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Abstract

The nonadjacent form method of Koblitz [Advances in Cryptology (CRYPTQ’'98), in: Lecture
Notes in Comput. Sci., vol. 1462, 1998, pp. 327-337] is an efficient algorithm for point multiplication
on a family of supersingular curves over a finite field of characteristic 3. In this paper, a further
discussion of the method is given. A window nonadjacent form method is proposed and its validity
is proved. Efficient reduction and pre-computations are given. Analysis shows that more than 30%
of saving can be achieved.
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1. Introduction

Koblitz or subfield curves, are curves defined o¥grfor ¢ relatively small, and a
subgroup of the set of rational points oW} is of interest. This approach allows efficient
scalar point multiplication (e.g[9,11,14) as well as point counting via the zeta function
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(e.g.,[2]). Such curves can play an important role in certain elliptic curve cryptographic
systems first suggested[®,13].

The windowr-adic NAF technique of Solingd4] is a very efficient method for scalar
multiplication for Koblitz curves over finite fields of characteristic 2. This method requires
some pre-computations.

Recently, a family of supersingular elliptic curves over finite fielg was presented
by Koblitz [10]. For this type of curve, point multiplication can be sped up by using the
nonadjacent form of base-expansion of the scalar. Such an expansion is proved to exist
and be uniqugl0, Theorem 1] Applying Koblitz’ algorithm to implement ECDSA, the
speed can be significantly improved (by factor of 12, [46€3).

For supersingular elliptic curves, the algorithm of Menezes—Okamoto—Vanstone re-
duces the discrete logarithm problem in elliptic curves dvgrto a discrete logarithm
problem in a finite field", x with K < 6. Se€[12] and[4]. Therefore, care should be taken
when using supersingular curves in certain cryptographic applications.

Recent work on parings in cryptography has shown directions of positive use of super-
singular curves, such as for example, a one round protocol for tripartite Diffie-Hellman key
exchange by Joul/], an efficient identity-based encryption (IBE) system by Boneh and
Franklin[3], and many others. It is noted that the Koblitz curves dgr are included in
[1,5] for efficient implementations of pairings.

In this paper, a further discussion on the Koblitz’ baseenadjacent form method is
given for Koblitz curves over finite fields of characteristic three. For each integerl,

a width w window bases nonadjacent form is derived for any scalar. Our algorithm is
inspired by the windowr NAF algorithm of Solinas for Koblitz curvefl4] over Fon.
Whenw > 2, this method requires a pre-computation, and the validity of the algorithm is
proved if the pre-computation is suitably chosen. The method achieves greater efficiency.

The organization of the paper is as follows. All work is for Koblitz curves over fi-
nite fields of characteristic 3. I8ection 2 we describe the nonadjacent form method of
Koblitz for point multiplication for Koblitz curves and another form of the algorithm of
Koblitz is given. This method is extended to window formSection 3 and a suitable
pre-computation is chosen. The final section discusses the issues of performance and im-
plementation.

2. NAF base-t expansions

Let to be an integer with no factor 2 or 3, apd= 3". Consider the following supersin-
gular elliptic curve

E,: y2:x3—x —(1)4,

overF,, wherea =0 or 1. From now on, we writg for (—1)“.
Let N, denote the number @, -points onE. TheFrobenius maps defined to be

T E,(Fgn) — E,(IF3m)
) — (33
andz(0)=0.
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Notice thatr2(P) + 3P = 3ut(P) for all P € E,(F3»), T can be interpreted as a com-
plex number defined by the next equation:
12— 3ur +3=0.
Let w be the 6th root of unity
w4 ~/3i
w=———

2

thenuw is a primitive 6th root of unity and = u + w. ThusZlw] =7 + Zw = 7Z + Zr,
and it is a set of automorphisms 8f, in the sense that

(a+bt)P=aP +bt(P)
foreveryP € E,(IF3n).

It is observed irf10] that the point multiplicatiom P is trivial: let P = (P, P,) € E,,

then

@P = (Py — u, —pPy).
So it costs very little for performing* P andw’ P, wherek € N and O< [ < 6. Therefore,
to compute: P, one first gets a reductian+ bt of n in the sense that

n=a+btr mod(t" —1).

