, k), is: 

{ 
1 ifk=0 

C(n,k) = 0 ifn < k 
C(n - 1, k - 1) + C(n - 1, k) otherwise 

The first case says there is one way to choose no item; the second says that there is no way 
to choose more items than available in the set. The last case separates the counting of sets 
of k items containing the last set item and the counting of sets of k items not containing the 
last set item. Write a recursive function combinations() that computes C(n, k) using this 
recursive formula. 

>>> combinations(2, 1) 

0 
>>> combinations(1, 2) 

2 
>>> combinations(2, 5) 

10 

10.17 Just as we did for the function rpower (), modify function rf i b () so that it counts 
the number of recursive calls made. Then use this function to count the number of calls 
made for n = 10, 20, 30. 

Problems 

10.18 Write a recursive method silly () that takes one nonnegative integer n as input and 
then prints n question marks, followed by n exclamation points. Your program should use 
no loops. 

»> silly(O) 
»> silly(1) 

* ! 
»> silly(10) 

**********' ! ! ! ! ! ! ! ! ! 

10.19 Write a recursive method numOnes () that takes a nonnegative integer n as input and 
returns the number of 1 s in the binary representation of n. Use the fact that this is equal to 
the number of ls in the representation of n/ /2 (integer division), plus 1 if n is odd. 

>>> numOnes(O) 

0 
>>> num0nes(1) 
1 
>>> num0nes(14) 
3 
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10.20 In Chapter 5 we developed Euclid's Greatest Common Divisor (GCD) algorithm 
using iteration. Euclid's algorithm is naturally described recursively: 

gcd(a, b) = { ;cd(b, a%b) 
if b = 0 
otherwise 

Using this recursive definition, implement recursive function rgcd () that takes two non-
negative numbers a and b, with a > b, and returns the GCD of a and b: 

»> rgcd(3,0) 
3 
»> rgcd(18,12) 
6 

10.21 Write a method rem () that takes as input a list containing, possibly, duplicate values 
and returns a copy of the list in which one copy of every duplicate value was removed. 

>>> rem( [4]) 
[] 
>>> rem( [4, 4]) 
[4] 
>>> rem( [4, 1, 3, 2]) 
[] 
>>> rem( [2, 4, 2, 4, 4]) 

[2' 4, 4] 

10.22 You're visiting your hometown and are planning to stay at a friend's house. It just 
happens that all your friends live on the same street. In order to be efficient, you would 
like to stay at the house of a friend who is in a central location in the following sense: the 
same number of friends, within 1, live in either direction. If two friends' houses satisfy this 
criterion, choose the friend with the smaller street address. 

Write function address () that takes a list of street numbers and returns the street num
ber you should stay at. 

>>> address ( [2, 1, 8, 5, 9]) 
5 
>>> address ( [2, 1, 8, 5]) 
2 
>>> address([!, 1, 1, 2, 3, 3, 4, 4, 4, 5]) 
3 

10.23 Develop a recursive function tough () that takes two nonnegative integer arguments 
and outputs a pattern as shown below. Hint: The first argument represents the indentation 
of the pattern, whereas the second argument-always a power of 2-indicates the number 
of "*"s in the longest line of "*"s in the pattern. 

>>> f(O, 0) 
>>> f(O, 1) 

* 
>>> f(O, 2) 

* 
** 
* 
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»> f(0, 4) 

* 
** 
* 

**** 
* 

** 
* 

10.24 Write a recursive method base() that takes a nonnegative integer n and a positive 
integer 1 < b < 10 and prints the base-b representation of integer n. 

>>> base(0, 2) 
0 
>>> base(1, 2) 
1 
>>> base(10, 2) 
1010 
>>> base(10, 3) 
1 0 1 

10.25 Implement function permutations() that takes a list 1st as input and returns a 
list of all permutations of 1st (so the returned value is a list of lists). Do this recursively as 
follows: If the input list 1st is of size 1 or O,justreturn a list containing list 1st. Otherwise, 
make a recursive call on the sublist 1st [1: J to obtain the list of all permutations of all 
items of 1st except 1st [OJ. Then, for each such permutation (i.e., list) perm, generate 
permutations of 1st by inserting 1st [OJ into all possible positions of perm. 

