Execution Control Structures

= Conditional Structures
" [teration Patterns, Part |

Two-Dimensional Lists

while Loop
= [teration Patterns, Part I

Introduction to Computing Using Python

Introduction to Computing Using Python

One-way if statement

if <condition>:
<indented code block>
<non-indented statement>

if temp > 86:

print('It is hot!')

print('Be sure to drink liquids.')
print ('Goodbye. ')

The value of temp is 90.

True
temp > 86:)~ =—=—=—==—===== I
v
[print('It is hot!')]
I
False I
: 4
I [print('Be sure to drink liquids.')]
| |
=== = = = = == - - J
\ 4

[Print('Goodbye.')]

Introduction to Computing Using Python

Two-way if statement

if <condition>:
<indented code block 1>

else:
<indented code block 2>

<non-indented statement>

The value of temp is 90.

[print('It is not hot!')]
|
|

\ 4
[print('Bring a jacket.')]

if temp > 86:
print('It is hot!')
print('Be sure to drink liquids.')

else:
print('It is not hot.')

print('Bring a jacket.')
print ('Goodbye. ")

[print('It is hot!')]
I
|

\4

[print('Be sure to drink liquids.')]

[print('Bring a jacket.')]

Introduction to Computing Using Python

Multi-way if statement

The value of ¢ is 20.

def temperature(t):
if t > 86: True
print('It is hot') | \ Tt 2 pob: ~=====m=mmmmmmmm
elif t > 32:
print('It is cool')
else:

[print('It is freezing')]
I
|

r-'--'--'-* ————————

¥
[print('Goodbye')]

. .) False
print('It is freezing’)
print('Goodbye')
Y
True _ _ [print('It is hot')]
| |
2 |
[print('It is cool')] :
False I
Y |
|
|
|

Ordering of conditions

Introduction to Computing Using Python

What is the wrong with this re-implementation of temperature()?

def temperature(t):
if t > 32:
print('It is hot')
elif t > 86:
print('It is cool')
else: # t <= 32
print('It is freezing')
print('Goodbye')

The conditions must be
mutually exclusive,
either explicitly or implicitly

def

temperature(t):
if 86 >= t > 32:

print('It is hot')
elif t > 86:

print('It is cool')
else: # t <= 32

print('It is freezing')
print ('Goodbye')

def

temperature(t):
if t > 86:
print('It is hot')
elif t > 32: # 86 >= t > 32
print('It is cool')
else: # t <= 32
print('It is freezing')
print('Goodbye')

Introduction to Computing Using Python

Exercise

Write function BMI () that:
* takes as input a person’s height (in inches) and weight (in pounds)

e computes the person’s BMI and prints an assessment, as shown below
The function does not return anything.

The Body Mass Index is the value (weight * 703)/height? . Indexes below 18.5 or
above 25.0 are assessed as underweight and overweight, respectively; indexes in
between are considered normal.

BMI (weight, height): >>> BMI (190, 75)
'prints BMI report’ Normal
>>> BMI(140, 75)
bmi = weight*703/height**2 Underweight
>>> BMI (240, 75)
if bmi < 18.5: Overweight

print('Underweight')
elif bmi < 25:

print('Normal')
else: # bmi >= 25

print('Overweight')

Iteration

The general format of a for loop statement is

Introduction to Computing Using Python

for <variable> in <sequence>:
<indented code block>
<non-indented code block>

<indented code block>is executed once for every item in <sequence>

* If <sequence> is a string then the items are its characters

(each of which is a one-character string)

* If <sequence> is a list then the items are the objects in the list

<non-indented code block>iS executed after every item in <sequence>

has been processed

There are different for loop usage patterns

Introduction to Computing Using Python

Iteration loop pattern

Iterating over every item of an explicit sequence

>>> name = 'Apple’
>>> for char in name:
print(char)

name = "A P P 1 e'
char = ‘A’

char = 'p'

char = 'p'

char = "1

char = e

Introduction to Computing Using Python

Iteration loop pattern

Iterating over every item of an explicit sequence

word

word

word

word

for word in ['stop', 'desktop', 'post',
if 'top' in word:
print (word)

"top']:

