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One-way if statement

if <condition>:
<indented code block>
<non-indented statement>

if temp > 86:

print('It is hot!')

print('Be sure to drink liquids.')
print ( 'Goodbye. ')

The value of temp is 90.

True
temp > 86: )~ =—=—=—==—===== I
v
[print('It is hot!')]
I
False I
: 4
I [print('Be sure to drink liquids.')]
| |
=== = = = = == - - J
\ 4

[Print('Goodbye.')]
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Two-way if statement

if <condition>:
<indented code block 1>

else:
<indented code block 2>

<non-indented statement>

The value of temp is 90.

[print('It is not hot!')]
|
|

\ 4
[print('Bring a jacket.')]

if temp > 86:
print('It is hot!')
print('Be sure to drink liquids.')

else:
print('It is not hot.')

print('Bring a jacket.')
print ('Goodbye. ")

[print('It is hot!')]
I
|

\4

[print('Be sure to drink liquids.')]

[print('Bring a jacket.')]
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Multi-way if statement

The value of ¢ is 20.

def temperature(t):
if t > 86: True
print('It is hot') | \ Tt 2 pob: ~=====m=mmmmmmmm
elif t > 32:
print('It is cool')
else:

[ print('It is freezing') ]
I
|

r-'--'--'-* ————————

¥
[print('Goodbye')]

. . ) False
print('It is freezing’)
print( 'Goodbye')
Y
True _ _ [ print('It is hot') ]
| |
2 |
[print('It is cool')] :
False I
Y |
|
|
|




Ordering of conditions
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What is the wrong with this re-implementation of temperature()?

def temperature(t):
if t > 32:
print('It is hot')
elif t > 86:
print('It is cool')
else: # t <= 32
print('It is freezing')
print( 'Goodbye')

The conditions must be
mutually exclusive,
either explicitly or implicitly

def

temperature(t):
if 86 >= t > 32:

print('It is hot')
elif t > 86:

print('It is cool')
else: # t <= 32

print('It is freezing')
print ( 'Goodbye')

def

temperature(t):
if t > 86:
print('It is hot')
elif t > 32: # 86 >= t > 32
print('It is cool')
else: # t <= 32
print('It is freezing')
print('Goodbye')
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Exercise

Write function BMI () that:
* takes as input a person’s height (in inches) and weight (in pounds)

e computes the person’s BMI and prints an assessment, as shown below
The function does not return anything.

The Body Mass Index is the value (weight * 703)/height? . Indexes below 18.5 or
above 25.0 are assessed as underweight and overweight, respectively; indexes in
between are considered normal.

BMI (weight, height): >>> BMI (190, 75)
'prints BMI report’ Normal
>>> BMI(140, 75)
bmi = weight*703/height**2 Underweight
>>> BMI (240, 75)
if bmi < 18.5: Overweight

print( 'Underweight')
elif bmi < 25:

print( 'Normal')
else: # bmi >= 25

print('Overweight')




Iteration

The general format of a for loop statement is
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for <variable> in <sequence>:
<indented code block>
<non-indented code block>

<indented code block>is executed once for every item in <sequence>

* If <sequence> is a string then the items are its characters

(each of which is a one-character string)

* If <sequence> is a list then the items are the objects in the list

<non-indented code block>iS executed after every item in <sequence>

has been processed

There are different for loop usage patterns
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Iteration loop pattern

Iterating over every item of an explicit sequence

>>> name = 'Apple’
>>> for char in name:
print(char)

name = "A P P 1 e'
char = ‘A’

char = 'p'

char = 'p'

char = "1

char = e
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Iteration loop pattern

Iterating over every item of an explicit sequence

word

word

word

word

for word in [ 'stop', 'desktop', 'post',
if 'top' in word:
print (word)

"top']:

'stop’
'desktop’
ctop
' pOSt ' desktop

top

top
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Iteration loop pattern

Iterating over every item of an explicit sequence

* iterating over the characters of a text file

>>> infile = open('test.txt')

