
Chapter��
Finite Field Arithmetic

Christophe Doche

Contents in Brief

11.1 Prime fields of odd characteristic 201
Representations and reductions • Multiplication • Inversion and division •
Exponentiation • Squares and square roots

11.2 Finite fields of characteristic 222222 213
Representation • Multiplication • Squaring • Inversion and division •
Exponentiation • Square roots and quadratic equations

11.3 Optimal extension fields 229
Introduction • Multiplication • Exponentiation • Inversion • Squares and square
roots • Specific improvements for degrees 3 and 5

In this chapter, we are mainly interested in performance; see Section 2.3 for a theoretical presenta-
tion of finite fields. In the following, we consider three kinds of fields that are of great cryptographic
importance, namely prime fields, extension fields of characteristic 2, and optimal extension fields.
We will describe efficient methods for performing elementary operations, such as addition, multi-
plication, inversion, exponentiation, and square roots. The material that we give is implicitly more
related to a software approach; see Chapter 26 for a presentation focused on hardware. Efficient
finite field arithmetic is crucial in efficient elliptic or hyperelliptic curve cryptosystems and is the
subject of abundant literature [JUN 1993, LINI 1997, SHP 1999]. See also the preliminary version
of a book written by Shoup and available online [SHO], introducing basic concepts from computa-
tional number theory and algebra, and including all the necessary mathematical background.

There are some software packages implementing the algorithms described below, such as ZEN
[ZEN], which is a set of optimized C libraries dedicated to finite fields. There are also more general
libraries like NTL [NTL] or Lidia [LIDIA]. In addition, several computer algebra systems contain
functions for handling finite fields, for example Magma [MAGMA].

11.1 Prime fields of odd characteristic

Most of the algorithms detailed here carry through as well to Z/NZ for arbitrary moduli N , usu-
ally with some obvious modifications. However, here we are mainly interested in prime moduli.
Methods to find either an industrial-grade prime or a certified prime number p of the desired size
are described in Chapter 25.

201

202 Ch. 11 Finite Field Arithmetic

11.1.1 Representations and reductions

For representing finite prime fields we usually use the isomorphism between Fp and Z/pZ. Ele-
ments of Z/pZ are equivalence classes and we have to choose a representative, that is a particular
element in the class, to perform computations. The most standard choice is to represent x ∈ Z/pZ
by the unique integer in [0, p − 1], which is in the class of x. We can also use other representatives
such as the ones belonging to [−�p/2�, �p/2�] or even an incompletely reduced number, which is
not uniquely determined, for it belongs to an interval of length greater than p; see Remark 26.45 (ii)
and [YAN 2001, YASA+ 2002].

Given an integer u of arbitrary size we must be able to reduce it, i.e., to find the integer in [0, p−1]
which is congruent to u modulo p. This modular reduction is achieved by computing the remainder
of a Euclidean division.

However, since all the reductions are performed modulo the same prime number p, there exist
several improvements which, for instance, involve some precomputations. The most popular ones
are certainly the Montgomery and the Barrett methods; see Section 10.4. In this case the cost of
a reduction of a 2n-word integer modulo an n-word integer is asymptotically equal to a size n
multiplication.

To compute the remainder faster, other ideas include the choice of a special modulus allowing
a fast reduction; see Algorithm 10.25 for the use of a different normalization than the one initially
suggested by Knuth in Algorithm 10.30. Quisquater first proposed this method, which speeds up the
determination of an approximation of the quotient; see Remark 10.33 and Example 10.34. However,
this reduction method will increase the length of the modulus p by at least one digit, resulting in
additional multiplications when performing arithmetic in Fp.

In the remainder, we address prime field arithmetic itself. Whatever representation is chosen,
prime field addition and subtraction algorithms are straightforward in terms of the corresponding
multiprecision algorithms for integers, cf. Algorithms 10.3 and 10.5. For example, with classical
representation, if u, v are integers in [0, p − 1], then u + v < 2p and the modular addition of u and
v is simply u + v or u + v − p. In the same way, modular subtraction of u and v is u − v if u � v
and u− v+ p when u < v. Montgomery representation is compatible with addition and subtraction
as well.

Now let us investigate multiplication algorithms in Fp.

11.1.2 Multiplication

Except special methods, like the one explained in [CHCH 1999] that involves precomputations,
there are mainly two ways two perform a modular multiplication. The first one consists of a simple
integer multiplication with the schoolbook or Karatsuba methods, i.e., one of the Algorithms 10.8
or 10.11, followed by a reduction. The choice of the algorithm depends on the nature and the size
of the integer operands as well as on the computer architecture used.

The second one is designed as a single operation. In this case elementary multiplications and
reductions are interleaved so that the size of the intermediate results remains bounded. These two
options apply to Montgomery representation as well.

11.1.2.a Classical representation

Algorithm 11.1 is a general scheme to compute a modular multiplication. We have

uv ≡
(

n−1∑
i=0

uivbi

)
(mod p)

§ 11.1 Prime fields of odd characteristic 203

which can be written

uv ≡
((

. . .
(
(un−1v mod p)b + un−2v mod p

)
b + · · · + u1v mod p

)
b + u0v

)
(mod p).

If we set t−1 = 0 and ti = (ti−1b + un−i−1v) mod p then tn−1 ≡ uv (mod p). We deduce the
following algorithm:

Algorithm 11.1 Interleaved multiplication-reduction of multiprecision integers

INPUT: Two n-word integers u = (un−1 . . . u0)b and v.

OUTPUT: An integer t such that t ≡ uv (mod p).

1. t ← 0

2. for i = 0 to n − 1 do

3. t ← tb + un−i−1v

4. approximate q = �t/p� with q̂ [see methods below]

5. t ← t − q̂p

6. return t

The approximation of q can be achieved by Knuth, Barrett, or Quisquater methods. Knuth’s ap-
proach has already been explained, cf. Algorithm 10.30. The last two methods are described in
detail by Dhem in [DHE 1998]. See also Section 10.4.1 and Remark 10.33. Barrett writes

q =
⌊

t

p

⌋
=

⌊
t

2n−1
22n

p

2n+1

⌋

where n is the number of bits of p, then approximates q by⎢⎢⎢⎣
⌊

t
2n−1

⌋ ⌊
22n

p

⌋
2n+1

⎥⎥⎥⎦
where we assume that

⌊
22n

p

⌋
has been precomputed. Dhem introduced a more general variant,

namely

q̂ =

⎢⎢⎢⎣
⌊

t
2n+β

⌋
R

2α−β

⎥⎥⎥⎦ with R =
⌊

2n+α

p

⌋
·

These additional parameters allow us to perform corrections on the remainder only at the end of the
whole multiplication process, when they are suitably tuned. Algorithm 11.1 works at a word level
and if b = 2� then optimal results are obtained with α = 	 + 3 and β = −2. In this case we have
q−1 � q̂ � q and the intermediate results grow moderately. More precisely, given u, v < 2n+1 then
t ≡ uv (mod p) returned by Algorithm 11.1 is less than 2n+1. To get the final result, at most one
subtraction is needed. This implies also that an exponentiation or any other long computation can be
done with only one correction at the end of the whole process with the same choice of parameters.

Quisquater’s method [QUI 1990, QUI 1992] consists in multiplying p by a suitable coefficient δ
such that the reduction modulo δp is easy. Set

δ =
⌊

2n+�+2

p

⌋
and get q̂ =

⌊
t

2n+�+2

⌋
·

204 Ch. 11 Finite Field Arithmetic

The (+ 2) highest bits of δp are now equal to 1 and the corresponding quotient is obviously
determined, since it is simply equal to the most significants bits of t. There is a fast way to compute
δ, namely put

δ̂ =

⌊
22�+6⌊

p
2n−�−3

⌋
⌋

,

which verifies δ � δ̂ � δ + 1, and a simple test gives the correct value. It is also possible to reduce
the size of δ; see [DHE 1998, p. 24]. This normalization avoids overflows in Algorithm 11.1 while
computing a multiplication or even a modular exponentiation.

Now suppose that one has the result x mod δp while we still want x mod p. For this, we could
perform (x mod δp) mod p but since an exact division is faster (see Section 10.5.3) it is better to
compute

x mod p =
δx mod δp

δ
· (11.1)

Note that this method has been used in several smart cards; see for example [QUWA+ 1991] or
[FEMA+ 1996].

11.1.2.b Montgomery multiplication

Montgomery representation, see Section 10.4.2, was in fact introduced to carry out quick modular
multiplications. This property comes from the equality(

(xR mod p)(yR mod p)R−1 mod p
)

= (xyR) mod p

which implies that REDC([x][y]) = [xy]. Recall that Montgomery reduction is also useful to convert
elements between normal and Montgomery representations. Indeed, [x] = REDC(xR′) where R′ =
R2 mod p has been precomputed and stored, and REDC([x]) = x.

Example 11.2 Take p = 2011, b = 23, R = 4096 so that R′ = 1454. Let x = 45, y = 97. Then

[x] = REDC(45 × 1454) = 1319 = (2447)8
[y] = REDC(97 × 1454) = 1145 = (2171)8

[x][y] = 1510255
[xy] = REDC(1510255) = 1250 = (2342)8
xy = REDC(1250) = 343.

One checks that 45 × 97 ≡ 343 (mod 2011).

Of course, Montgomery method is completely irrelevant when only one product is needed. Instead,
operands are converted to and kept in Montgomery representation as long as possible. For instance,
if one wants [x2y], simply perform REDC([x][xy]).

The following algorithm computes directly REDC(uv) given multiprecision integers u and v in
Montgomery representation. It combines Algorithms 10.8 and 10.22.

Algorithm 11.3 Multiplication in Montgomery representation

INPUT: An n-word integer p = (pn−1 . . . p0)b prime to b, R = bn, p′ = −p−1 mod b and two
n-word integers u = (un−1 . . . u0)b and v = (vn−1 . . . v0)b such that 0 � u, v < p.

OUTPUT: The n-word integer t = (tn−1 . . . t0)b equal to REDC(uv) = (uvR−1) mod p.

1. t ← 0

2. for i = 0 to n − 1 do

3. mi ←
`
(t0 + uiv0)p

′´ mod b

§ 11.1 Prime fields of odd characteristic 205

4. t ← (t + uiv + mip)/b

5. if t � p then t ← t − p

6. return t

Remarks 11.4

(i) If R is chosen such that R > 4p and if u and v are positive and less than 2p then
REDC(uv) is bounded by 2p as well. This means that it is possible to avoid the sub-
traction in Line 5 of Algorithm 11.1 during long computations as exponentiations. At
the end of the whole process the result is normalized in Z/pZ at the cost of a single
subtraction [LEN 2002].

(ii) See [KOAC+ 1996] for a comparison of different variations of Montgomery method.

Example 11.5 Let us perform again the computation of Example 11.2 but at a word level with
Algorithm 11.3. Let u = [45] = 1319 = (2447)8 and v = [97] = 1145 = (2171)8. Then

i ui t0 mi uiv mip t + uiv + mip t

— — — — — — — 0
0 7 0 3 (17517)8 (13621)8 (33340)8 (3334)8
1 4 4 0 (10744)8 0 (14300)8 (1430)8
2 4 0 4 (10744)8 (17554)8 (32150)8 (3215)8
3 2 5 3 (4362)8 (13621)8 (23420)8 (2342)8

One obtains REDC(uv) = (2342)8 = [xy] = 1250 as previously.

