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Abstract

The nonadjacent form method of Koblitz [Advances in Cryptology (CRYPTO’98), in: Lec
Notes in Comput. Sci., vol. 1462, 1998, pp. 327–337] is an efficient algorithm for point multiplic
on a family of supersingular curves over a finite field of characteristic 3. In this paper, a f
discussion of the method is given. A window nonadjacent form method is proposed and its v
is proved. Efficient reduction and pre-computations are given. Analysis shows that more tha
of saving can be achieved.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Koblitz or subfield curves, are curves defined overFq for q relatively small, and a
subgroup of the set of rational points overFn

q is of interest. This approach allows efficie
scalar point multiplication (e.g.,[9,11,14]) as well as point counting via the zeta functi
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(e.g.,[2]). Such curves can play an important role in certain elliptic curve cryptographic
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systems first suggested in[8,13].
The windowτ -adic NAF technique of Solinas[14] is a very efficient method for scala

multiplication for Koblitz curves over finite fields of characteristic 2. This method requ
some pre-computations.

Recently, a family of supersingular elliptic curves over finite fieldF3m was presented
by Koblitz [10]. For this type of curve, point multiplication can be sped up by using
nonadjacent form of base-τ expansion of the scalar. Such an expansion is proved to
and be unique[10, Theorem 1]. Applying Koblitz’ algorithm to implement ECDSA, th
speed can be significantly improved (by factor of 12, see[10]).

For supersingular elliptic curves, the algorithm of Menezes–Okamoto–Vanston
duces the discrete logarithm problem in elliptic curves overFq to a discrete logarithm
problem in a finite fieldFqK with K � 6. See[12] and[4]. Therefore, care should be tak
when using supersingular curves in certain cryptographic applications.

Recent work on parings in cryptography has shown directions of positive use of s
singular curves, such as for example, a one round protocol for tripartite Diffie-Hellma
exchange by Joux[7], an efficient identity-based encryption (IBE) system by Boneh
Franklin[3], and many others. It is noted that the Koblitz curves overF3m are included in
[1,5] for efficient implementations of pairings.

In this paper, a further discussion on the Koblitz’ base-τ nonadjacent form method
given for Koblitz curves over finite fields of characteristic three. For each integerw > 1,
a width w window base-τ nonadjacent form is derived for any scalar. Our algorithm
inspired by the windowτNAF algorithm of Solinas for Koblitz curves[14] over F2m .
Whenw > 2, this method requires a pre-computation, and the validity of the algorith
proved if the pre-computation is suitably chosen. The method achieves greater effic

The organization of the paper is as follows. All work is for Koblitz curves ove
nite fields of characteristic 3. InSection 2, we describe the nonadjacent form method
Koblitz for point multiplication for Koblitz curves and another form of the algorithm
Koblitz is given. This method is extended to window form inSection 3, and a suitable
pre-computation is chosen. The final section discusses the issues of performance
plementation.

2. NAF base-τ expansions

Let to be an integer with no factor 2 or 3, andq = 3m. Consider the following supersin
gular elliptic curve

Ea : y2 = x3 − x − (1)a,

overFq , wherea = 0 or 1. From now on, we writeµ for (−1)a .
Let Nm denote the number ofFq -points onE. TheFrobenius mapis defined to be

τ :Ea(F3m) → Ea(F3m)

(x, y) → (x3, y3)

andτ(O) = O.
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Notice thatτ2(P ) + 3P = 3µτ(P ) for all P ∈ Ea(F3m), τ can be interpreted as a com-

e

plex number defined by the next equation:

τ2 − 3µτ + 3= 0.

Let ω be the 6th root of unity

ω = µ + √
3i

2
,

thenµω is a primitive 6th root of unity andτ = µ + ω. ThusZ[ω] = Z + Zω = Z + Zτ ,
and it is a set of automorphisms ofEa in the sense that

(a + bτ)P = aP + bτ(P )

for everyP ∈ Ea(F3m).
It is observed in[10] that the point multiplicationωP is trivial: let P = (Px,Py) ∈ Ea ,

then

ωP = (Px − µ,−µPy).