Here the fac{z™ — 1) P = O should be noted. The next step is to seelonadjacent form
(NAF) of a + bt:

N
a—l—br:antj,
=0

with n; € {0, £1, o, £w?} andn;n;+1 = 0. Finally, one gets

N
nP=>Y nti(P).

j=0

The procedure above is guaranteed by the following resul{1€e

Theorem (Koblitz). Every element o¥[w] reduced modula™ — 1 has a unique NAF
baser expansion with digit§0, +1, +w, +w?}, in which at mostim + 1)/2 digits are
nonzero. Asymptotically on avera§8% of the digits are zero.

The proof of the above theorem[it0] is inherent in the following algorithm. Here the
notationmodsmeans
n

a=bmodsn iff a=b (modn) and—g<a<§.
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Algorithm 2.1 (Koblitz baser NAF methoil
I NPUT: an elemenp = rg + r1t of Z[w]
QUTPUT: S, the array of coefficients af-NAF of p.
S« ()
Whilerp#0Oorr; #0
& < romods 3
r3 < (ro—¢) div3
ro < ri1+3urs
ry < —rs
If e=0 or 3|y then
ro <1
ry <rjp
prepence to S
El se
If 3|(rp—ue) then
ro <=1+ 2ue
rL<ri—e
prepenccw? to S
Endi f
If 3|(rp+ue) then
ro <=1+ ue
ry<rg
prepend—sw to S
Endi f
Endi f
Endwhi | e
Return S

Notice that

?la+bt < 3jaand 3b,
and

—14 ut = pow, —2—1—,ur:a)2,

another proof of Koblitz Theorem can be described by the following algorithm:

Algorithm 2.2 (Koblitz baser NAF methogl
I NPUT: an elemenp = rg + r1t of Z[w]
QUTPUT: S, the array of coefficients af-NAF of p.
S <)
While rg£0 or ri1#0
If 34rp then
x < ro mods 3
y < r1 mods 3
If x=py then
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X < —2x
Endi f
ro<—ro—x
rp<—ri1—Yy
prependr + yt to S

El se
prepend O t&6
Endi f
<10
rg < Mro+r1
r, <— %t
Endwhi | e

Return S

The treatment oAlgorithm 2.2and the algorithm in the next section are inspired by the
algorithms of Solinas ifil4].

3. Window base-t NAF method

It is known that the Solinas windowNAF method[14] for Koblitz curves overfon
is a very efficient method for point multiplication. In this section, a window ba$eAF
method for the curveg, overFz« is suggested. This method is proved to have the “norm
reducing” property and hence produces a converging algorithm.

Given a natural numbep, the idea of the widthv window baser NAF method is to
seek the following expansiom{ndowz-NAF) of an element + bt € Z[w]:

N
a+br=>Y ur/ (1)
j=0

with the property that each nonzerg is taken from a suitable set called tipee-
computation seand each segmefi;, u; 1, ..., uj4w—1} CONtains at most one nonzero
element.

To compute(a + bt)P for someP € E,(F3»), one first sets up a pre-computation:
performu P for eachu in the pre-computation set, and comp@é\'zo rf'(uj P).

The next lemma is crucial in our discussion.

Lemma 3.1. Letk be a positive integer and + bt € Z[w], then

(1) 5 = 3W/2 () k/20 ¢ Tk/21=1k/2)
2) tfla+br & 3%/21q and3K/2|p.

Proof. (1) Notice thatr? = 3(uw). The argument follows from induction.
(2) By (1), ¥ is associated tol®/2 ¢ [k/21-1k/2]
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Consider the set of all elements Bfw] which are not divisible byt. By Lemma 3.1
a set of representatives of congruence classes of such elements médsilo

[x+yr0<x <3/ —1 0<y<3™/4 — 1, and 3x}.

Foreachy + yt, letx + yt be an element with least norm in the congruence classtoft
moduloz™. A pre-computation set (nonzero coefficients of expresgigjncan be formed
as follows:

MinPre, = {% + jz: 0<x <3™/? -1, 0<y<3"/2 1, and 3/x}.

Forw > 1, the next algorithm generates the coefficients of the widthindow baser
NAF expansion.