Concerning modular squaring, the computation of the square of an integer can be achieved faster
(see Section 10.3.3); however the reduction takes the same time as in the case of a modular multi-
plication. Note that there are some dedicated methods like [HOOH+ 1996], which are worth being
implemented if modular exponentiation is to be computed, as squarings are a very frequent opera-
tion.

11.1.3 Inversion and division

To get the inverse of some integer x, we can use the multiplicative structure of F∗p which implies that
xp−2 ×x = xp−1 ≡ 1 (mod p). However, Collins [COL 1969] showed that the average number of
arithmetic operations required by this approach is nearly twice as large as for the Euclid extended
algorithm, which computes integers u, v such that xu + pv = 1. See Section 10.6 for an exhaustive
presentation of extended gcd algorithms.

In the following section more specific methods are described, including Montgomery inversion
and a useful trick to compute several inverses simultaneously.

11.1.3.a Modular inversion

We start with a simplified and improved version of Algorithm 10.6.3, to compute the inverse of x
modulo p, introduced by Brent and Kung [BRKU 1983] and known as the plus-minus method.

206 Ch. 11 Finite Field Arithmetic

Algorithm 11.6 Plus-minus inversion method

INPUT: An odd modulus p and an integer x < p prime to p.

OUTPUT: The integer x−1 mod p.

1. A ← x, B ← p, UA ← 1, UB ← 0 and δ ← 0

2. while |A| > 0 do

3. while A ≡ 0 (mod 2) do

4. A ← A/2, U ← (U/2) mod p and δ ← δ − 1

5. if δ < 0 then

6. T ← A, A ← B, B ← T

7. T ← UA, UA ← UB , UB ← T

8. δ ← −δ

9. if (A + B) ≡ 0 (mod 4) then

10. A ← (A + B)/2 and UA ← `
(UA + UB)/2

´
mod p

11. else A ← (A − B)/2 and UA ← `
(UA − UB)/2

´
mod p

12. if B = 1 then u ← UB else u ← p − Ub

13. return u

Remarks 11.7

(i) Algorithm 11.6 is based on the observation that if A and B are both odd then either A+B
or A−B is divisible by 4. If A+B ≡ 0 (mod 4) then gcd(A, B) = gcd

(
(A+B)/2, B

)
with (A+B)/2 even and |(A+B)/2| � max{|A|, |B|}. Similar results hold if A−B ≡
0 (mod 4).

(ii) The counter δ is used to compare A and B, as the direct comparison can be time-
consuming, especially in hardware. Further improvements are described in [TAK 1998,
MEBU+ 2004]. The corresponding algorithms are well suited for hardware realizations
and can be implemented in parallel.

Example 11.8 Take p = 27 − 1 = 127 and x = 45. In the following table are given the values of
δ, A, B, UA, and UB at the end of the main while loop.

δ A B UA UB

0 86 127 64 0
1 42 43 111 32
0 32 43 12 32
5 22 1 40 48
4 6 1 34 48
3 2 1 96 48
2 0 1 0 48

So, the inverse of 45 modulo 127 is 48.

In a case where the modulus p is prime, one can also use a completely different algorithm due to
Thomas et al. [THKE+ 1986] to compute the inverse of x modulo p.

§ 11.1 Prime fields of odd characteristic 207

Algorithm 11.9 Prime field inversion

INPUT: A prime modulus p and an integer x prime to p.

OUTPUT: The integer x−1 mod p.

1. z ← x mod p and u ← 1

2. while z �= 1 do

3. q ← −�p/z�
4. z ← p + qz

5. u ← (qu) mod p

6. return u

Remarks 11.10

(i) Algorithm 11.9 is very simple to implement and is reported to be faster than the extended
Euclidean algorithm for some types of primes, for example Mersenne primes. Indeed,
in this case, the computation of q in Line 3 can be carried out very efficiently. Note that
there exists also a dedicated algorithm to compute an inverse modulo a Mersenne prime
[CRPO 2001, p. 428].

(ii) In general, the number of iterations needed by Algorithm 11.9 is less than for extended
gcd algorithms.

(iii) The modular division (k/x) mod p can be directly obtained with Algorithms 11.6 and
11.9. Namely, modify the first line of each algorithm and replace the statements UA ← 1
and u ← 1 respectively by UA ← k and u ← k.

Example 11.11 Again, take p = 27 − 1 = 127 and x = 45. Here are the values of q, z, and u at the
end of the while loop.

q z u

−2 37 125
−3 16 6
−7 15 85
−8 7 82

−18 1 48

Again, we find that the inverse of 45 modulo 127 is 48. In this case only 5 iterations are needed
instead of 7 for Algorithm 11.6, cf. Example 11.8.

11.1.3.b Montgomery inversion and division

Montgomery’s article also deals with inversions and divisions [MON 1985]. Kaliski [KAL 1995]
develops specific algorithms to compute them. Recall the settings of Section 10.4.2 and let u be
an integer. Then the Montgomery inverse of u is defined as INV(u) = (u−1R2) mod p. So if
u = [x] = xR, we see that INV([x]) = (x−1R) mod p = [x−1]. Thus we have

REDC([x] INV[x]) = R mod p = [1].

208 Ch. 11 Finite Field Arithmetic

Algorithm 11.12 Montgomery inverse in Montgomery representation

INPUT: Two n-word integers u and p such that u ∈ [1, p − 1]. The integer R = 2m = bn and
the precomputed value R′ = R2 mod p.

OUTPUT: The n-word integer v equal to INV(u) = (u−1R2) mod p.

1. r ← u, s ← 1, t ← p, v ← 0 and k ← 0

2. while r > 0 do

3. if t ≡ 0 (mod 2) then t ← t/2 and s ← 2s

4. else if r ≡ 0 (mod 2) then r ← r/2 and v ← 2v

5. else if t > r then t ← (t − r)/2, v ← v + s and s ← 2s

6. else r ← (r − t)/2, s ← v + s and v ← 2v

7. k ← k + 1

8. if v � p then v ← v − p

9. v ← p − v

10. if k < m then v ← REDC(vR′) and k ← k + m

11. v ← REDC(vR′)

12. v ← REDC(v22m−k)

13. return v

Remarks 11.13

(i) Lines 1 to 9 compute the so-called almost Montgomery inverse i.e., (u−12k) mod p for
some k such that c � k � m + c, where c is the binary length of p.

(ii) It is possible to change the end of Algorithm 11.12 in order to compute directly the
inverse of u, i.e., u−1 mod p with one or two extra Montgomery multiplications, namely
replace Lines 10, 11, and 12 by

10. if k > m then v ← REDC(v) and k ← k − m

11. v ← REDC(v2m−k)

(iii) To divide [x] by [y] it suffices to do REDC
(
[x] INV([y])

)
and get [xy−1].

Example 11.14 With the settings of Example 10.24, let us compute the Montgomery inverse of
[45] = 1319. Since p = 2011 is a 4-word integer in base 8, we have m = 12.

• After Line 9, Algorithm 11.12 has computed the almost Montgomery inverse of 1319,
which is 1252, and found k = 17. This means that 1319−1 × 217 mod 2011 = 1252.

• Lines 10 and 11 compute REDC(1252R′) = 142 and finally REDC(142 × 224−17) =
1387, which is the Montgomery inverse of 1319. We check that REDC(1319× 1387) =
74 ≡ R (mod p).

• If we want the inverse of 1319 modulo 2011, we perform REDC(1252) = 1267 and set
k ← 5. Then REDC(1267 × 212−5) = 1485 ≡ 1319−1 (mod 2011).

The next section allows us to compute the inverse of several numbers modulo the same number p.

§ 11.1 Prime fields of odd characteristic 209

11.1.3.c Simultaneous inversion

One needs a priori j extended gcd computations to find the inverses of the j elements a1, . . . , aj

modulo p. Here we present a trick of Montgomery that allows us to do the same with only one
extended gcd and 3j − 3 multiplications modulo p. The basic idea is to get the inverse of

∏
i ai and

to multiply it by suitable terms to recover a−1
j , . . . , a−1

1 [COH 2000].

Algorithm 11.15 Simultaneous inversion modulo p

INPUT: A positive integer p and j integers a1, . . . , aj not zero modulo p.

OUTPUT: The inverses b1, . . . , bj of the a1, . . . , aj modulo p.

1. c1 ← a1

2. for i = 2 to j do ci ← aici−1

3. compute (u, v, d) with ucj + vp = d [d is equal to 1]

4. for i = j down to 2 do

5. bi ← (uci−1) mod p and u ← (uai) mod p

6. b1 ← u

7. return (b1, . . . , bj)

Remarks 11.16

(i) Let N be a nonprime modulus. If one tries to apply Algorithm 11.15 to the nonzero
residues a1, . . . , aj modulo N , there are two possibilities. If a1, . . . , aj are all coprime
to N then Algorithm 11.15 returns a−1

1 , . . . , a−1
j modulo N . If at least one integer is

not coprime to N then the gcd computed in Line 3 is different from 1. In this case, if
the Lines 4 to 7 of Algorithm 11.15 are replaced by the following statements

4. if d = N then
5. i ← 1

6. repeat
7. d ← gcd(ai, N) and i ← i + 1

8. until d > 1

9. return d

then a nontrivial factor of N is returned.

(ii) This modified algorithm is especially useful for Lenstra’s elliptic curve method, cf. Sec-
tion 25.3.3, where one tries to find factors of N by computing scalar multiples on a curve
modulo N .

11.1.4 Exponentiation

This part deals with specific exponentiation methods for finite fields Fp. The general introduction
to the subject can be found in Chapter 9.

11.1.4.a Ordinary exponentiation

To compute xn, for x ∈ Fp, one could perform the exponentiation in Z and then reduce the result.
Of course, this approach is completely inefficient even for rather small n. However, a systematic

210 Ch. 11 Finite Field Arithmetic

reduction after each intermediate step, i.e., a squaring or a multiplication, seems inadequate as
well since a modular reduction is quite slow. So, a compromise must be found. One can also
use Barrett or Quisquater multiplication algorithms without the remainder correction steps; see
Section 11.1.2.a. With appropriate settings, intermediate results are kept bounded such that they
still fit in the allocated space, and only at the end of the exponentiation one corrects the result so
that it belongs to [0, p − 1].

11.1.4.b Montgomery exponentiation

All algorithms presented in Chapter 9 can be adapted to Montgomery representation. The changes
are always the same and rather simple: as explained in Section 11.1.2.b, one converts to and from
Montgomery representation only for input/output, so any amount of operations can be done in be-
tween. These ideas are illustrated in the following adaptation of the classical square and multiply
algorithm, cf. Section 9.1.1.

Algorithm 11.17 Binary exponentiation using Montgomery representation

INPUT: An element x of Fp, a positive integer n = (nt−1 . . . n0)2 such that nt−1 = 1, the
integers R and R′ = R2 mod p.

OUTPUT: The element xn ∈ Fp.

1. y ← R mod p and t ← REDC (xR′)

2. for i = t − 1 down to 0

3. y ← REDC(y2)

4. if ni = 1 then y ← REDC(ty)

5. return REDC(y)

Remark 11.18 Conversion to Montgomery representation is done in Line 1. One has y = [1]
and t = [x]. In the for loop at each step a Montgomery squaring and possibly a Montgomery
multiplication is performed. Finally we come back to the standard representation by a Montgomery
reduction. At the end, y = [xn] so that REDC(y) = xn, as expected. Note that also here incomplete
reduction can be applied.