>>> permutations([!, 2J) 
[[1, 2J, [2, 1JJ 
>>> permutations([!, 2, 3J) 
[ [1, 2, 3J , [2, 1, 3J , [2, 3, 1J , [1, 3, 2J , [3, 1, 2J , [3, 2, 1]] 
>>> permutations([!, 2, 3, 4J) 
[ [1, 2, 3, 4J , [2, 1, 3, 4J , [2, 3, 1, 4J , [2, 3, 4, 1J , 
[1, 3, 2, 4J , [3, 1, 2, 4J , [3, 2, 1, 4J , [3, 2, 4, 1J , 
[1, 3, 4, 2J , [3, 1, 4, 2J , [3, 4, 1, 2J , [3, 4, 2, 1J , 
[1, 2, 4, 3J , [2, 1, 4, 3J , [2, 4, 1, 3J , [2, 4, 3, 1J , 
[1, 4, 2, 3J , [ 4, 1, 2, 3J , [ 4, 2, 1, 3J , [ 4, 2, 3, 1J , 
[1, 4, 3, 2J , [ 4, 1, 3, 2J , [ 4, 3, 1, 2J , [ 4, 3, 2, 1]] 

10.26 Implement function anagrams () that computes anagrams of a given word. An ana
gram of word A is a word B that can be formed by rearranging the letters of A. For example, 
the word pot is an anagram of the word top. Your function will take as input the name of a 
file of words and as well as a word, and print all the words in the file that are anagrams of 
the input word. In the next examples, use file words. txt as your file of words. 

>>> anagrams( 'words.txt' , 'trace' ) 
crate 
cater 
react 

File: words.txt 
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File: files.zip 

Figure 10.16 Pascal's 
triangle. Only the first five 
lines of Pascal's triangle are 
shown. 

10.27 Write a function pairs 1 () that takes as inputs a list of integers and an integer target 
value and returns True if there are two numbers in the list that add up to the target and 
False otherwise. Your implementation should use the nested loop pattern and check all 
pairs of numbers in the list. 

»>pairs1([4, 1, 9, 3, 5], 13) 
True 
»> pairs1([4, 1, 9, 3, 5], 11) 
False 

When done, reimplement the function so that it sorts the list first and then efficiently 
searches for the pair. Analyze the run time of both implementations using the t imingAnalys is () 
app. (Function buildinput O should generate a tuple containing the list and the target.) 

10.28 In this problem, you will develop a function that crawls through "linked" files. Every 
file visited by the crawler will contain zero or more links, one per line, to other files and 
nothing else. A link to a file is just the name of the file. For example, the content of file 
fileO. txt is: 

file1. txt 
file2 .txt 

The first line represents the link o file file1. txt and the second is a link to file2. txt. 

Implement recursive method crawl O that takes as input a file name (as a string), prints 
a message saying the file is being visited, opens the file, reads each link, and recursively 
continues the crawl on each link. The below example uses a set of files packaged in archive 
files. zip. 

>>> crawl( 'fileO.txt' ) 
Visiting fileO.txt 
Visiting file1.txt 
Visiting file3.txt 
Visiting file4.txt 
Visiting file8.txt 
Visiting file9.txt 
Visiting file2.txt 
Visiting file5.txt 
Visiting file6.txt 
Visiting file7.txt 

10.29 Pascal's triangle is an infinite two-dimensional pattern of numbers whose first five 
lines are illustrated in Figure 10.16. The first line, line 0, contains just 1. All other lines start 
and end with a 1 too. The other numbers in those lines are obtained using this rule: The 
number at position i is the sum of the numbers in position i - 1 and i in the previous line. 

1 

1 1 

1 2 1 

y 3 1 

1 6 4 1 
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Implement recursive function pascalLine () that takes a nonnegative integer n as input 
and returns a list containing the sequence of numbers appearing in the nth line of Pascal's 
triangle. 

>>> pascalLine(O) 
[1] 
>>> pasca1Line(2) 
[1, 2, 1] 

>>> pasca1Line(3) 
[1, 3, 3, 1] 

>>> pasca1Line(4) 
[1, 4, 6, 4, 1] 

10.30 Implement recursive function traverse () that takes as input a pathname of a folder 
(as a string) and an integer d and prints on the screen the pathname of every file and subfolder 
contained in the folder, directly or indirectly. The file and subfolder pathnames should be 
output with an indentation that is proportional to their depth with respect to the topmost 
folder. The next example illustrates the execution of traverse () on folder 'test' shown 
in Figure 10.8. 