So it costs very little for performingτ kP andωlP , wherek ∈ N and 0< l < 6. Therefore,
to computenP , one first gets a reductiona + bτ of n in the sense that

n = a + bτ mod(τm − 1).

Here the fact(τm − 1)P = O should be noted. The next step is to seek anonadjacent form
(NAF) of a + bτ :

a + bτ =
N∑

j=0

ηj τ
j ,

with ηj ∈ {0,±1,±ω,±ω2} andηjηj+1 = 0. Finally, one gets

nP =
N∑

j=0

ηj τ
j (P ).

The procedure above is guaranteed by the following result, see[10]:

Theorem (Koblitz). Every element ofZ[ω] reduced moduloτm − 1 has a unique NAF
base-τ expansion with digits{0,±1,±ω,±ω2}, in which at most(m + 1)/2 digits are
nonzero. Asymptotically on average60%of the digits are zero.

The proof of the above theorem in[10] is inherent in the following algorithm. Here th
notationmodsmeans

a = b modsn iff a ≡ b (modn) and − n

2
� a <

n

2
.
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Algorithm 2.1 (Koblitz base-τ NAF method).

INPUT: an elementρ = r0 + r1τ of Z[ω]
OUTPUT: S, the array of coefficients ofτ -NAF of ρ.

S ← 〈〉
While r0 	= 0 or r1 	= 0

ε ← r0 mods 3
r3 ← (r0 − ε) div3
r ′
0 ← r1 + 3µr3

r ′
1 ← −r3
If ε = 0 or 3|r ′

0, then
r0 ← r ′

0
r1 ← r ′

1
prependε to S

Else
If 3|(r ′

0 − µε) then
r0 ← r ′

0 + 2µε

r1 ← r ′
1 − ε

prependεω2 to S

Endif
If 3|(r ′

0 + µε) then
r0 ← r ′

0 + µε

r1 ← r ′
1

prepend−εω to S

Endif
Endif

Endwhile
Return S

Notice that

τ2|a + bτ ⇔ 3|a and 3|b,

and

−1+ µτ = µω, −2+ µτ = ω2,

another proof of Koblitz Theorem can be described by the following algorithm:

Algorithm 2.2 (Koblitz base-τ NAF method).
INPUT: an elementρ = r0 + r1τ of Z[ω]
OUTPUT: S, the array of coefficients ofτ -NAF of ρ.

S ← 〈〉
While r0 	= 0 or r1 	= 0
If 3 � r0 then

x ← r0 mods 3
y ← r1 mods 3
If x = µy then
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x ← −2x

the

orm

ro

n:
Endif
r0 ← r0 − x

r1 ← r1 − y

prependx + yτ to S

Else
prepend 0 toS

Endif
t ← r0
r0 ← µr0 + r1
r1 ← −t

3
Endwhile

Return S

The treatment ofAlgorithm 2.2and the algorithm in the next section are inspired by
algorithms of Solinas in[14].

3. Window base-τ NAF method

It is known that the Solinas windowτNAF method[14] for Koblitz curves overF2m

is a very efficient method for point multiplication. In this section, a window base-τ NAF
method for the curvesEa overF3m is suggested. This method is proved to have the “n
reducing” property and hence produces a converging algorithm.

Given a natural numberw, the idea of the widthw window base-τ NAF method is to
seek the following expansion (windowτ -NAF) of an elementa + bτ ∈ Z[w]:

(1)a + bτ =
N∑

j=0

uj τ
j

with the property that each nonzerouj is taken from a suitable set called thepre-
computation setand each segment{uj ,uj+1, . . . , uj+w−1} contains at most one nonze
element.

To compute(a + bτ)P for someP ∈ Ea(F3m), one first sets up a pre-computatio
performuP for eachu in the pre-computation set, and compute

∑N
j=0 τ j (ujP ).

The next lemma is crucial in our discussion.

Lemma 3.1. Let k be a positive integer anda + bτ ∈ Z[ω], then

(1) τ k = 3�k/2
(µω)�k/2
τ �k/2�−�k/2
,
(2) τ k|a + bτ ⇔ 3�k/2�|a and3�k/2
|b.