11.1.5 Squares and square roots

Given a nonzero integer a modulo p, the Legendre symbol
(

a
p

)
defined in Section 2.3.4 is equal to

1 if and only a is a quadratic residue modulo p. From the reciprocity law (2.6) and Theorem 2.103,
it is easy to derive an efficient way to compute it.

Algorithm 11.19 Legendre symbol

INPUT: An integer a and an odd prime number p.

OUTPUT: The Legendre symbol
`

a
p

´·
1. k ← 1

2. while p �= 1 do

3. if a = 0 then return 0

4. v ← 0

5. while a ≡ 0 (mod 2) do v ← v + 1 and a ← a/2

§ 11.1 Prime fields of odd characteristic 211

6. if v ≡ 1 (mod 2) and p ≡ +− 3 (mod 8) then k ← −k

7. if a ≡ 3 (mod 4) and p ≡ 3 (mod 4) then k ← −k

8. r ← a, a ← p mod r and p ← r

9. return k

Remark 11.20 This algorithm is useful, for example, to determine the number of points lying on
an elliptic or hyperelliptic curve defined over a finite field of small prime order, cf. Chapter 17.

Example 11.21 Take the prime p = 163841, a = 109608 and let us compute
(

a
p

)
with Algo-

rithm 11.19. The next table displays the values of r, a, v and k after Line 8.

r a v k

13701 13130 3 1

6565 571 1 −1

571 284 0 −1

71 3 2 1

3 2 0 −1

1 0 1 1

These computations reflect the following sequence of equalities(
109608
163841

)
=

(
8

163841

)(
13701
163841

)

=
(

13130
13701

)
=

(
2

13701

)(
6565
13701

)

= −
(

571
6565

)

= −
(

284
571

)
= −

(
4

571

)(
71
571

)

=
(

3
71

)

= −
(

2
3

)
= 1.

So, 109608 is a quadratic residue modulo 163841.

When it is known that a is a square, it is often required to determine x such that x2 ≡ a (mod p).
For instance, this occurs to actually find a point lying on an elliptic or hyperelliptic curve.

Lemma 11.22 Given a quadratic residue a ∈ Fp, there are explicit formulas when p �≡ 1 (mod 8)
to determine x ∈ Fp such that x2 ≡ a (mod p). Namely,

• x ≡ +− a(p+1)/4 (mod p) if p ≡ 3 (mod 4)
• x ≡ +− a(p+3)/8 (mod p) if p ≡ 5 (mod 8) and a(p−1)/4 = 1
• x ≡ +− 2a(4a)(p−5)/8 (mod p) if p ≡ 5 (mod 8) and a(p−1)/4 = −1.

When p ≡ 1 (mod 8) an algorithm of Tonelli and Shanks solves the problem. In fact, this algorithm
is correct for all primes.

212 Ch. 11 Finite Field Arithmetic

Algorithm 11.23 Tonelli and Shanks square root computation

INPUT: A prime p and an integer a such that
`

a
p

´
= 1.

OUTPUT: An integer x such that x2 ≡ a (mod p).

1. write p − 1 = 2er with r odd [see the beginning of Section 10.5, p. 185]

2. choose n at random such that
`

n
p

´
= −1

3. z ← nr mod p, y ← z, s ← e and x ← a(r−1)/2 mod p

4. b ← (ax2) mod p and x ← (ax) mod p

5. while b �≡ 1 (mod p)

6. m ← 1

7. while b2m �≡ 1 (mod p) do m ← m + 1

8. t ← y2s−m−1
mod p, y ← t2 mod p and s ← m

9. x ← (tx) mod p and b ← (yb) mod p

10. return x

Remarks 11.24

(i) Algorithm 11.23 works in the maximal 2-group of order 2e of F∗p generated by some
element z. If m = s after Line 7, this implies that a is not a quadratic residue modulo
p. Otherwise ar is a square in this subgroup and there is an even k less than e such that
arzk ≡ 1 (mod p). The square root is then given by x ≡ a(r+1)/2zk/2 (mod p). A
variant of Algorithm 11.23 finds k/2 by a bit by bit approach [KOB 1994].

(ii) The number of loops performed within the while loop beginning in Line 5 is bounded
by e since s is strictly decreasing at each loop.

(iii) The expected running time of Algorithm 11.23 is O(e2 lg2 p).

Example 11.25 Let us compute the square root of 109608 modulo p = 163841 with Algorithm
11.23. First one sees that e = 15 and r = 5. The quadratic nonresidue n found at random in Line 2
is 6558. In the following, we state the values of the principal variables before the while loop in
Line 4 and at the end of it Line 9. One can see also that ab − x2, y2s−1

and b2s−1
are invariant

throughout the execution of the algorithm.

m z y x b t ab x2 y2s−1
b2s−1

— 12002 12002 13640 100808 — 90065 90065 −1 1

13 — 82347 78996 68270 31765 155849 155849 −1 1

12 — 140942 104389 56092 82347 162252 162252 −1 1

6 — 81165 18205 57313 52992 135523 135523 −1 1

5 — 38297 90687 101925 81165 132974 132974 −1 1

3 — 101925 97748 39338 119418 119748 119748 −1 1

2 — 39338 121372 163840 101925 54233 54233 −1 1

1 — 163840 41155 1 39338 109608 109608 −1 1

One checks that 411552 ≡ 109608 (mod p).

§ 11.2 Finite fields of characteristic 2 213

When the 2-adic valuation e of p − 1 is large, as in the previous example, it is better to use another
algorithm that works in the quadratic extension Fp2 .

Algorithm 11.26 Square root computation

INPUT: A prime p and an integer a such that
`

a
p

´
= 1.

OUTPUT: An integer x such that x2 ≡ a (mod p).

1. choose b at random such that
`

b2−4a
p

´
= −1

2. f(X) ← X2 − bX + a [f(X) is irreducible over Fp]

3. x ← X(p+1)/2 (mod f(X))

4. return x

Remarks 11.27

(i) If θ is a root of f(X) then θp is the other one and therefore θp+1 = a. So x as defined
in Line 3 satisfies x2 ≡ a (mod f(X)). It remains to show that x is in fact an ele-
ment of Fp. As a(p−1)/2 = 1 we have X(p2−1)/2 ≡ 1 (mod f(X)) so that xp ≡ x
(mod f(X)).

(ii) The expected running time of Algorithm 11.26 is O(lg3 p).

Example 11.28 With the same initial values as in Example 11.25, Algorithm 11.26 first finds at
random an irreducible polynomial over Fp, in this case, for instance, f(X) = X2 + 27249X +
109608. Then it computes X(p+1)/2, which is equivalent to 41155 modulo f(X).

11.2 Finite fields of characteristic 22222222

See Section 2.3.2 for an introduction to algebraic extension of fields. Arithmetic in extension fields
of Fq where q is some power of 2 relies on elementary computer operations like exclusive dis-
junction and shifts. Note that in general q is simply equal to 2. This allows very efficient imple-
mentations, especially in hardware, and gives finite fields of characteristic 2 a great importance in
cryptography.

11.2.1 Representation

See Section 2.3.3 for a presentation of the different finite field representation systems. In the fol-
lowing we shall focus on efficient implementation techniques used in cryptography. As F2d is a
vector space of dimension d over F2, an element can be viewed as a sequence of d coefficients
equal to 0 or 1. Therefore it is internally stored as a sequence of bits and the techniques intro-
duced for multiprecision integers apply with some slight modifications. Two kinds of basis are
commonly used. In polynomial representation, it is (1, X, . . . , Xd−1), whereas with a normal basis
it is (α, α2, . . . , α2d−1

), cf. Section 2.3.3. Let us first describe polynomial representation.

11.2.1.a Irreducible polynomial representation

Let m(X) ∈ Fq[X] be an irreducible polynomial of degree d and
(
m(X)

)
the principal ideal

generated by m(X). Then Fq[X]/
(
m(X)

)
is the finite field with qd elements. Formula (2.4)

214 Ch. 11 Finite Field Arithmetic

proves that there exists an irreducible polynomial of degree d for each positive d but the proof is
not constructive. To find such a polynomial, we can consider a random polynomial and test its
irreducibility. Since (2.4) shows that the probability for a monic polynomial of degree d to be
irreducible is close to 1/d, we should find one after d attempts on average. There is a variety of
polynomial irreducibility tests. For example Rabin [RAB 1980] proved the following.

Lemma 11.29 Let m(X) ∈ Fq[X] of degree d and let p1, . . . , pk be the prime divisors of d. Then
m(X) is irreducible over Fq if and only if

• gcd
(
m(X), Xqd/pi − X

)
= 1, for i = 1, . . . , k

• m(X) divides Xqd − X .

For a deterministic method to find an irreducible polynomial see [SHO 1994b].
Once m(X) has been found, computations are done modulo this irreducible polynomial and re-

duction is a key operation. For this we need to divide two polynomials with coefficients in a field.
Every irreducible polynomial of degree d can be used to build Fqd ; however, some special polyno-
mials offer better performance, e.g., monic sparse polynomials are proposed in [SCOR+ 1995].

Usually, one uses trinomials or pentanomials since binomials and quadrinomials are always di-
visible by X + 1 and so, except for X + 1 itself, are never irreducible in Fq[X]. The existence for
every d of an irreducible degree d trinomial or pentanomial is still an open question, but this is the
case at least for all d � 10000 [SER 1998].

A trinomial Xd + Xk + 1 is reducible if both d and k are even as then Xd + Xk + 1 = (Xd/2 +
Xk/2 + 1)2. Eliminating this trivial case, Swan [SWA 1962] proves the following.

Lemma 11.30 The trinomial Xd+Xk+1, where at least one of d and k is odd, has an even number
of factors if and only if one of the following holds

• d is even, k is odd, d �= 2k and dk
2 ≡ 0 or 1 (mod 4)

• d is odd, d ≡ +− 3 (mod 8), k is even and k does not divide 2d

• d is odd, d ≡ +− 1 (mod 8), k is even and k divides 2d.

It follows that irreducible trinomials do not exist when d ≡ 0 (mod 8) and are rather scarce for
d ≡ 3 or 5 (mod 8). In Table 11.1, we give irreducible polynomials over F2 of degree less than or
equal to 500. More precisely, the coefficients d, k1 in the table stand for the trinomial Xd+Xk1 +1.
In case there is no trinomial of degree d, the sequence d, k1, k2, k3 is given for the pentanomial
Xd + Xk1 + Xk2 + Xk3 + 1. For each d the coefficient k1 is chosen to be minimal, then k2 and so
on.

For these sparse polynomials there is a specific reduction algorithm [GANÖ 2005]. The nonre-
cursive version is given hereafter.

Algorithm 11.31 Division by a sparse polynomial

INPUT: Two polynomials m(X) and f(X) with coefficients in a commutative ring, where m(X)
is the sparse polynomial Xd +

Pt
i=1 aiX

bi with bi < bi+1 and b1 = 0.

OUTPUT: The polynomials u and v such that f = um + v with deg v < d.

1. v ← f and u ← 0

2. while deg(v) � d do

3. k ← max{d, deg v − d + bt + 1}
4. write v(X) as u1(X)Xk + w(X) [deg w < k]

5. v(X) ← w(X) − u1(x)
`
m(X) − Xd

´
Xk−d

§ 11.2 Finite fields of characteristic 2 215

6. u(X) ← u1(X)Xk−d + u(X)

7. return (u, v)

Remarks 11.32

(i) If deg f = d′ then Algorithm 11.31 needs at most 2t(d′ − d + 1) field additions to
compute u and v such that f = um + v. If d′ � 2d − 2, as is the case when perform-
ing arithmetic modulo m, then one needs 4(d − 1) additions for a reduction modulo a
trinomial and 8(d− 1) additions modulo a pentanomial. The number of loops is at most
�(d′ − d + 1)/(d − bt − 1)�. Again if d′ � 2d − 2, then the number of loops is at most
equal to 2 whatever the value of bt, as long as 1 � bt � d/2.