'stop’
'desktop’
ctop
' pOSt ' desktop

top

top

Introduction to Computing Using Python

Iteration loop pattern

Iterating over every item of an explicit sequence

* iterating over the characters of a text file

>>> infile = open('test.txt')

>>> content = infile.read()

>>> for char in content:
print(char, end="'")

* iterating over the lines of a text file

>>> infile = open('test.txt')

>>> lines = infile.readlines()

>>> for line in lines:
print(line, end='")

Introduction to Computing Using Python

Counter loop pattern

Iterating over an implicit sequence of numbers

>>> n = 10
>>> for i in range(n):
print(i, end=' ")

01234567829

>>> for i in range(7, 100, 17):
print(i, end=' ")

7 24 41 58 75 92

>>> for i in range(len('world')): This example illustrates
print(i, end=' ") the most important

application of the

01234 counter loop pattern

Counter loop pattern

Iterating over an implicit sequence of numbers

Introduction to Computing Using Python

>>> pets = ['cat',

ldogl ,

'fish', 'bird']

>>> for animal in pets:
print(animal, end=' ')

cat dog fish bird

animal =| 'cat’

animal = 'dog’
animal = 'fish'
animal = 'bird’

>>> for i in range(len(pets)):
print(pets[i], end="' ")

cat dog fish bird

i=[0

pets[0]

pets[1]

pets[2]

pets[3]

is printed

is printed

is printed

is printed

Introduction to Computing Using Python

Counter loop pattern

lterating over an implicit sequence of numbers... But why complicate things?

Let’s develop function checksorted () that:
* takes a list of comparable items as input
* returns True if the sequence is increasing, False otherwise

>>> checkSorted([2, 4, 6, 8, 10])

True Implementation idea:
>>> checkSorted([2, 4, 6, 3, 10]) check that adjacent pairs
False

are correctly ordered

>>>

def checkSorted(1lst):
'return True if sequence lst is increasing, False otherwise'
for i in range(0, len(lst)-1):
i =0, 1, 2, ..., len(lst)-2
if 1lst[i] > lst[i+l]:
return False
return True

Introduction to Computing Using Python

Exercise

Write function arithmetic() that: >>> arithmetic([3, 6, 9, 12, 15])
e takes as input a list of numbers True
* returns True if the numbers in the >>> arithmetic([3, 6, 9, 11, 14])
. . . False
list form an arithmetic sequence, >>> arithmetic([3])
False otherwise True

def arithmetic(lst):
"'"'return True if list lst contains an arithmetic sequence,
False otherwise'''

if len(lst) < 2: # a sequence of length < 2 is arithmetic
return True

check that the difference between successive numbers is
equal to the difference between the first two numbers
diff = 1lst[1l] - 1st[O0]
for i in range(l, len(lst)-1):
if lst[i+l] - 1lst[i] != diff:
return False

return True

Introduction to Computing Using Python

Accumulator loop pattern

Accumulating something in every loop iteration z: 1st = ([)3, 2, 7, 1, 9]
res =

>>> for num in lst:
res += num

For example: the sum of numbersin a list >>> res \
22
1st = [3, 2, 7, 1, 9] res = 0 shorthand notation
num = | 3 res = res + num (= 3)
accumulator
num = 2 res = res + num (= 5)
num = 7 res = res + num (= 12)
num = 1 res = res + num (= 13)

num = 9 res = res + num (= 22)

Introduction to Computing Using Python

Accumulator loop pattern

Accumulating something in every loop iteration

What if we wanted to obtain the product instead? | >>> ist =13, 2, 7, 1, 9]
>>> res 1

What should res be initialized to? >>> for num in lst:

res *= num

1st = [3, 2, 7,]-, 9] res =1

num = | 3 res *= num (= 3)
num = 2 res *= num (= 6)
num = 7 res *= num (= 42)
num = 1 res *= num (= 42)

num = 9 res *= num (= 378)

Exercise

Write function factorial() that:

Introduction to Computing Using Python

* takes a non-negative integer n as input

* returns n!