Proof. (1) Notice thatτ2 = 3(µω). The argument follows from induction.
(2) By (1),τ k is associated to 3�k/2
τ �k/2�−�k/2
. �
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Consider the set of all elements ofZ[ω] which are not divisible byτ . By Lemma 3.1,

ve

hm is
a set of representatives of congruence classes of such elements moduloτw is
{
x + yτ : 0� x � 3�w/2� − 1, 0� y � 3�w/2
 − 1, and 3� x

}
.

For eachx +yτ , let x̃ + ỹτ be an element with least norm in the congruence class ofx +yτ

moduloτw . A pre-computation set (nonzero coefficients of expression(1)) can be formed
as follows:

MinPrew = {
x̃ + ỹτ : 0� x � 3�w/2� − 1, 0� y � 3�w/2
 − 1, and 3� x

}
.

For w > 1, the next algorithm generates the coefficients of the widthw window base-τ
NAF expansion.

Algorithm 3.1 (Widthw window base-τ NAF method).
INPUT: an elementρ = r0 + r1τ of Z[ω]
OUTPUT: S, the array of coefficients of windowτ -NAF of ρ.

S ← 〈〉
While r0 	= 0 or r1 	= 0
If 3 � r0 then

x ← r0 mod 3�w/2�
y ← r1 mod 3�w/2

r0 ← r0 − x̃

r1 ← r1 − ỹ

prependx̃ + ỹτ to S

Else
prepend 0 toS

Endif
t ← r0
r0 ← µr0 + r1
r1 ← −t

3
Endwhile

Return S

It is obvious that the Koblitz algorithm (Algorithm 2.2) is a special case of the abo
algorithm, i.e., the casew = 2.

The next example displays a width 3 window base-τ nonadjacent form of 2330− 963τ
with µ = 1. It is expressed in terms of algebraic formulas based on which the algorit
developed.

2330− 963τ = −1+ (2331− 963τ)

= −1− τ4(62+ 45τ)

= −1− τ4(−1+ (63+ 45τ)
)

= −1− τ4(−1+ τ4(22− 17τ)
)

= −1− τ4(−1+ τ4((4− 2τ) + (18− 15τ)
))
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= −1− τ4(−1+ τ4((4− 2τ) − τ3(4− τ)
))

sses.

-

f
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ce the

to
= −1+ τ4 − (4− 2τ)τ8 + (4− τ)τ11.

Hereτ3 = −9+ 6τ andτ4 = −18+ 9τ . The elements 4− 2τ and 4− τ are congruent to
4+ τ and 4− τ respectively, and they have the least norms in the corresponding cla

We must show thatAlgorithm 3.1 is valid, i.e., thewhile loop inside the algorithm
terminates.

Recall that for an arbitrary elementr0 + r1τ ∈ Z[ω], its norm is given by the formula

N(r0 + r1τ) = r2
0 + 3µr0r1 + 3r2

1 .

Let

U6 = {
(µω)j : j = 0,1 . . . ,5

}
,

thenU6 contains all elements of norm 1 ofZ[ω].
The following fact about MinPrew is useful.

Lemma 3.2. For w > 1,

U6 ⊆ MinPrew.

Proof. Sincew > 1, and

U6 = {1,−1+ µτ,−2+ µτ,−1,1− µτ,2− µτ },
by Lemma 3.1, any two elements inU6 are not congruent moduloτw. �

Let � denote a typical reduction by a single round of thewhile loop inside the algo
rithm. So the relation

r0 + r1τ � r ′
0 + r ′

1τ

indicates that starting from elementr0 + r1τ , we getr ′
0 + r ′

1τ at the end of one round o
thewhile loop. It is immediate that

r ′
0 + r ′

1τ = r0 + r1τ − (x̃ + ỹτ )

τ
,

here it is understood that if 3|r0, x̃ = ỹ = 0. Furthermore, if 3� r0, then there exists
reduction chain of lengthw of the form:

r0 + r1τ � r0 + r1τ − (x̃ + ỹτ )

τ
� · · · � r0 + r1τ − (x̃ + ỹτ )

τw
.

In the next theorem, it is shown that the above chain is norm reducing, and hen
argument that the algorithm terminates follows.

Theorem 3.1. The width w window base-τ NAF method terminates with respect
MinPrew.