(ii) To avoid computing the quotient u when it is not required, simply discard Line 6 of
Algorithm 11.31.

(iii) When the modulus is fixed, there is in general an even faster algorithm that exploits the
form of the polynomial. This is the case for NIST irreducible polynomials [FIPS 186-2],
cf. for example [HAME+ 2003, pp. 55–56]

Example 11.33 Take m(X) = X11 +X2 +1 and f(X) = X20 +X16 +X15 +X12 +X5 +X3 +
X + 1, and let us find the quotient and remainder of the division of f by m with Algorithm 11.31.

• First k = 12, u1(X) = X8 + X4 + X3 + 1 and w(X) = X5 + X3 + X + 1.
• The new value of v(X) is X11 + X9 + X7 + X6 + X4 + 1 and u(X) = X9 + X5 +

X4 + X.

• For the next and last loop, k = 11, u1(X) = 1 and w(X) = X9 + X7 + X6 + X4 + 1.

Finally, v(X) = X9 +X7 +X6 +X4 +X2 and u(X) = X9 +X5 +X4 +X +1 and one checks
that f(X) = u(X)m(X) + v(X).

Instead of trying to minimize the number of nonzero coefficients of the modulus, another option is
to do arithmetic modulo a sedimentary polynomial [COP 1984, ODL 1985], that is, a polynomial of
the form Xd + h(X) irreducible over Fq such that the degree of h(X) is minimal. For q = 2, it has
been shown that for all d � 600 the degree of h is at most 11 [GOMC 1993]. Algorithm 11.31 can
be slightly modified to perform reduction modulo a sedimentary polynomial. Namely, replace the
statement k ← max{d, deg v − d + bt + 1} by k ← max{d, deg v − deg h}.

Tests performed in [GANÖ 2005] indicate that sedimentary polynomials are slightly less efficient
than trinomials or pentanomials.

11.2.1.b Redundant polynomial representation

For some extensions of even degree there is a better choice, namely all one polynomials. They are
of the form

m(X) = Xd + Xd−1 + · · · + X + 1.

For d > 1, such a polynomial is irreducible if and only if d+1 is prime and 2 is a primitive element
of Fd+1. Now it is clear from the definition of m(X) that m(X)(X + 1) = Xd+1 + 1. Thus
an element of F2d can be represented on the basis (α, α2, . . . , αd) where α is a root of m(X). In
other words, an element of F2d is represented by a polynomial of degree at most d without constant
coefficient, 1 being replaced by X + X2 + · · · + Xd. Alternatively, if the representation does not
need to be unique, elements can directly be written on (1, X, X2, . . . , Xd). In any case, reductions

216 Ch. 11 Finite Field Arithmetic

Table 11.1 Irreducible trinomials and pentanomials over F2.

2,1 3,1 4,1 5,2 6,1 7,1 8,4,3,1 9,1 10,3

11,2 12,3 13,4,3,1 14,5 15,1 16,5,3,1 17,3 18,3 19,5,2,1 20,3

21,2 22,1 23,5 24,4,3,1 25,3 26,4,3,1 27,5,2,1 28,1 29,2 30,1

31,3 32,7,3,2 33,10 34,7 35,2 36,9 37,6,4,1 38,6,5,1 39,4 40,5,4,3

41,3 42,7 43,6,4,3 44,5 45,4,3,1 46,1 47,5 48,5,3,2 49,9 50,4,3,2

51,6,3,1 52,3 53,6,2,1 54,9 55,7 56,7,4,2 57,4 58,19 59,7,4,2 60,1

61,5,2,1 62,29 63,1 64,4,3,1 65,18 66,3 67,5,2,1 68,9 69,6,5,2 70,5,3,1

71,6 72,10,9,3 73,25 74,35 75,6,3,1 76,21 77,6,5,2 78,6,5,3 79,9 80,9,4,2

81,4 82,8,3,1 83,7,4,2 84,5 85,8,2,1 86,21 87,13 88,7,6,2 89,38 90,27

91,8,5,1 92,21 93,2 94,21 95,11 96,10,9,6 97,6 98,11 99,6,3,1 100,15

101,7,6,1 102,29 103,9 104,4,3,1 105,4 106,15 107,9,7,4 108,17 109,5,4,2 110,33

111,10 112,5,4,3 113,9 114,5,3,2 115,8,7,5 116,4,2,1 117,5,2,1 118,33 119,8 120,4,3,1

121,18 122,6,2,1 123,2 124,19 125,7,6,5 126,21 127,1 128,7,2,1 129,5 130,3

131,8,3,2 132,17 133,9,8,2 134,57 135,11 136,5,3,2 137,21 138,8,7,1 139,8,5,3 140,15

141,10,4,1 142,21 143,5,3,2 144,7,4,2 145,52 146,71 147,14 148,27 149,10,9,7 150,53

151,3 152,6,3,2 153,1 154,15 155,62 156,9 157,6,5,2 158,8,6,5 159,31 160,5,3,2

161,18 162,27 163,7,6,3 164,10,8,7 165,9,8,3 166,37 167,6 168,15,3,2 169,34 170,11

171,6,5,2 172,1 173,8,5,2 174,13 175,6 176,11,3,2 177,8 178,31 179,4,2,1 180,3

181,7,6,1 182,81 183,56 184,9,8,7 185,24 186,11 187,7,6,5 188,6,5,2 189,6,5,2 190,8,7,6

191,9 192,7,2,1 193,15 194,87 195,8,3,2 196,3 197,9,4,2 198,9 199,34 200,5,3,2

201,14 202,55 203,8,7,1 204,27 205,9,5,2 206,10,9,5 207,43 208,9,3,1 209,6 210,7

211,11,10,8 212,105 213,6,5,2 214,73 215,23 216,7,3,1 217,45 218,11 219,8,4,1 220,7

221,8,6,2 222,5,4,2 223,33 224,9,8,3 225,32 226,10,7,3 227,10,9,4 228,113 229,10,4,1 230,8,7,6

231,26 232,9,4,2 233,74 234,31 235,9,6,1 236,5 237,7,4,1 238,73 239,36 240,8,5,3

241,70 242,95 243,8,5,1 244,111 245,6,4,1 246,11,2,1 247,82 248,15,14,10 249,35 250,103

251,7,4,2 252,15 253,46 254,7,2,1 255,52 256,10,5,2 257,12 258,71 259,10,6,2 260,15

261,7,6,4 262,9,8,4 263,93 264,9,6,2 265,42 266,47 267,8,6,3 268,25 269,7,6,1 270,53

271,58 272,9,3,2 273,23 274,67 275,11,10,9 276,63 277,12,6,3 278,5 279,5 280,9,5,2

281,93 282,35 283,12,7,5 284,53 285,10,7,5 286,69 287,71 288,11,10,1 289,21 290,5,3,2

291,12,11,5 292,37 293,11,6,1 294,33 295,48 296,7,3,2 297,5 298,11,8,4 299,11,6,4 300,5

301,9,5,2 302,41 303,1 304,11,2,1 305,102 306,7,3,1 307,8,4,2 308,15 309,10,6,4 310,93

311,7,5,3 312,9,7,4 313,79 314,15 315,10,9,1 316,63 317,7,4,2 318,45 319,36 320,4,3,1

321,31 322,67 323,10,3,1 324,51 325,10,5,2 326,10,3,1 327,34 328,8,3,1 329,50 330,99

331,10,6,2 332,89 333,2 334,5,2,1 335,10,7,2 336,7,4,1 337,55 338,4,3,1 339,16,10,7 340,45

341,10,8,6 342,125 343,75 344,7,2,1 345,22 346,63 347,11,10,3 348,103 349,6,5,2 350,53

351,34 352,13,11,6 353,69 354,99 355,6,5,1 356,10,9,7 357,11,10,2 358,57 359,68 360,5,3,2

361,7,4,1 362,63 363,8,5,3 364,9 365,9,6,5 366,29 367,21 368,7,3,2 369,91 370,139

371,8,3,2 372,111 373,8,7,2 374,8,6,5 375,16 376,8,7,5 377,41 378,43 379,10,8,5 380,47

381,5,2,1 382,81 383,90 384,12,3,2 385,6 386,83 387,8,7,1 388,159 389,10,9,5 390,9

391,28 392,13,10,6 393,7 394,135 395,11,6,5 396,25 397,12,7,6 398,7,6,2 399,26 400,5,3,2

401,152 402,171 403,9,8,5 404,65 405,13,8,2 406,141 407,71 408,5,3,2 409,87 410,10,4,3

411,12,10,3 412,147 413,10,7,6 414,13 415,102 416,9,5,2 417,107 418,199 419,15,5,4 420,7

421,5,4,2 422,149 423,25 424,9,7,2 425,12 426,63 427,11,6,5 428,105 429,10,8,7 430,14,6,1

431,120 432,13,4,3 433,33 434,12,11,5 435,12,9,5 436,165 437,6,2,1 438,65 439,49 440,4,3,1

441,7 442,7,5,2 443,10,6,1 444,81 445,7,6,4 446,105 447,73 448,11,6,4 449,134 450,47

451,16,10,1 452,6,5,4 453,15,6,4 454,8,6,1 455,38 456,18,9,6 457,16 458,203 459,12,5,2 460,19

461,7,6,1 462,73 463,93 464,19,18,13 465,31 466,14,11,6 467,11,6,1 468,27 469,9,5,2 470,9

471,1 472,11,3,2 473,200 474,191 475,9,8,4 476,9 477,16,15,7 478,121 479,104 480,15,9,6

481,138 482,9,6,5 483,9,6,4 484,105 485,17,16,6 486,81 487,94 488,4,3,1 489,83 490,219

491,11,6,3 492,7 493,10,5,3 494,17 495,76 496,16,5,2 497,78 498,155 499,11,6,5 500,27

§ 11.2 Finite fields of characteristic 2 217

are made modulo Xd+1 + 1 and a squaring is simply a permutation of the coordinates. This idea,
first proposed in [ITTS 1989] and rediscovered in [SIL 1999], is known as the anomalous basis or
the ghost bit basis technique.

When d > 1 is odd, one can always embed F2d into some cyclotomic ring F2[X]/(Xn + 1) but
only for some n � 2d + 1. So the benefits obtained from a cheap reduction are partially offset by
a more expensive multiplication [WUHA+ 2002]. For elliptic and hyperelliptic curve cryptography
only extensions of prime degree are relevant, cf. Chapter 22, so the best we can hope for with this
idea is n = 2d + 1.

Adopting the idea of using sparse reducible polynomials with an appropriate irreducible factor,
one can use reducible trinomials in case only an irreducible pentanomial exists for some degree d.
First, we have to find a trinomial T (X) = Xn + Xk + 1 with n slightly bigger than d and such
that T (X) admits an irreducible factor m(X) of degree d. Such a trinomial is called a redundant
trinomial and the idea is then to embed F2d ∼ F2[X]/

(
m(X)

)
into F2d ∼ F2[X]/

(
T (X)

)
. In the

range [2, 10000], there is no irreducible trinomial in about 50% of the cases (precisely 4853 out of
9999 [SER 1998]) but an exhaustive search has shown that there are redundant trinomials for all the
corresponding degrees, see [DOCHE] for a table. In general n − d is small and in more than 85%
of the cases the number of 32-bit words required to represent an element of F2d are the same with a
redundant trinomial of degree n and with an irreducible pentanomial of degree d. This implies also
that the multiplication has the same cost with both representations, since this operation is usually
performed at a word level, cf. Section 11.2.2.a.