>>> content = infile.read()

>>> for char in content:
print(char, end="'")

* iterating over the lines of a text file

>>> infile = open( 'test.txt')

>>> lines = infile.readlines()

>>> for line in lines:
print(line, end='")
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Counter loop pattern

Iterating over an implicit sequence of numbers

>>> n = 10
>>> for i in range(n):
print(i, end=' ")

01234567829

>>> for i in range(7, 100, 17):
print(i, end=' ")

7 24 41 58 75 92

>>> for i in range(len('world')): This example illustrates
print(i, end=' ") the most important

application of the

01234 counter loop pattern




Counter loop pattern

Iterating over an implicit sequence of numbers
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>>> pets = ['cat',

ldogl ,

'fish', 'bird']

>>> for animal in pets:
print(animal, end=' ')

cat dog fish bird

animal =| 'cat’

animal = 'dog’
animal = 'fish'
animal = 'bird’

>>> for i in range(len(pets)):
print(pets[i], end="' ")

cat dog fish bird

i=[0

pets[0]

pets[1]

pets[2]

pets[3]

is printed

is printed

is printed

is printed
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Counter loop pattern

lterating over an implicit sequence of numbers... But why complicate things?

Let’s develop function checksorted () that:
* takes a list of comparable items as input
* returns True if the sequence is increasing, False otherwise

>>> checkSorted([2, 4, 6, 8, 10])

True Implementation idea:
>>> checkSorted([2, 4, 6, 3, 10]) check that adjacent pairs
False

are correctly ordered

>>>

def checkSorted(1lst):
'return True if sequence lst is increasing, False otherwise'
for i in range(0, len(lst)-1):
# i =0, 1, 2, ..., len(lst)-2
if 1lst[i] > lst[i+l]:
return False
return True
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Exercise

Write function arithmetic() that: >>> arithmetic([3, 6, 9, 12, 15])
e takes as input a list of numbers True
* returns True if the numbers in the >>> arithmetic([3, 6, 9, 11, 14])
. . . False
list form an arithmetic sequence, >>> arithmetic([3])
False otherwise True

def arithmetic(lst):
"'"'return True if list lst contains an arithmetic sequence,
False otherwise'''

if len(lst) < 2: # a sequence of length < 2 is arithmetic
return True

# check that the difference between successive numbers is
# equal to the difference between the first two numbers
diff = 1lst[1l] - 1st[O0]
for i in range(l, len(lst)-1):
if lst[i+l] - 1lst[i] != diff:
return False

return True
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Accumulator loop pattern

Accumulating something in every loop iteration z: 1st = ([)3, 2, 7, 1, 9]
res =

>>> for num in lst:
res += num

For example: the sum of numbersin a list >>> res \
22
1st = [3, 2, 7, 1, 9] res = 0  shorthand notation
num = | 3 res = res + num (= 3)
accumulator
num = 2 res = res + num (= 5)
num = 7 res = res + num (= 12)
num = 1 res = res + num (= 13)

num = 9 res = res + num (= 22)
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Accumulator loop pattern

Accumulating something in every loop iteration

What if we wanted to obtain the product instead? | >>> ist =13, 2, 7, 1, 9]
>>> res 1

What should res be initialized to? >>> for num in lst:

res *= num

1st = [3, 2, 7, ]-, 9] res =1

num = | 3 res *= num (= 3)
num = 2 res *= num (= 6)
num = 7 res *= num (= 42)
num = 1 res *= num (= 42)

num = 9 res *= num (= 378)




Exercise

Write function factorial() that:
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* takes a non-negative integer n as input

* returns n!

nl=nxn-Nxn-2)x(n-3)x..x3x2xl if n>0
0!=1

>>>

>>>

>>>

>>>
720

factorial(0)
factorial(1l)
factorial(3)

factorial(6)

def factorial(n):
'returns n! for input integer n'

res =1
for i in range(2, n+l):
res *= 1

return res




Exercise

Write function acronym() that:
* takes a phrase (i.e., a string) as input
* returns the acronym for the phrase
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>>> acronym( 'Random access memory')
lle