120 I.F. Blake et al. / Journal of Discrete Algorithms 3 (2005) 113–124

Proof. Let us start with elementr0 + r1τ .

t most

y

irst an
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By Lemma 3.2, we may assume thatN(r0 + r1τ) > 1. This implies thatN(r0 + r1τ)

�
√

3.
If 3|r0, then

r0 + r1τ � r0 + r1τ

τ
.

It is obvious that

N

(
r0 + r1τ

τ

)
= N(r0 + r1τ)

3
< N(r0 + r1τ).

If 3 � r0, then

r0 + r1τ � r0 + r1τ − (x̃ + ỹτ )

τ
� · · · � r0 + r1τ − (x̃ + ỹτ )

τw
.

SinceZ[ω] is Euclidean,N(x̃ + ỹτ ) < N(τw) = 3w.

|r0 + r1τ − (x̃ + ỹτ )|
|τw||r0 + r1τ | � 1

|τ |w
(

1+ |x̃ + ỹτ |
|r0 + r1τ |

)

� 1

|τ |w
(

1+ |x̃ + ỹτ |√
3

)

� 1

|τ |w + |x̃ + ỹτ |√
3|τ |w

� 1

3
+ 1√

3
< 1,

i.e.,

N(r0 + r1τ) > N

(
r0 + r1τ − (x̃ + ỹτ )

τw

)
.

Therefore, under the algorithm, an element of a smaller norm can be obtained by a
w reductions and the algorithm must terminate.�

It is remarked that whenw = 1, Algorithm 3.1 is not valid. In other words, not ever
element inZ[ω] can be expressed as

N∑
j=0

uj τ
j

with uj ∈ {0,1,−1}. For example, takeµ = 1. If we had 2− τ = ∑N
j=0 uj τ

j , then alluj

would be−1 andN would be infinity.

4. Performance and implementation

In this section, the issues of implementation and performance are discussed. F
efficient and clean form of a reduced scalar moduloτm − 1 is given. Then we illustrat
how to perform an efficient pre-computation. Finally, analysis shows how much we
from the window base-τ NAF method.
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4.1. Efficient reduction moduloτm − 1
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In practice, we are only interested in the subgroup ofEa(F3m) whose order is a larg
prime. According to[10], the case of to being a prime is a good choice. Note that by W
theorem,

Nm = N(τm − 1) = 3m − µ

(
3

m

)
3

m+1
2 + 1,

where
( 3

m

)
is the Jacobi symbol. In many cases,Nm or Nm/7 is a prime, see[10].

As noted previously, it is sufficient to consider a remaindera + bτ ∈ Z[ω] of k modulo
τm − 1, sincekP = (a + bτ)P for anyP ∈ Ea . Since the norm ofa + bτ can be less tha
Nm, so the size ofa + bτ can be aroundm/2. A trick in [6] shows that the reduction ca
be achieved by applying division with remainder for integers. Following a similar idea
reduce an integerk moduloτm − 1 by usingLemma 3.1and a more explicit expression
the remainder is obtained.

Letm > 3 be a prime. Then 3� m
2 � = 3

m+1
2 . Using the division with remainder for integer

we find an integerq and a non-negative integerr < 3
m+1

2 such that

k = q3
m+1

2 + τ.

By Lemma 3.1, 3
m+1

2 = τm((µω)− m−1
2 (3µ − τ)), so

k = q
(
(µω)

1−m
2 (3µ − τ)

)
(τm − 1) + (

r + q
(
(µω)−

m−1
2 (3µ − τ)

))
.

Notice that

(µω)
1−m

2 (3µ − τ) =




3µ − τ if m ≡ 1 (mod 12)
τ if m ≡ −1 (mod 12)
−τ if m ≡ 5 (mod 12)
−(3µ − τ) if m ≡ −5 (mod 12).

Therefore, the following is true:

Proposition 4.1. Let k, q, r be integers such that

k = q3
m+1

2 + r.

Then a remainder ofk moduloτm − 1 can be expressed as

a + bτ =




r + qτ ′ if m ≡ 1 (mod 12)
r + qτ if m ≡ −1 (mod 12)
r − qτ if m ≡ 5 (mod 12)
r − qτ ′ if m ≡ −5 (mod 12)

whereτ ′ = 3µ − τ .