From a practical point of view an element of F2d is represented by a polynomial of degree less
than n and the computations are done modulo T (X). At the end of the whole computation, one can
reduce modulo m(X) and this can be done with only T (X) and δ(X) = T (X)/m(X), since for
any polynomial f(X) one has

f(X) mod m(X) =
f(X)δ(X) mod T (X)

δ(X)
,

as in (11.1). Redundant trinomials can speed up an exponentiation by a factor up to 30%, when
compared to irreducible pentanomials, cf. [DOC 2005].

Note that this concept is in fact similar to almost irreducible trinomials introduced by Brent and
Zimmermann in the context of random number generators in [BRZI 2003]. Similar ideas were also
explored by Blake et al. [BLGA+ 1994a, BLGA+ 1996], and Tromp et al. [TRZH+ 1997].

11.2.1.c Normal and optimal normal bases

Another popular way to represent an element of Fqd over Fq is to use a normal basis. This is
especially true when q = 2, since in this case the squaring of an element is just a cyclic shift of its
coordinates. However, multiplications are more complicated. As a result only special normal bases,
called optimal normal bases, ONB for short, are used in practice; see Section 11.2.2.b.

Gauß periods of type (n, 1) and (n, 2), generate optimal normal bases (cf. Section 2.3.3.b and
[MUON+ 1989]), and it has been proved that all the optimal normal bases can be produced by this
construction [GALE 1992].

For q = 2, this occurs

1. when d+1 is prime and 2 is a primitive element of Fd+1. Then the nontrivial (d+1)-th
roots of unity form an optimal normal basis of F2d , called a Type I ONB.

2. when 2d + 1 is prime and either

• 2 is primitive in F2d+1 or

• 2 generates the quadratic residues in F2d+1, that is 2d + 1 ≡ 3 (mod 4) and the
order of 2 in F2d+1 is d.

218 Ch. 11 Finite Field Arithmetic

Then there is a primitive (2d+1)-th root of unity ζ in F2d and ζ+ζ−1 is a normal element
generating a Type II ONB. Such a basis can be written (ζ+ζ−1, ζ2 +ζ−2, . . . , ζd +ζ−d)
as shown in [BLRO+ 1998].

Note that Type I ONB and anomalous bases are equal up to suitable permutations. So it is possible
to enjoy a cheap multiplication and a cheap squaring at the same time. However, as said previously,
there is no Type I ONB for an extension of prime degree. The situation is slightly better for Type
II ONB. Indeed, in the range [50, 500] there are 80 extension degrees that are prime and among
them only 18 have a Type II ONB, namely 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281,
293, 359, 419, 431, 443, and 491. As a consequence, the use of optimal normal bases for crypto-
graphic purposes is quite constrained in practice.

In the remainder of this section one details the arithmetic itself. First it is clear that addition and
subtraction are the same operations in a field of characteristic two. Using polynomial representation
or a normal basis one sees that an addition in Fqd can be carried out with at most d additions in
Fq. Ultimately, an addition in Fqd reduces to a bitwise-XOR hardware operation, which can be
performed at a word level. Multiplications are also processed using a word-by-word approach.

11.2.2 Multiplication

Again this part mainly deals with software oriented solutions. For a discussion focused on hardware,
see Chapter 26.

Montgomery representation for prime fields (see Section 10.4.2) can be easily generalized to
extension fields of characteristic 2; see for instance [KOAC 1998]. We shall not investigate this
option further but limit ourselves to multiplications using a polynomial basis and a normal basis.

11.2.2.a Polynomial basis

The internal representation of a polynomial is similar to multiprecision integers. Indeed, let 	 be the
word size used by the processor. Then a polynomial u(X) of degree less than d will be represented
as the r-word vector (ur−1 . . . u0) and the j-th bit of the word ui, that is the coefficient of u(X)
of degree i	 + j, will be denoted by ui[j]. Many operations on polynomials are strongly related
to integer multiprecision arithmetic. For example, polynomials can be multiplied with a slightly
modified version of Algorithm 10.8. However in general, we do not have the equivalent of single
precision operations. For example, on computers there is usually no hardware multiplication of
polynomials in F2[X] of bounded degree, even if this operation is simpler than integer multiplica-
tion, since there is no carry to handle. Nevertheless, it is possible to perform computations at a word
level doing XOR and shifts. Indeed, if v(X)Xj has been already computed then it is easy to deduce
v(X)X i�+j . This is the principle of Algorithm 11.34 introduced in [LÓDA 2000a].

Algorithm 11.34 Multiplication of polynomials in F2[X]

INPUT: The polynomials u(X), v(X) ∈ F2[X] of degree at most d− 1 represented as words of
size � bits.

OUTPUT: The product w(X) = u(X)v(X) of degree at most 2d − 2.

1. w(X) ← 0 and r ← �deg u/��
2. for j = 0 to � − 1 do

3. for i = 0 to r − 1

4. if ui[j] = 1 then w(X) ← w(X) + v(X)Xi�

§ 11.2 Finite fields of characteristic 2 219

5. if j �= � − 1 then v(X) ← v(X)X

6. return w

Remark 11.35 Algorithm 11.34 proceeds the bits of the word ui from the right to the left. A left-
to-right version exists as well, but it is reported to be a bit less efficient [HAME+ 2003].

Example 11.36 Let u(X) = X5+X4+X2+X , v(X) = X10+X9+X7+X6+X5+X4+X3+1
and 	 = 4. So u = (0011 0110), v = (0110 1111 1001) and r = 2. Here are the values of v(X)
and w(X) at the end of Line 5 when Algorithm 11.34 executes.

j 0 1 2 3

v (1101 1111 0010) (0001 1011 1110 0100) (0011 0111 1100 1000) (0110 1111 1001 0000)

w (0110 1111 1001 0000) (1011 1101 0100 0010) (1010 0110 1010 0110) (1010 0110 1010 0110)

Finally w(X) = X15 + X13 + X10 + X9 + X7 + X5 + X2 + X .

Just as for exponentiation algorithms, precomputations and windowing techniques can be very help-
ful. The next algorithm scans k bits at a time from left to right and accesses intermediate products by
table lookup. Usually a good compromise between the speedup and the number of precomputations
is to take k = 4.

Algorithm 11.37 Multiplication of polynomials in F2[X] using window technique

INPUT: The polynomials u(X), v(X) ∈ F2[X] of degree at most d− 1 represented as words of
size � bits. The precomputed products t(X)v(X) for all t(X) of degree less than k.

OUTPUT: The product w(X) = u(X)v(X) of degree at most 2d − 2.

1. w(X) ← 0 and r ← �deg u/��
2. for j = �/k − 1 down to 0 do

3. for i = 0 to r − 1

4. t(X) ← tk−1X
k−1 + · · · + t0 where tm = ui[jk + m]

5. w(X) ← w(X) + t(X)v(X)Xi� [t(X)v(X) is precomputed]

6. if j �= 0 then w(X) ← w(X)Xk

7. return w

Remark 11.38 As for prime fields, cf. Algorithm 11.1, it is possible to modify Algorithm 11.37 and
interleave polynomial reductions with elementary multiplications in order to get the result in F2d

directly at the end.

Example 11.39 To illustrate the way Algorithm 11.37 works, let us take k = 2, u = (0011 0110),
v = (0110 1111 1001) and 	 = 4 as for Example 11.36. The successive values of t come from the
bits of u in the following way (0011 0110), (0011 0110), (0011 0110), and (0011 0110).

220 Ch. 11 Finite Field Arithmetic

j 1 1 0 0

i 0 1 0 1

t (01) (00) (10) (11)

w (0110 1111 1001) (0110 1111 1001) (0001 0110 0001 0110) (1010 0110 1010 0110)

The result is of course the same, i.e., w(X) = X15 + X13 + X10 + X9 + X7 + X5 + X2 + X .

Another idea is to emulate single precision multiplications by storing all the elementary products.
However, for 32-bit words the number of precomputed values is far too big. That is why an inter-
mediate approach involving Karatsuba method is often considered instead. In this case, the product
of two single precision polynomials of degree less than 32 is computed with 9 multiplications of
8-bit blocks, each elementary product being obtained by table lookup [GAGE 1996].

Karatsuba method can also be applied to perform the whole product directly. In [GANÖ 2005]
the crossover degree between à la schoolbook and Karatsuba multiplications is reported to be equal
to 576. Other more sophisticated techniques like the FFT or Cantor multiplication based on eval-
uation/interpolation are useful only for even larger degrees. For example, the crossover between
Karatsuba and Cantor multiplication is for degree 35840 [GANÖ 2005].

11.2.2.b Optimal normal bases

Unlike additions, multiplications are rather involved with normal bases. The standard way to mul-
tiply two elements in Fqd within a normal basis is to introduce the so-called multiplication matrix
TN whose entries ti,h satisfy

αqi × α =
d−1∑
h=0

ti,hαqh

so that αqi × αqj

=
d−1∑
h=0

ti−j,h−jα
qh

.

So if u = (u0, . . . , ud−1) and v = (v0, . . . , vd−1) then the general term wh of w = uv is

wh =
∑

0�i,j<d

uivjti−j,h−j .

Example 11.40 The following is taken directly from [OMMA 1986]. Let α be a zero of m(X) =
X7 + X6 + 1. The next equalities are computed mod m(X).

α = X α2 = X2

α22
= X4 α23

= X6 + X + 1

α24
= X6 + X5 + X4 + X3 + X α25

= X5 + X4 + X2 + X + 1

α26
= X4 + X3 + 1 α27

= α.

The products αqi × α are

α × α = X2 α2 × α = X3

α22 × α = X5 α23 × α = X6 + X2 + X + 1

α24 × α = X5 + X4 + X2 + 1 α25 × α = X6 + X5 + X3 + X2 + X

α26
× α = X5 + X4 + X.

§ 11.2 Finite fields of characteristic 2 221

From this and in order to obtain TN , one introduces the matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 1 1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 0 0 0 1 0 1 1
0 1 0 0 0 1 0 1 0 0 1 1 1 0
0 0 0 0 1 0 1 0 1 0 0 0 1 0
0 0 1 0 1 1 1 0 0 0 0 1 0 1
0 0 0 0 1 1 0 0 0 1 0 1 1 1
0 0 0 1 1 0 0 0 0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where the first and last seven columns give respectively the expression of αqi

and of αqi × α on
the basis 1, X, . . . , X6. To get the identity matrix in the left part of M one performs a Gaussian
elimination, which gives at the same time the transposed matrix of TN in the right part of M. Hence

TN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
1 1 0 1 1 1 0
0 0 0 1 1 0 1
0 1 0 1 0 0 0
1 0 0 0 0 1 0
0 1 1 0 1 0 0
1 0 1 1 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

From this matrix, one deduces for instance that α2 × α = α + α2 + α23
+ α24

+ α25
.