>>> acronym("GNU's not UNIX")

"GNU'

def acronym(phrase):
'return the acronym of the input string phrase'

# split phrase into a list of words
words = phrase.split()

# accumulate first character, as an uppercase, of every word

res =

for w in words:

res =
return res

res + w[0].upper()
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Exercise

Werite function divisors() that:
* takes a positive integer n as input
* returns the list of positive divisors of n

>>> divisors(1l)
[1]

>>> divisors(6)
(1, 2, 3, 6]
>>> divisors(11)
[1, 11]

def divisors(n):
'return the list of divisors of n'

res = [] # accumulator initialized to an empty list
for i in range(l, n+l):
ifn% i==0: # if i is a divisor of n

res.append(i) # accumulate i

return res



Nested loop pattern

Nesting a loop inside another
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>>> n =5
>>> nested2(n

z=

OO0 O o o
== e
NNN

w w

)

304 ihrek fér4opp should print 0

1 inner for lopp should print 0

inner for lopp should print 0

>>> n =5
>>> nested(n)
01234 3401 2Bherp
01 2 3 4
01234 When j
012 3 4
01234 When j
S —
When j
When j
def nested(n):
for j in range(n):
for i in range(n):
print(i, end=' ')
print ()

2
3 inner for loop should print 0
4

inner for loop should print 0

e R e

def nested2(n):
for j in range(n):
for i in range(j+l):

print ()

print(i, end=' ')

2 3
2 3 4



Exercise

Werite function bubbleSort() that:

* takes a list of numbers as input and
sorts the list using BubbleSort

The function returns nothing

>>> 1st

>>> bubblesort(lst)

>>> ]st
[ll 2!

def bubblesort(1lst):

for i in range(len(lst)-1,

for j in range(i):

if 1st[j] > 1lst[j+1]:
I1st[j], lst[j+1]

Ist[j+1], 1lst[3]]
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Two-dimensional lists

Thelist [3, 5, 7, 9] can beviewed as a 1-D table

(3, 5, 7, 91 = 315|719

How to represent a 2-D table?

[ [3, 5, 7, 9] = ©
(0, 2, 1, 6] = 1
[3, 8 3, 1] 1= 2

A 2-D table is just a list of rows (i.e., 1-D tables)
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>>> 1st = [[3,5,7,9],
[0,211l6]l
[3,8,3,1]]

>>> 1st
(03, 5, 7, 91,
[0, 2, 1, 6],
[3, 8, 3, 1]]
>>> 1st[0]
[3, 5, 7, 9]
>>> 1st[1]
[0, 2, 1, 6]
>>> 1st[2]
[3I 8! 3! 1]
>>> 1st[0][0]
3

>>> 1st[1][2]
1

>>> 1st[2][0]
3

>>>
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Nested loop pattern and 2-D lists

A nested loop is often needed to access all objects in a 2-D list

def print2D(t):
'prints values in 2D list t as a 2D table'
for row in t:
for item in row
print(item, end=' ')
print ()

(Using the iteration loop pattern)

def incr2D(t):
'"increments each number in 2D list t'

# for every row index i
# for every column index j
t[i1[(J] += 1

>>> table = [[3, 5, 7, 9],
[0, 2, 1, 617,
[3, 8, 3, 11]

>>> print2D(table)

3579

0216

3831

>>> incr2D(t)
>>> print2D(t)
4 6 8 10
1327

4 9 4 2

>>>

(Using the counter loop pattern)




while loop

if <condition>:
<indented code block>
<non-indented statement>

while <condition>:
<indented code block>
<non-indented statement>
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[<non—indented statement>]




while loop

Example: compute the smallest
multiple of 7 greater than 37.