In practice,k is chosen to be less thanNm. Suppose thatk > 0, thenq � 3
m−1

2 + 1.
A bound of the norm ofα + bτ is obtained:

N(a + bτ) = r2 ± 3µrq + 3q2 < 7 · 3m + 5 · 3
m+1

2 + 3.
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4.2. Efficient pre-computation
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The Koblitz base-τ NAF method needs no pre-computation since its pre-computa
set isU6. It is a width 2 window base-τ NAF method. When the widthw of window
base-τ NAF method increases, pre-computation is required. Since we select MinPrw as
the pre-computation set, some further optimization can be done to get better perform

First of all, for the set

{
x̃ + ỹτ : x = 1,2,4,5, . . . ,3�w/2� − 1, y = 0,1, . . . ,3�w/2
 − 1

}
only half of it need to be used for pre-computation, i.e., the subset

{
x̃ + ỹτ : x = 1,2,4,5, . . . ,

3�w/2� − 1

2
, y = 0,1, . . . ,3�w/2
 − 1

}
.

The other half is simply the negation of the elements from the above set. SecondlyU6 is
not considered for pre-computation though it is a subset of MinPrew. Therefore, there ar
at most

(2
3 · 3�w/2�)3�w/2
 − 6

2
= 3w−1 − 3

elements for pre-computation.
Careful arrangement of the order of pre-computation also contributes to efficienc

first start with prime elements. Computation of point multiplication by other element
be partially based on multiplication by primes. If two primes are associated to each
only one is needed for pre-computation.

For example, let us consider the case ofw = 3 andµ = 1. The next table presents
method for efficient pre-computation:

x + yτ x̃ + ỹτ N(x̃ + ỹτ ) Efficient form (x̃ + ỹτ )P

1 1 1 1 P0 = P

2 2 4 2 P1 = 2P

4 4− 3τ 7 1− τ2 P3 = P − τ2(P )

1+ τ 1+ τ 7 −ω2(1− τ2) P4 = −ω2(P3)

2+ τ 2− 2τ 4 −2ω P5 = −ω(P1)

4+ τ 4− 2τ 4 −2ω2 P7 = −ω(P1)

1− τ 1− τ 1 −ω P8 = −ω(P )

2− τ 2− τ 1 −ω2 P9 = −ω2(P )

4− τ 4− τ 7 1− ω2τ P11 = P + P10

This computation uses 2 point-additions and 1 point-doubling and the other oper
involved are much cheaper.

Applying the same principle to the case ofw = 4 andµ = 1, the pre-computation need
6 point-additions and 1 point-doubling. Details are omitted.
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4.3. Analysis

30%
so we

ple,

, in:
368.
As indicated in[10], the average density of nonzero coefficients of a base-τ NAF ex-
pansion of lengthn is 2

5n. For a widthw window base-τ NAF expansion of lengthn, the
average density becomes

2

2w + 1
n.

Now supposeµ = 1. We select three fields size:m < 100,m = 163 (N163 is a prime, see
[10]) andm > 200. The length of the base-τ expansion is roughlym.

The next three tables reveal the performance of the window base-τ NAF method corre-
sponding to the above three lengths. The comparison base is width= 2.

m ∼ 100

Width Pre-computation Nonzero terms Total operations Saving

2 0 40 40
3 3 28.6 31.6 21%
4 7 22.2 29.2 27%

m ∼ 163

Width Pre-computation Nonzero terms Total operations Saving

2 0 68.4 68.4
3 3 46.6 49.6 27%
4 7 36.2 43.2 37%

m ∼ 200

Width Pre-computation Nonzero terms Total operations Saving

2 0 80 80
3 3 57.1 60.1 25%
4 7 44.4 51.4 36%

We see that, if we choose the window width to be 4, we can expect more than
computational saving. The number of pre-computations for width 5 is much larger,
do not expect an overall improvement when the window width increases further.

Another remark is that in the case of scalar multiplication of a fixed point (for exam
key generation), we could choose a reasonably large window width, sayw = 8 or 10.
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