Algorithm 3.1 (Widthw window basex NAF methodl
I NPUT: an elemenp = rg + r1t of Z[w]
QUTPUT: S, the array of coefficients of window-NAF of p.
S < ()
While rg#£0 or ri1#0
If 31ro then
x < rg mod Jw/2]
y < r1 mod 3%/2
ro<ro—Xx
rg <—r1— )7
prependr + yr to S
El se
prepend O taS
Endi f
<10
rg < Mro+ri
r<— %
Endwhi | e
Return S

It is obvious that the Koblitz algorithmA{gorithm 2.2 is a special case of the above
algorithm, i.e., the case = 2.
The next example displays a width 3 window baseenadjacent form of 2330 963r
with u = 1. It is expressed in terms of algebraic formulas based on which the algorithm is
developed.
2330—963r = —1+ (2331— 963r)
=—1— 462+ 457)
=—1—1%~1+ (63+450))
=-1-14(-1+7%22-17))
=-1—1*-1+1%((4-20) + (18— 151)))
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=-1-tH-1+H@d-20) - 3@ -1))
=—1+*—@d-20%+4-o)tt

Heret3 = —9+ 67 andt* = —18+ 9z. The elements 4 27 and 4— t are congruent to
4+ 1 and 4— 7 respectively, and they have the least norms in the corresponding classes.
We must show thaflgorithm 3.1is valid, i.e., thewhi | e loop inside the algorithm
terminates.
Recall that for an arbitrary elemer+ r1t € Z[w], its norm is given by the formula

N(ro+ri7) = rg + 3urory + 3r12.
Let
Us = {(nw)’: j=0,1...,5},

thenUg contains all elements of norm 1 @{w].
The following fact about MinPrg is useful.

Lemma3.2. For w > 1,

Us € MinPre,.

Proof. Sincew > 1, and
Us={1l, -1+ put,—24+put,—1,1—ut,2— ut},
by Lemma 3.1 any two elements il/s are not congruent modulg”. O

Let >~ denote a typical reduction by a single round of tte | e loop inside the algo-
rithm. So the relation

ro+rit = rg+rit

indicates that starting from elemen+ 17, we getr| + r;7 at the end of one round of
thewhi | e loop. It is immediate that

ro+rit — (X +y7)
T‘ 9

ro+rit=

here it is understood that if|@, X = y = 0. Furthermore, if 3 ro, then there exists a
reduction chain of lengtv of the form:

ro+rit — (X 4+ y71) . ro+rit — (X 4 y71)
T Tw '

ro+rit >

In the next theorem, it is shown that the above chain is norm reducing, and hence the
argument that the algorithm terminates follows.

Theorem 3.1. The widthw window baser NAF method terminates with respect to
MinPre,,.
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Proof. Let us start with element + r17.

By Lemma 3.2 we may assume tha¥ (ro + r17) > 1. This implies thatN (rg + r17)
> /3.

If 3|rg, then

ro+rit
ro+rit > .
T

It is obvious that
N<r0+r1‘[) _ N(ro+r17)

< N(rg+ri7).
T 3

If 3 1ro, then
ro+rit — (X +y1) . ro+rit — (X +y1)
T Tw ’
SinceZ|w] is Euclidean N (x + y7) < N(z¥) = 3".
[ro+rit — (X + 7)| . 1 (1 |i+5ir|)
[T lro+rit| |T|® lro+ rit|

1 |E+§r|>
<— |1+ —
(7

_ L, Bt
LAV AL
1 1

<z +—=<1,

3 V3

ro+rit — (X + y1)
Tw '

ro+rit >

i.e.,

N(ro+r11)>N<

Therefore, under the algorithm, an element of a smaller norm can be obtained by at most
w reductions and the algorithm must terminate:

It is remarked that whemw = 1, Algorithm 3.1is not valid. In other words, not every
element inZ[w] can be expressed as

N
-
DUt
j=0

with u; € {0, 1, —1}. For example, takg = 1. If we had 2— 7 = Zf’zoujrf, then allu
would be—1 andN would be infinity.

4. Performance and implementation

In this section, the issues of implementation and performance are discussed. First an
efficient and clean form of a reduced scalar modtifo— 1 is given. Then we illustrate
how to perform an efficient pre-computation. Finally, analysis shows how much we gain
from the window base-NAF method.
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4.1. Efficient reduction module™ — 1

In practice, we are only interested in the subgrouEgfFz») whose order is a large
prime. According td10], the case of to being a prime is a good choice. Note that by Weil's
theorem,

m+1

3
Ny =N@E"—1)=3" —u<—>3T +1,
m

Where(n—31) is the Jacobi symbol. In many cas@g, or N,,,/7 is a prime, segl0].

As noted previously, it is sufficient to consider a remainder bt € Z[w] of k modulo
" — 1, sincekP = (a + bt) P forany P € E,. Since the norm of + bt can be less than
Ny, so the size ofi + bt can be around:/2. A trick in [6] shows that the reduction can
be achieved by applying division with remainder for integers. Following a similar idea, we
reduce an integér modulot™ — 1 by usingLemma 3.1and a more explicit expression of
the remainder is obtained.