The number of nonzero coefficients of the matrix TN is denoted by δN and called the density of
TN . It is a crucial parameter for the speed of the system since the multiplication of two elements in
Fqd can be computed with at most 2d δN multiplications and d(δN −1) additions in Fq . On average
the density is about (q − 1)d2/q [BEGE+ 1991] but in fact δN � 2d − 1 [MUON+ 1989] and this
bound is sharp. By definition, an optimal normal basis, cf. Section 11.2.1.c, has such a minimal
density.

Concerning F2d , recall that a multiplication in a Type I ONB can be in fact performed in the
corresponding anomalous basis. There is a simple way to transform an element into a polynomial
and computations are made modulo Xd+1 − 1. For Type II ONB, there is a similar idea called
palindromic representation [BLRO+ 1998]. The situation is not as favorable as for Type I ONB
since in this case computations must be made modulo X2d+1 − 1. Optimal normal bases of Type I
and II appear as special cases of Gauß periods, cf. Section 2.3.3.b.

11.2.3 Squaring

Squaring is a trivial operation for extensions of F2 in normal basis representation and it is very
simple in polynomial representation. The absolute Frobenius X
→ X2 being a linear map, one sees
that if u(X) =

∑
uiX

i then u2(X) =
∑

uiX
2i. Thus, this operation is nothing but inserting 0

bits in the internal representation of u and reducing the result modulo m(X). Precomputing a table
of 256 values containing the squares of each byte allows us to speed up the 0-bit insertion process.
However, the reduction remains the most time-consuming part of the whole process.

To speed up this process a bit, it is possible to split the square
∑

uiX
2i into an even and an

odd part so that the number of required bitwise-XOR operations to actually perform the reduction is
halved. See [KIN 2001] for details.

222 Ch. 11 Finite Field Arithmetic

11.2.4 Inversion and division

There are mainly two ways to compute the inverse of an element α ∈ Fqd . The first method
is to perform an extended gcd computation of the polynomial representing α and the irreducible
polynomial defining Fqd . Alternatively, one can exploit the multiplicative structure of the group
F∗qd with Lagrange’s theorem. This is especially useful for normal bases.

11.2.4.a Euclid extended gcd

Given two nonzero polynomials f and m in Fq[X], there are unique polynomials u, v, and g such
that fu + mv = g where g = gcd(f, m), deg u < deg m, and deg v < deg f . In case m is
irreducible and deg f < deg m we have g = 1 so that u is the inverse of f modulo m. The
following algorithm returns u, v and g.

Algorithm 11.41 Euclid extended polynomial gcd

INPUT: Two nonzero polynomials f, m ∈ Fq[X].

OUTPUT: The polynomials u, v, g in Fq[X] such that fu + mv = g with g = gcd(f, m).

1. u ← 1, v ← 0, s ← m and g ← f

2. while s �= 0 do

3. compute Euclid division of g by s [g = qs + r]

4. t ← u − vq, u ← v, g ← s, v ← t and s ← r

5. v ← (g − fu)/m

6. return (u, v, g)

Remark 11.42 Assuming deg f � d and deg m � d, Algorithm 11.41 requires O(d2) elementary
operations in Fq.

Example 11.43 Take m(X) = X11 + X2 + 1 and f(X) = X8 + X6 + X5 + X4 + X + 1.
Algorithm 11.41 proceeds as follows

q r u v g

(0000) (0001 0111 0011) (0000) (0001) (1000 0000 0101)
(1011) (1000) (1011) (0001 0111 0011) (0001 0111 0011)

(0010 1110) (0011) (1011) (0001 0000 0011) (1000)
(0111) (0001) (0001 0000 0011) (0111 0000 0010) (0011)
(0011) (0000) (0111 0000 0010) (1000 0000 0101) (0001)

— — (0111 0000 0010) (1100 1011) (0001)

One deduces that (X10 + X9 + X8 + X)f(X) + (X7 + X6 + X3 + X + 1)m(X) = 1 which
implies that X10 + X9 + X8 + X is the inverse of f(X) in F2[X]/

(
m(X)

)
.

§ 11.2 Finite fields of characteristic 2 223

11.2.4.b Binary inversion

For extensions of F2, there is also a dedicated algorithm inspired by the binary integer version
[BRCU+ 1993].

Algorithm 11.44 Inverse of an element of F∗2d in polynomial representation

INPUT: An irreducible polynomial m(X) ∈ F2[X] of degree d and a nonzero polynomial f(X) ∈
F2[X] such that deg f < d.

OUTPUT: The polynomial u(X) ∈ F2[X] such that fu ≡ 1 (mod m).

1. u ← 1, v ← 0, s ← m and δ ← 0

2. for i = 1 to 2d do

3. if fd = 0 then
ˆ
f(X) = fdXd + · · · + f0

˜

4. f(X) ← Xf(X), u(X) ← `
Xu(X)

´
mod m(X) and δ ← δ + 1

5. else

6. if sd = 1 then
ˆ
s(X) = sdXd + · · · + s0

˜

7. s(X) ← s(X) − f(X) and v(X) ← `
v(X) − u(X)

´
mod m(X)

8. s(X) ← Xs(X)

9. if δ = 0 then

10. t(X) ← f(X), f(X) ← s(X) and s(X) ← t(X)

11. t(X) ← u(X), u(X) ← v(X) and v(X) ← t(X)

12. u(X) ← `
Xu(X)

´
mod m(X)

13. δ ← 1

14. else

15. u(X) ← `
u(X)/X

´
mod m(X) and δ ← δ − 1

16. return u

Remarks 11.45

(i) The operations
(
Xu(X)

)
mod m(X) and

(
u(X)/X

)
mod m(X) can be very effi-

ciently performed if Xd mod m(X) and X−1 mod m(X) are precomputed.

(ii) Algorithm 11.44, unlike other binary gcd versions (see [HAME+ 2003] for instance)
does not require any degree comparison thanks to the use of the counter δ. This idea
was first suggested by Brent and Kung for modular inversion (see [BRKU 1983] and
Section 11.1.3.a) and gives good performances in both software and hardware.

(iii) A similar algorithm testing least significant bits instead of most significant bits has been
recently proposed [WUWU+ 2004].

(iv) It is possible to directly obtain
(
h(X)/f(X)

)
mod m(X) by setting u(X) ← h(X)

instead of u ← 1 in the first line of Algorithms 11.41 and 11.44. In this case, a reduction
is almost always needed at the end when the first algorithm is used, whereas the result
is already reduced with the second one.

224 Ch. 11 Finite Field Arithmetic

Example 11.46 With the values of Example 11.43, the successive steps of Algorithm 11.44 are

i u v s δ

1 (0010) (0000) (1000 0000 0101) 1

2 (0100) (0000) (1000 0000 0101) 2

3 (1000) (0000) (1000 0000 0101) 3

4 (0100) (1000) (1110 011 1010) 2

5 (0010) (1000) (1110 0111 0100) 1

6 (0001) (1010) (1011 1101 1000) 0

7 (0001 0110) (0001) (1011 1001 1000) 1

8 (0010 1100) (0001) (1011 1001 1000) 2

9 (0101 1000) (0001) (1011 1001 1000) 3

10 (1011 0000) (0001) (1011 1001 1000) 4

11 (0001 0110 0000) (0001) (1011 1001 1000) 5

12 (1011 0000) (0001 0110 0001) (0111 0011 0000) 4

13 (0101 1000) (0001 0110 0001) (1110 0110 0000) 3

14 (0010 1100) (0001 0011 1001) (1100 1100 0000) 2

15 (0001 0110) (0001 0001 0101) (1001 1000 0000) 1

16 (1011) (0001 0000 0011) (0011 0000 0000) 0

17 (0010 0000 0110) (1011) (1000 0000 0000) 1

18 (0100 0000 1100) (1011) (1000 0000 0000) 2

19 (0010 0000 0110) (0100 0000 0111) (1000 0000 0000) 1

20 (0001 0000 0011) (0110 0000 0001) (1000 0000 0000) 0

21 (0110 0000 0001) (0001 0000 0011) (1100 0000 0000) 1

22 (0111 0000 0010) (0111 0000 0010) (1000 0000 0000) 0

and the final result is the same, that is, the inverse of f(X) is X10 + X9 + X8 + X .

11.2.4.c Inversion based on Lagrange’s theorem

It is also possible to use the group structure of F∗qd to get the inverse of an element α. This method
has the same asymptotic complexity as the extended Euclidean one but is reported to be a little faster
[NÖC 1996] when a squaring is for free. We know that |F∗qd | = qd − 1 with q some power of 2, say
q = 2k. So αqd−2 = 1/α. Now

qd − 2 = (qd−1 − 1)q + q − 2,

and we can take advantage of the special expression of qd−1−1 in base q and of the Frobenius, which
makes the computation of q-th powers easier. For better performance, addition chains, presented in
Section 9.2.3, are used as well.

Algorithm 11.47 Inverse of an element of Fqd
∗ using Lagrange’s theorem

INPUT: An element α ∈ F∗
qd , two addition chains, namely (a0, a1, . . . , as1) for q − 2 and

(b0, b1, . . . , bs2) for d − 1.

OUTPUT: The inverse of α i.e., αqd−2 = 1/α.

1. y ← αq−2 [using (a0, a1, . . . , as1) and Algorithm 9.41]

§ 11.2 Finite fields of characteristic 2 225

2. T [0] ← α × y and i ← 1

3. while i � s do

4. t ← T [k]q
j

where bi = bk + bj

5. T [i] ← t × T [j]
h
T [i] = αqbi−1 for all i

i

6. i ← i + 1

7. t ← T [s2] [bs2 = d − 1]

8. return ytq

Remarks 11.48

(i) Note that exchanging bk and bj , in Line 4, does not alter the correctness of the algorithm.
In fact it is better to force bk to be the maximum of bk and bj so that the exponentiation
T [bk]q

bj is simpler.

(ii) One can obtain the inverse of α ∈ Fqd with s1 + s2 + 2 multiplications in Fqd and
(1 +

∑
i bj) q-th power computations where bj is the integer in bi = bk + bj . This last

number is equal to d−1 when (b0, b1, . . . , bs2) is a star addition chain, cf. Section 9.2.1.

(iii) One of the three methods proposed by Itoh and Tsujii [ITTS 1988] is a special case of
Algorithm 11.47 when q = 2 and the addition chain computing d − 1 is derived from
the square and multiply method.

(iv) When q is bigger than 2, another option suggested by Itoh and Tsujii is to write α−1 as
α−r × αr−1 where r = (qd − 1)/(q − 1) = qd−1 + · · · + q + 1. As αr ∈ Fq , it can be
easily inverted. It is the standard way to compute an inverse in an OEF, cf. Section 11.3.

Example 11.49 Suppose that one wants the inverse of α ∈ F219 , that is α219−2. Obviously, one has
219 − 2 = 2(218 − 1) and an addition chain for 18 is (1, 2, 3, 6, 12, 18).

i bi = bk + bj T [k]q
bj× T [j] T [i]

0 1 — α

1 2 = 1 + 1 T [0]2
1× T [0] α2 × α = α3

2 3 = 2 + 1 T [1]2
1× T [0] α6 × α = α7

3 6 = 3 + 3 T [2]2
3× T [2] α7×8 × α7 = α63

4 12 = 6 + 6 T [3]2
6× T [3] α63×64 × α64 = α4095

5 18 = 12 + 6 T [4]2
6× T [3] α4095×64 × α63 = α218−1

Finally T [5]2 = α−1.