nl=nxn-Nxn-2)x(n-3)x..x3x2xl if n>0
0!=1

>>>

>>>

>>>

>>>
720

factorial(0)
factorial(1l)
factorial(3)

factorial(6)

def factorial(n):
'returns n! for input integer n'

res =1
for i in range(2, n+l):
res *= 1

return res

Exercise

Write function acronym() that:
* takes a phrase (i.e., a string) as input
* returns the acronym for the phrase

Introduction to Computing Using Python

>>> acronym('Random access memory')
lle

>>> acronym("GNU's not UNIX")

"GNU'

def acronym(phrase):
'return the acronym of the input string phrase'

split phrase into a list of words
words = phrase.split()

accumulate first character, as an uppercase, of every word

res =

for w in words:

res =
return res

res + w[0].upper()

Introduction to Computing Using Python

Exercise

Werite function divisors() that:
* takes a positive integer n as input
* returns the list of positive divisors of n

>>> divisors(1l)
[1]

>>> divisors(6)
(1, 2, 3, 6]
>>> divisors(11)
[1, 11]

def divisors(n):
'return the list of divisors of n'

res = [] # accumulator initialized to an empty list
for i in range(l, n+l):
ifn% i==0: # if i is a divisor of n

res.append(i) # accumulate i

return res

Nested loop pattern

Nesting a loop inside another

Introduction to Computing Using Python

>>> n =5
>>> nested2(n

z=

OO0 O o o
== e
NNN

w w

)

304 ihrek fér4opp should print 0

1 inner for lopp should print 0

inner for lopp should print 0

>>> n =5
>>> nested(n)
01234 3401 2Bherp
01 2 3 4
01234 When j
012 3 4
01234 When j
S —
When j
When j
def nested(n):
for j in range(n):
for i in range(n):
print(i, end=' ')
print ()

2
3 inner for loop should print 0
4

inner for loop should print 0

e R e

def nested2(n):
for j in range(n):
for i in range(j+l):

print ()

print(i, end=' ')

2 3
2 3 4

Exercise

Werite function bubbleSort() that:

* takes a list of numbers as input and
sorts the list using BubbleSort

The function returns nothing

>>> 1st

>>> bubblesort(lst)

>>>]st
[ll 2!

def bubblesort(1lst):

for i in range(len(lst)-1,

for j in range(i):

if 1st[j] > 1lst[j+1]:
I1st[j], lst[j+1]

Ist[j+1], 1lst[3]]

Introduction to Computing Using Python

Two-dimensional lists

Thelist [3, 5, 7, 9] can beviewed as a 1-D table

(3, 5, 7, 91 = 315|719

How to represent a 2-D table?

[[3, 5, 7, 9] = ©
(0, 2, 1, 6] = 1
[3, 8 3, 1] 1= 2

A 2-D table is just a list of rows (i.e., 1-D tables)

Introduction to Computing Using Python

>>> 1st = [[3,5,7,9],
[0,211l6]l
[3,8,3,1]]

>>> 1st
(03, 5, 7, 91,
[0, 2, 1, 6],
[3, 8, 3, 1]]
>>> 1st[0]
[3, 5, 7, 9]
>>> 1st[1]
[0, 2, 1, 6]
>>> 1st[2]
[3I 8! 3! 1]
>>> 1st[0][0]
3

>>> 1st[1][2]
1

>>> 1st[2][0]
3

>>>

Introduction to Computing Using Python

Nested loop pattern and 2-D lists

A nested loop is often needed to access all objects in a 2-D list

def print2D(t):
'prints values in 2D list t as a 2D table'
for row in t:
for item in row
print(item, end=' ')
print ()

(Using the iteration loop pattern)

def incr2D(t):
'"increments each number in 2D list t'

for every row index i
for every column index j
t[i1[(J] += 1

>>> table = [[3, 5, 7, 9],
[0, 2, 1, 617,
[3, 8, 3, 11]

>>> print2D(table)

3579

0216

3831

>>> incr2D(t)
>>> print2D(t)
4 6 8 10
1327

4 9 4 2

>>>

(Using the counter loop pattern)

while loop

if <condition>:
<indented code block>
<non-indented statement>

while <condition>:
<indented code block>
<non-indented statement>

Introduction to Computing Using Python

[<non—indented statement>]

while loop

Example: compute the smallest
multiple of 7 greater than 37.