>>> traverse( 'test' , 0) 
test/fileA.txt 
test/folder1 

test/folder1/fileB.txt 
test/folder1/fileC.txt 
test/folder1/folder11 

test/folder1/folder11/fileD.txt 
test/folder2 

test/folder2/fileD.txt 
test/folder2/fileE.txt 

10.31 Implement function search () that takes as input the name of a file and the pathname 
of a folder and searches for the file in the folder and any folder contained in it, directly or 
indirectly. The function should return the pathname of the file, if found; otherwise, None 
should be returned. The below example illustrates the execution of search ( 'file. txt' , 
'test' ) from the parent folder of folder 'test ' shown in Figure 10.8. 

>>> search( 'fileE.txt' , 'test' ) 
test/folder2/fileE.txt 

10.32 The Levy curves are fractal graphical patterns that can be defined recursively. Like 
the Koch curves, for every nonnegative integer n > 0, the Levy curve Ln can be defined 
in terms of Levy curve Ln-l; Levy curve Lo is just a straight line. Figure I 0.17 shows the 
Levy curve L 8 • 

(a) Find more information about the Levy curve online and use it to implement recursive 
function levy() that takes a nonnegative integer n and returns turtle instructions 
encoded with letters L, R and, F, where L means "rotate left 45 degrees," R means 
"rotate right 90 degrees," and F means "go forward." 

»> levy(O) 

File: test.zip 

File: test.zip 
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Figure 10.17 Levy curve 
Ls. 

>» levy(1) 
'LFRFL' 
»> levy(2) 
'LLFRFLRLFRFLL' 

(b) Implement function draw Levy ()) so that it takes nonnegative integer n as input and 
draws the Levy curve Ln using instructions obtained from function levy (). 

10.33 In the simple coin game you are given an initial number of coins and then, in every 
iteration of the game, you are required to get rid of a certain number of coins using one of 
the following rules. If n is the number of coins you have then: 

• If n is divisible by 10, then you may give back 9 coins. 

• If n is even, then you may give back exactly n/2 - 1 coins. 

• If n is divisible by 3, then you may give back 7 coins. 

• If n is divisible by 4, then you may give back 6 coins. 

If none of the rules can be applied, you lose. The goal of the game is to end up with exactly 
8 coins. 

Note that more than one rule may be applied for some values of n. If n is 20, for example, 
rule 1 could be applied to end up with 11 coins. Since no rule can be applied to 11 coins, 
you would lose the game. Alternatively, rule 4 could be applied to end up with 14 coins, and 
then rule 2 could be applied to end up with 8 coins and win the game. 

Implement a function coins () that takes as input the initial number of coins and returns 
True if there is some way to play the game and end up with 8 coins. The function should 
return False only if there is no way to win. 

»> coins(7) 
False 
»> coins(8) 

True 
»> coins(20) 
True 
»> coins(66) 
False 
»> coins(99) 
True 

10.34 Using linear recursion, implement function recoup() that takes a list as input and 
returns a copy of it in which every list item has been duplicated. 

>>> recDup([ 'ant' , 'bat' , 'cat' , 'dog' ]) 
[ 
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10.35 Using linear recursion, implement function recReverse () that takes a list as input 
and returns a reversed copy of the list. 

>>>1st= [1, 3, 5, 7, 9] 
>>> recReverse(lst) 
[9, 7, 5, 3, 1] 

10.36 Using linear recursion, implement function recSpli t () that takes, as input, a list 
1st and a nonnegative integer i no greater than the size of 1st. The function should split 
the list into two parts so that the second part contains exactly the last i items of the list. The 
function should return a list containing the two parts. 

>>> recSplit([l, 2, 3, 4, 5, 6, 7], 3) 
[ [1, 2, 3, 4] , [5, 6, 7]] 

10.37 Implement a function that draws patterns of squares like this: 

(a) To get started, first implement function square() that takes as input a Turtle object 
and three integers x, y, and s and makes the Turtle object trace a square of side 
length s centered at coordinates ( x, y). 

>>> from turtle import Screen, Turtle 
>>> s = Screen() 
»> t = Turtle() 
»> t.pensize(2) 
>>> square(t, 0, 0, 200) # draws the square 

(b) Now implement recursive function squares() that takes the same inputs as function 
square plus an integer n and draws a pattern of squares. When n = 0, nothing is 
drawn. When n = 1, the same square drawn by square (t, 0, 0, 200) is drawn. 
When n = 2 the pattern is: 

Each of the four small squares is centered at an endpoint of the large square and has 
length 1/2.2 of the original square. When n = 3, the pattern is: 
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