11.2.5 Exponentiation

In polynomial representation, a simple trick can greatly speed up exponentiation. Namely, let f(X),
m(X) be polynomials in Fq[X] and g(X) = Xqr

. Because of the Frobenius action, it is obvious
that f qr ≡ f(g) (mod m). At this point one uses a fast algorithm for modular composition de-
signed by Brent and Kung [BRKU 1978].

226 Ch. 11 Finite Field Arithmetic

The idea, à la baby-step giant-step, is to write

f(X) =
∑

0�i<k

XkiFi(X) with k = �deg f� and Fi(X) =
∑

0�j<k

fik+jX
j

and to precompute and store 1, g, g2, . . . , gk−1 and 1, gk, g2k, . . . , gk(k−1) modulo m. Here is the
complete algorithm:

Algorithm 11.50 Modular composition of Brent and Kung

INPUT: The polynomials m, f, g ∈ Fq[X] with deg m = d and deg f, g < d.

OUTPUT: The polynomial f(g) mod m.

1. k ← ˚√
d
ˇ

2. G[0] ← 1

3. for i = 1 to k do G[i] ← (gG[i − 1]) mod m
ˆ
G[i] = gi mod m

˜

4. P [0] ← 1

5. for i = 1 to k − 1 do P [i] ← (G[k]P [i − 1]) mod m
ˆ
P [i] = gki mod m

˜

6. for i = 0 to k − 1 do F [i] ←Pk−1
j=0 fik+jG[j] [F [i] = Fi(g)]

7. R ← `Pk−1
i=0 F [i]P [i]

´
mod m

8. return R

Remark 11.51 With classical arithmetic the complexity of Algorithm 11.50 is O(d5/2), but it can
be reduced to O(d1/2+lg 3). Indeed, as shown in [NÖC 1996], the loop in Line 6 can be computed
with fast matrix multiplication à la Strassen [KNU 1997] and the other multiplications with the
Karatsuba method.

Example 11.52 Let m(X) = X15 +X +1 irreducible over F2, f(X) = X14 +X13 +X8 +X6 +
X4 + X3 + 1 and g(X) = X10 + X3 + 1. One has k = 4 and

f(X) = F0(X) + X4F1(X) + X8F2(X) + X12F3(X)

with
F0(X) = X3 + 1, F1(X) = X2 + 1, F2(X) = 1 and F3(X) = X2 + X.

The precomputed values gi and gki for 0 � i � k are respectively stored in the arrays G and P
whereas F [i] contains Fi(g).

i G[i] P [i] F [i]

0 (0001) (0001) (0101 0100 1011)

1 (0100 0000 1001) (0100 0000 0001) (0010 0000)

2 (0010 0001) (0110 0001) (0001)

3 (0101 0010 1010) (0100 0110 0100) (0100 0100 1000)

Finally R = X13 +X12 +X11 +X9 +X7 +X5 +X3 +X2 +X +1 which is equivalent to f(g)
modulo m.

Now we present Shoup’s algorithm [SHO 1994a, GAGA+ 2000] which is mainly based on the qr-
ary method for a well chosen r.

§ 11.2 Finite fields of characteristic 2 227

Algorithm 11.53 Shoup exponentiation algorithm

INPUT: The polynomials f, m ∈ Fq[X] with deg m = d and deg f < d. A parameter r and an
exponent n = (n�−1 . . . n0)qr such that 0 < n < qd.

OUTPUT: The polynomial fn mod m.

1. for i = 0 to � − 1 precompute and store fni mod m

2. g(X) ← Xqr

mod m and y ← 1

3. for i = � − 1 down to 0 do

4. y ← y(g) [use Algorithm 11.50]

5. y ← `
y × fni

´
mod m

6. return y

Remarks 11.54

(i) The parameter r is usually set to �d/ logq d� and the precomputations can be done with
Yao’s method, cf. Algorithm 9.44, as proposed by Gao et al. [GAGA+ 2000].

(ii) Neglecting precomputations, the number of multiplications needed is O(d/ lg d). Its
complexity, including the cost of precomputations, is O(d3/ lg d + d2 lg d) with clas-
sical arithmetic and O(d1+lg 3/ lg d + d(1+lg 7)/2 lg d) with Karatsuba method and à la
Strassen matrix multiplication techniques for modular composition.

(iii) The number of stored values is O(d/ lg d).
(iv) The for loop starting Line 3 is a Horner-like scheme.

Example 11.55 Take q = 2, m(X) = X15+X+1, f(X) = X14+X13+X8+X6+X4+X3+1
and n = 23801. Let us compute fn mod m with Algorithm 11.53. One has r = �15/ lg 15� = 4,
23801 = (5 12 15 9)16, and g(X) ≡ X2+X (mod m(X)). Then for each i, y(g) ≡ y16 (mod m)
and

(
yfni

)
mod m are successively computed. In the following table, we give the corresponding

values of y after the execution of Lines 4 and 5 of Shoup’s algorithm, as well as the precomputed
values fni used at each step.

i y fni mod m

3 1 (0001 1001 0011 1000)

— (0001 1001 0011 1000) —

2 (0110 1001 0111 1000) (1001 1101 1100)

— (0010 1001 1001 0000) —

1 (0111 0011 1101 0010) (0111 0100 0000 0011)

— (0100 0101 0111 1110) —

0 (0011 1000 1101 1010) (0100 0001 0111 0011)

— (0001 0111 0001 0101) —

228 Ch. 11 Finite Field Arithmetic

11.2.6 Square roots and quadratic equations

Every element α ∈ F2d is a square. The square root of α can be easily obtained thanks to the
multiplicative structure of F∗2d , which implies that

√
α = α2d−1

. In a normal basis the computation
of a square root is therefore immediate. If α is represented by f(X) =

∑d−1
i=0 fiX

i on a polynomial
basis, it is better to write

√
f(X) =

∑
i even

fiX
i/2 +

√
X
∑
i odd

fiX
i−1
2

where
√

X has been precomputed modulo m(X). When m(X) is the irreducible trinomial Xd +
Xk + 1 with d odd, note that

√
X can be obtained directly. Indeed

√
X ≡ X

d+1
2 + X

k+1
2 (mod m(X))

if k is odd and
√

X ≡ X−d−1
2 (X

k
2 + 1) (mod m(X)) otherwise. This technique applies to redun-

dant trinomials as well; see Section 11.2.1.b.
Solving quadratic equations in F2d is not as straightforward as computing square roots. Indeed,

let us solve the equation T 2 + aT + b = 0 in F2d where, by the above, a is assumed to be nonzero.
The change of variable T ← T/a yields the simpler equation

T 2 + T = c with c = b/a2. (11.2)

Lemma 11.56 Equation (11.2) has a solution in F2d if and only if Tr(c) = 0. If x is a solution then
x + 1 is the other one.

When d is odd, such a solution is given by

x =
(d−3)/2∑

i=0

c22i+1
. (11.3)

When d is even, set

x =
d−1∑
i=0

(
i∑

j=0

c2j

)
y2i

(11.4)

where y ∈ F2d is any element of trace 1.

Proof. Let x be a solution of (11.2). Then Tr(c) = Tr(x2 +x) = Tr(x)+Tr(x) = 0. The opposite
direction is proved by showing that the proposed solutions actually work. Computing x2 + x, one
has in the first case

x2 + x = c + Tr(c) = c,

and in the second one

x2 + x = y Tr(c) + c Tr(y) = c.

Thus x is always a solution of (11.2) as claimed.

In practice, several improvements can be considered. First, to check for the existence of a solution
and then to actually compute such a solution.

§ 11.3 Optimal extension fields 229

Remarks 11.57

(i) There is a unique vector w in F2d that is orthogonal to all the elements of trace 0. If w
is precomputed, it is enough to compute the scalar product w · c in order to deduce the
trace of c [KNU 1999].

(ii) When the field F2d is defined by an irreducible polynomial of the form

Xd + ad−1X
d−1 + · · · + a1X + a0 with aj = 0 for all j > d/2 (11.5)

the trace of an element can also be obtained very efficiently.
Let θ be a root of this polynomial. Then using the Newton–Girard formula giving the
sum of the conjugates of θk in terms of the ai’s and the linearity of the trace map it is
immediate that

if c =
d−1∑
k=0

ckθk then Tr(c) = c0 +
d−1∑
k=1

kckad−k.

As we have seen, moderately large extension fields of characteristic 2 can always be
defined by trinomials or pentanomials of the form (11.5), so that the computation of the
trace is always simple in practice.

Example 11.58 In F2233 defined by X233 + X74 + 1 we have

Tr
(
c232θ

232 + c231θ
231 + · · · + c1θ + c0

)
= c0 + c159.

Remark 11.59 Rather than computing a solution using (11.3) or (11.4), it can be faster to use the
linearity of the map λ
→ λ2 + λ defined from F2d to F2d . Indeed, precomputing the inverse matrix
of this operator gives the result in a straightforward way. Additional tricks can be used to reduce the
storage and the amount of computations [KNU 1999].

11.3 Optimal extension fields

On the one hand, multiplications in extension fields of characteristic 2 are usually performed less
efficiently than in prime fields, due to the lack of a single precision polynomial multiplication on
most processors. On the other hand, inversion in prime fields can be a very expensive operation,
especially in hardware. To overcome these two difficulties, optimal extension fields have been
recently investigated [MIH 1997, BAPA 1998]. They seem to be particularly interesting for smart
cards [WOBA+ 2000].

First, we shall briefly introduce optimal extension fields, and give existence criterions and some
examples before addressing the arithmetic itself. We conclude with the special cases of extensions
of degree 3 and 5.

11.3.1 Introduction

Let us take an extension field Fpd such that

• the characteristic p fits in a machine word and allows a fast reduction in Fp

• the irreducible polynomial defining Fpd allows a fast polynomial reduction.

This choice leads to the following concept.

230 Ch. 11 Finite Field Arithmetic

Definition 11.60 An optimal extension field, OEF for short, is an extension field Fpd where

• p is a pseudo-Mersenne prime, that is p = 2n + c with |c| � 2�n/2�

• there is an irreducible binomial m(X) = Xd − ω over Fp.

If c = +− 1 then the field is said to be of Type I and it is of Type II when ω = 2.

Remark 11.61 Generalizing Definition 11.60, cf. [AVMI 2004], it is possible to consider a prime p
of another form provided a fast reduction algorithm exists; see Section 10.4.3 for examples.

The cardinality of Fpd is approximately equal to 2nd and in practice, an element α ∈ Fpd is repre-
sented by the polynomial ad−1X

d−1 + · · · + a1X + a0 where ai ∈ Fp. As suggested before, this
implies that computations in OEFs require two kinds of reduction. Intermediate results have to be
reduced modulo the binomial m(X), and for this task Algorithm 11.31 is not even required since a
reduction modulo m consists simply of replacing Xd by ω. Coefficients of the polynomial also have
to be reduced modulo p. For Type I OEF, this operation needs one addition in Fp, cf. Section 10.4.3.
Otherwise reduction is obtained by Algorithm 10.25 and is more expensive.

OEFs are rather easy to find and their search is simplified by the results below on the irreducibility
of Xd − ω over Fp.

Theorem 11.62 Let d � 2 be an integer and ω ∈ F∗p. The binomial m(X) = Xd −ω is irreducible
in Fp[X] if and only if the two following conditions hold

• each prime factor of d divides the order e of ω but does not divide (p − 1)/e

• p ≡ 1 (mod 4) if d ≡ 0 (mod 4).

As shown in [JUN 1993] one has the sufficient condition

Corollary 11.63 If ω ∈ F∗p is a primitive element and d | (p − 1) then the polynomial Xd − ω is
irreducible over Fp.