ldea: generate multiples of 7 until
we get a number greater than 37

>>> 1 = 7
>>> while 1 <= 37:
i +=17

False

Introduction to Computing Using Python

Exercise

Write function negative () that:
e takes a list of numbers as input

Introduction to Computing Using Python

* returns the index of the first negative number in the list
or -1 if there is no negative number in the list

>>> 1st = [3, 1, -7,
>>> negative(lst)

2

>>> negative([1l, 2,
-1

-4,

31)

9! _2]

def greater(lst):
for i in range(len(lst)):
if 1st[i] < O:

return i

return -1

Introduction to Computing Using Python

Sequence loop pattern

Generating a sequence that reaches the desired solution

Fibonacci sequence

55

Goal: the first Fibonnaci number greater than some bound

def fibonacci(bound):
'returns the smallest Fibonacci number greater than bound'

previous = 1 # previous Fibonacci number

current = 1 # current Fibonacci number

while current <= bound:
current becomes previous, and new current is computed
previous, current = current, previous+current

return current

Introduction to Computing Using Python

Exercise

Write function approxE () that approximates the Euler constant as follows:
e takesanumber error asinput
* returns the approximation €¢; suchthat ¢, —e,_, <error

>>> approxE(0.01)
2.7166666666666663

1 1 1 1 1 2!
T T T T approxE(0.000000001)
e O!+l!+2!+ 3!+4!... 2.71828183... S o la5818984457594
1 def approxE(error):
€y = a =1 prev = 1 # approximation 0
1' 1 current = 2 # approximation 1
€ = 6+F =2 € while current - prev > error:
f i 1 # new prev is old current
=—+—3+—=215 # new current is old current + 1/factorial(?)
20 1 2) return current
I 1 1 1
s =—+—+—+—=2.660... e, —e, =.166..
o 1 2! 3

Introduction to Computing Using Python

Infinite loop pattern

An infinite loop provides a continuous service

>>> hello2()
What is your
Hello Sam

What is your
Hello Tim The server could instead be a

What is your .
Hello Alex fime server, or a web server,

What is your or a mail server, or...

A greeting service

def hello2():

'''a greeting service; it repeatedly requests the name
of the user and then greets the user''’

while True:
name = input('What is your name? ')
print('Hello {}'.format(name))

Loop-and-a-half pa

Cutting the last loop iteration “in h

Example: a function that creates
a list of cities entered by the user
and returns it

The empty string is a “flag” that
indicates the end of the input

def cities():

1st = [] —

Introduction to Computing Using Python

ttern

alf”

>>> cities|()

Enter city: Lisbon
Enter city: San Francisco
Enter city: Hong Kong

Enter city:
['Lisbon',
>>>

'San Francisco',

'"Hong Kong']

def cities2():
1st = []

while True:

st gopRETAHTORStSPs Herd <—
while city !=

lst.append(city) :;:::::=-‘=::

city = input('Enter city: ')%

city = input('Enter city:

\if Cit == S
return 1lst

A

return 1lst

lst.append(city)

)

The break statement

The break statement:

* isused inside the body of a loop

Introduction to Computing Using Python

e when executed, it interrupts the current iteration of the loop
» execution continues with the statement that follows the loop body.

def cities2():
1st = []

while True:

city =

if city ==

input('Enter city:

return 1lst

lst.append(city)

)

def cities2():
1st = []

while True:

city =

if city ==

input('Enter city:

break

lst.append(city)

return 1lst

Introduction to Computing Using Python

break and continue statements

The bortkntesestabdment:

* is used inside the body of a loop
* when executed, it interrupts the current iteration of the loop
» execution continues with tlexstetmtientahtdtdddopys the loop body.

In both cases, only the innermost loop is affected

>>> beforel(table) >>> table =
2 3 [2,

[0,
4 5 6 [4,

[
3,
3,
=

>>> ignore((table)
0, 61,
4[5][
6, 0]]

=S W N

3
4
5

o U1 O

def beforelO(table):
for row in table:
for num in row:
if num ==
break
print(num, end='
print ()

")

def ignoreO(table):
for row in table:
for num in row:
if num ==
continue
print(num, end=' ')
print ()