Letm > 3 be a prime. Then# 1 = 32" . Using the division with remainder for integers,

we find an integey and a non-negative integer< 3"# such that
k= q3mTH + .
By Lemma 3.J,3mT+1 = r”’((uw)_mT_l(Su — 1)), S0

k=g ((no) 7 @u — 1) =+ (r + q((ne) "7 @ — 1))).

Notice that
3u—rt if m=1(mod 12
1om K if m=-—1(mod 12
(ho) 2 @Bu—1)=4 __ if m =5 (mod 12

—@Bu—1) ifm=-5(mod 12.
Therefore, the following is true:

Proposition 4.1. Letk, g, r be integers such that

k= q3mTH +r.
Then a remainder of modulot™ — 1 can be expressed as

r+qgt’ ifm=1(mod 12
r+qgt ifm=-1(mod 12
r—qt ifm=5(mod 12
r—qt’ ifm=-5(mod 12

wheret’ =3u — 1.

a+bt =

In practice,k is chosen to be less thaw,,. Suppose that > 0, theng < 3"z + 1.
A bound of the norm oft + bt is obtained:

N(a+bt)=r?+3urq+3¢><7-3"+5.3"% 4+ 3.
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4.2. Efficient pre-computation

The Koblitz basese NAF method needs no pre-computation since its pre-computation
set isUg. It is a width 2 window base- NAF method. When the widthw of window
baser NAF method increases, pre-computation is required. Since we select MiBre
the pre-computation set, some further optimization can be done to get better performance.
First of all, for the set

i+ x=124,5,...,3"2 -1y=01,...,3"2 -1}
only half of it need to be used for pre-computation, i.e., the subset

w2l _q

h+§ﬂx=L245”q 5

,y=QL””@WQ—1}

The other half is simply the negation of the elements from the above set. Sedggdty,
not considered for pre-computation though it is a subset of MipPreerefore, there are
at most

(% .3Mw/2ly3lw/2l _g
2

elements for pre-computation.

Careful arrangement of the order of pre-computation also contributes to efficiency. We
first start with prime elements. Computation of point multiplication by other elements can
be partially based on multiplication by primes. If two primes are associated to each other,
only one is needed for pre-computation.

For example, let us consider the caseuof 3 andu = 1. The next table presents a
method for efficient pre-computation:

=3"1-3

x4yt X4yt NEX +y1) Efficient form X +yo)P

1 1 1 1 Po=P

2 2 4 2 P =2P

4 4-3r 7 1-72 P3=P —12(P)
147 1471 7 —0?(1—1?) Py =—w?(P3)
241 2-2t 4 —2w Ps=—w(P1)
447 4-2¢ 4 —20? P7=—w(Py)
1-1 1-1 1 —w Pg=—w(P)
2—1 2—1 1 —? Pg:—a)z(P)
47 41 7 1- w?c Pi1= P+ Pig

This computation uses 2 point-additions and 1 point-doubling and the other operations
involved are much cheaper.

Applying the same principle to the casewt= 4 andu = 1, the pre-computation needs
6 point-additions and 1 point-doubling. Details are omitted.
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As indicated in[10], the average density of nonzero coefficients of a ab&F ex-
pansion of length is %n For a widthw window baser NAF expansion of length, the
average density becomes

2
2w+ 1

n.

Now suppose. = 1. We select three fields siz@: < 100,m = 163 (N163iS a prime, see
[10]) andm > 200. The length of the baseexpansion is roughly:.
The next three tables reveal the performance of the window b&é&F method corre-
sponding to the above three lengths. The comparison base isawilth

m ~ 100

Width

Pre-computation

Nonzero terms

Total operations

Saving

40
286
222

40
316
292

21%
27%

Pre-computation

Nonzero terms

Total operations

Saving

684
466
362

684
496
432

27%
37%

Pre-computation

Nonzero terms

Total operations

Saving

80
571
444

80
601
514

25%
36%

We see that, if we choose the window width to be 4, we can expect more than 30%
computational saving. The number of pre-computations for width 5 is much larger, so we
do not expect an overall improvement when the window width increases further.

Another remark is that in the case of scalar multiplication of a fixed point (for example,
key generation), we could choose a reasonably large window widthy sag or 10.
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