ldea: generate multiples of 7 until
we get a number greater than 37

>>> 1 = 7
>>> while 1 <= 37:
i +=17

False
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Exercise

Write function negative () that:
e takes a list of numbers as input
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* returns the index of the first negative number in the list
or -1 if there is no negative number in the list

>>> 1st = [3, 1, -7,
>>> negative(lst)

2

>>> negative([1l, 2,
-1

-4,

31)

9! _2]

def greater(lst):
for i in range(len(lst)):
if 1st[i] < O:

return i

return -1
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Sequence loop pattern

Generating a sequence that reaches the desired solution

Fibonacci sequence

55

Goal: the first Fibonnaci number greater than some bound

def fibonacci(bound):
'returns the smallest Fibonacci number greater than bound'

previous = 1 # previous Fibonacci number

current = 1 # current Fibonacci number

while current <= bound:
# current becomes previous, and new current is computed
previous, current = current, previous+current

return current
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Exercise

Write function approxE () that approximates the Euler constant as follows:
e takesanumber error asinput
* returns the approximation €¢; suchthat ¢, —e,_, <error

>>> approxE(0.01)
2.7166666666666663

1 1 1 1 1 2!
T T T T approxE(0.000000001)
e O!+l!+2!+ 3!+4!... 2.71828183... S o la5818984457594
1 def approxE(error):
€y = a =1 prev = 1 # approximation 0
1' 1 current = 2 # approximation 1
€ = 6+F =2 € while current - prev > error:
f i 1 # new prev is old current
=—+—3+—=215 # new current is old current + 1/factorial(?)
20 1 2 ) return current
I 1 1 1
s =—+—+—+—=2.660... e, —e, =.166..
o 1 2! 3
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Infinite loop pattern

An infinite loop provides a continuous service

>>> hello2()
What is your
Hello Sam

What is your
Hello Tim The server could instead be a

What is your .
Hello Alex fime server, or a web server,

What is your or a mail server, or...

A greeting service

def hello2():

'''a greeting service; it repeatedly requests the name
of the user and then greets the user''’

while True:
name = input('What is your name? ')
print( 'Hello {}'.format(name))




Loop-and-a-half pa

Cutting the last loop iteration “in h

Example: a function that creates
a list of cities entered by the user
and returns it

The empty string is a “flag” that
indicates the end of the input

def cities():

1st = [] —
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ttern

alf”

>>> cities|()

Enter city: Lisbon
Enter city: San Francisco
Enter city: Hong Kong

Enter city:
[ 'Lisbon',
>>>

'San Francisco',

'"Hong Kong']

def cities2():
1st = []

while True:

st gopRETAHTORStSPs Herd <—
while city !=

lst.append(city) :;:::::=-‘=::

city = input('Enter city: ')%

city = input('Enter city:

\if Cit == S
return 1lst

A

return 1lst

lst.append(city)

)




The break statement

The break statement:

* isused inside the body of a loop
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e when executed, it interrupts the current iteration of the loop
» execution continues with the statement that follows the loop body.

def cities2():
1st = []

while True:

city =

if city ==

input('Enter city:

return 1lst

lst.append(city)

)

def cities2():
1st = []

while True:

city =

if city ==

input('Enter city:

break

lst.append(city)

return 1lst
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break and continue statements

The bortkntesestabdment:

* is used inside the body of a loop
* when executed, it interrupts the current iteration of the loop
» execution continues with tlexstetmtientahtdtdddopys the loop body.

In both cases, only the innermost loop is affected

>>> beforel(table) >>> table =
2 3 [2,

[0,
4 5 6 [4,

[
3,
3,
=

>>> ignore((table)
0, 61,
4[ 5][
6, 0]]

=S W N

3
4
5

o U1 O

def beforelO(table):
for row in table:
for num in row:
if num ==
break
print(num, end='
print ()

")

def ignoreO(table):
for row in table:
for num in row:
if num ==
continue
print(num, end=' ')
print ()