If d is squarefree and Xd −ω irreducible over Fp then Theorem 11.62 implies that p ≡ 1 (mod d).
This remark is also useful to speed up the search of OEFs.

In Table 11.2 are given all OEFs of Type I, of cryptographic interest sorted with respect to nd.

Table 11.2 Type I OEFs.

n c d ω nd n c d ω nd n c d ω nd n c d ω nd

13 −1 6 7 78 17 −1 5 3 85 13 −1 7 3 91 31 −1 3 5 93

7 −1 14 3 98 17 −1 6 3 102 19 −1 6 3 114 13 −1 9 7 117

7 −1 18 3 126 8 1 16 3 128 16 1 8 3 128 13 −1 10 3 130

19 −1 7 3 133 7 −1 21 3 147 17 −1 9 3 153 13 −1 13 2 169

17 −1 10 3 170 19 −1 9 3 171 13 −1 14 3 182 61 −1 3 5 183

31 −1 6 5 186 7 −1 27 3 189 13 −1 15 11 195 31 −1 7 3 217

13 −1 18 7 234 17 −1 15 3 255 8 1 32 3 256 16 1 16 3 256

19 −1 14 3 266 13 −1 21 7 273 31 −1 9 5 279 17 −1 17 2 289

Table 11.3 contains examples of OEFs of Type II. More precisely, given a size s between 135 and
300, for each n � 7 dividing s, the unique parameters c ∈

[
−2�n/2�, 2�n/2�] and d, if any, are

given, such that

§ 11.3 Optimal extension fields 231

• p = 2n + c is prime
• c is minimal in absolute value
• d = s/n and Xd − 2 is irreducible over Fp.

Note that when n = 8, 16, 32, or 64 only negative values of c are reported so that elements of Fp

can be represented with a single word on the corresponding commonly used architectures. Since
these parameters are of great importance in practice, they appear distinctly in the table.

Concerning arithmetic, additions and subtractions are straightforward and do not enjoy special
improvements, unlike other basic operations we shall describe now.

11.3.2 Multiplication

Let two elements α, β ∈ Fpd be represented by α =
∑d−1

i=0 aiX
i and β =

∑d−1
i=0 biX

i where ai

and bi are in Fp. Then using the relation Xd ≡ ω (mod m(X)), one has

αβ = cd−1 +
d−2∑
k=0

(ck + ωcd+k)Xk with ck =
k∑

i=0

aibk−i.

Instead of reducing aibk−i modulo p at each step, it can be faster, especially for OEFs that are not
of Type I, to compute ck + ωcd+k as a multiprecision integer and to reduce it only once. As shown
in [HAME+ 2003], if p = 2n + c is such that lg

(
1 + ω(d− 1)

)
+ 2 lg |c| � n, then ck + ωcd+k can

be reduced at once with only two multiplications by c.
As suggested in [MIH 2000], one can also use convolutions methods, like the FFT, to multiply α

and β. This is particularly effective when d is close to a power of 2, or close to the product of small
primes.

As usual, a squaring should be considered independently and computed with a specific procedure.

11.3.3 Exponentiation

The action of the absolute Frobenius φp can be computed very efficiently in OEFs [MIH 2000].
Indeed, since the coefficients of α =

∑d−1
j=0 ajX

j are in Fp, one has

αpi

=
d−1∑
j=0

ajω
�jpi/d�X((jpi) mod d).

Recall that when d is squarefree, p ≡ 1 (mod d) so that X((jp)i mod d) is simply Xj . Thus an
exponentiation to the power pi only requires us to multiply each coefficient aj by some power of ω,
which can be precomputed.

Another interesting choice is to take p = kd + 1 for a given d. In this case, X((jpi) mod d) = Xj

as well, and ω�jp/d� = ζj where ζ = ω
p−1

d ∈ Fp is a d-th root of unity.

Example 11.64 Let p = 216 − 165, Fp6 Fp[X]/(X6 − 2) and take the random element

α = 44048X5 + 24430X4 + 54937X3 + 18304X2 + 46713X + 63559.

One checks that p− 1 ≡ 0 (mod 6) so that ζ = 2�p/d� is a 6-th primitive root of unity. Precomput-
ing ζ, ζ2, ζ3, ζ4 and ζ5 modulo p, and multiplying aj by ζj , one obtains

αp = 23814X5 + 34492X4 + 10602X3 + 7340X2 + 40911X + 63559.

Using the same set of precomputations, the product of α by the ζ4j ’s, componentwise gives

αp4
= 41725X5 + 34492X4 + 54937X3 + 7340X2 + 24628X + 63559.

232 Ch. 11 Finite Field Arithmetic

Table 11.3 Examples of Type II OEFs.

n c d nd n c d nd n c d nd n c d nd n c d nd n c d nd n c d nd

15 −19 9 135 27 203 5 135 45 −55 3 135 17 29 8 136 34 85 4 136 23 11 6 138 46 −21 3 138

10 27 14 140 14 −3 10 140 20 −3 7 140 28 −95 5 140 35 53 4 140 47 5 3 141 11 −19 13 143

9 −3 16 144 12 −3 12 144 16 −15 9 144 18 −11 8 144 24 75 6 144 36 117 4 144 48 75 3 144

29 39 5 145 21 −21 7 147 49 −139 3 147 37 29 4 148 15 3 10 150 25 35 6 150 30 7 5 150

50 −51 3 150 19 −19 8 152 38 13 4 152 17 −13 9 153 51 65 3 153 14 −15 11 154 22 −57 7 154

31 413 5 155 12 −39 13 156 13 29 12 156 26 −45 6 156 39 −19 4 156 52 21 3 156 53 41 3 159

10 −3 16 160 16 −165 10 160 20 −3 8 160 32 −5 5 160 40 141 4 160 23 11 7 161 9 11 18 162

18 3 9 162 27 53 6 162 54 −33 3 162 41 −75 4 164 15 35 11 165 33 29 5 165 55 11 3 165

14 −3 12 168 21 −19 8 168 24 −63 7 168 28 3 6 168 42 −11 4 168 56 −57 3 168 13 −1 13 169

10 −3 17 170 17 −61 10 170 34 −113 5 170 19 −19 9 171 57 −13 3 171 43 29 4 172 29 −43 6 174

58 −63 3 174 7 3 25 175 25 41 7 175 35 53 5 175 11 5 16 176 22 −3 8 176 44 21 4 176

59 −55 3 177 12 15 15 180 15 −19 12 180 18 −93 10 180 20 −3 9 180 30 3 6 180 36 −5 5 180

45 −139 4 180 60 33 3 180 7 3 26 182 13 27 14 182 14 −3 13 182 26 −45 7 182 61 −31 3 183

23 −27 8 184 46 165 4 184 37 9 5 185 31 11 6 186 62 −57 3 186 17 −61 11 187 47 5 4 188

21 −19 9 189 27 203 7 189 63 −25 3 189 19 −27 10 190 38 7 5 190 12 −3 16 192 16 −243 12 192

24 −3 8 192 32 −387 6 192 48 21 4 192 64 −189 3 192 13 29 15 195 15 71 13 195 39 23 5 195

14 −3 14 196 28 −57 7 196 49 69 4 196 11 5 18 198 18 9 11 198 22 −3 9 198 33 29 6 198

10 −3 20 200 20 −5 10 200 25 69 8 200 40 15 5 200 50 −27 4 200 29 −3 7 203 17 29 12 204

34 −165 6 204 51 21 4 204 41 −21 5 205 23 11 9 207 13 29 16 208 16 −15 13 208 26 −27 8 208

52 21 4 208 11 5 19 209 19 −27 11 209 10 −15 21 210 14 −3 15 210 15 21 14 210 21 −21 10 210

30 7 7 210 35 53 6 210 42 −33 5 210 53 5 4 212 43 −67 5 215 8 −15 27 216 12 3 18 216

18 117 12 216 24 −33 9 216 27 29 8 216 36 117 6 216 54 −131 4 216 31 −85 7 217 20 33 11 220

22 67 10 220 44 55 5 220 55 −67 4 220 13 −31 17 221 17 −31 13 221 37 269 6 222 14 −3 16 224

16 −155 14 224 28 37 8 224 32 −17 7 224 56 −27 4 224 9 9 25 225 25 35 9 225 45 59 5 225

19 −19 12 228 38 −45 6 228 57 141 4 228 10 −11 23 230 23 −27 10 230 46 127 5 230 21 −111 11 231

33 35 7 231 29 −3 8 232 58 −27 4 232 13 −13 18 234 18 −11 13 234 26 15 9 234 39 −91 6 234

47 −127 5 235 59 −99 4 236 17 −115 14 238 34 −113 7 238 15 −19 16 240 16 −15 15 240 20 −3 12 240

24 75 10 240 30 −35 8 240 40 141 6 240 48 −165 5 240 60 −107 4 240 11 21 22 242 22 85 11 242

9 11 27 243 27 53 9 243 61 21 4 244 35 −31 7 245 49 69 5 245 41 −133 6 246 13 17 19 247

19 81 13 247 31 −19 8 248 62 −171 4 248 10 −3 25 250 25 −61 10 250 50 −113 5 250 12 63 21 252

14 −3 18 252 18 −35 14 252 21 −19 12 252 28 3 9 252 36 175 7 252 42 75 6 252 63 29 4 252

23 15 11 253 17 −61 15 255 51 −237 5 255 16 −99 16 256 32 −99 8 256 64 −59 4 256 43 −691 6 258

37 41 7 259 13 29 20 260 20 57 13 260 26 117 10 260 52 55 5 260 9 11 29 261 29 −43 9 261

11 5 24 264 12 −3 22 264 22 −3 12 264 24 73 11 264 33 29 8 264 44 21 6 264 53 −111 5 265

14 33 19 266 19 −85 14 266 38 −45 7 266 10 9 27 270 15 −19 18 270 18 87 15 270 27 203 10 270

30 3 9 270 45 −139 6 270 54 −33 5 270 16 −17 17 272 17 29 16 272 34 85 8 272 13 41 21 273

21 −69 13 273 39 −7 7 273 25 35 11 275 55 3 5 275 12 −47 23 276 23 29 12 276 46 −21 6 276

31 11 9 279 14 −3 20 280 20 −3 14 280 28 −125 10 280 35 53 8 280 40 27 7 280 56 175 5 280

47 5 6 282 15 −49 19 285 19 −67 15 285 57 −111 5 285 11 −19 26 286 22 −87 13 286 26 69 11 286

41 −31 7 287 9 −3 32 288 12 −3 24 288 16 −165 18 288 18 −11 16 288 24 117 12 288 32 −153 9 288

36 117 8 288 48 75 6 288 17 −1 17 289 29 149 10 290 58 −63 5 290 14 −3 21 294 21 −21 14 294

42 −161 7 294 49 −139 6 294 59 273 5 295 37 29 8 296 11 5 27 297 27 −39 11 297 33 17 9 297

23 293 13 299 12 −5 25 300 20 435 15 300 25 77 12 300 30 −83 10 300 50 −51 6 300 60 105 5 300

§ 11.3 Optimal extension fields 233

Accordingly, the use of the Frobenius speeds up an exponentiation to a generic power n. Indeed,
a traditional approach would require d lg p squarings to get αn, but writing n in basis p, i.e., n =
(n�−1 . . . n0)p, it is clear that

αn =
�−1∏
i=0

φi
p

(
αni
)
.

Combined with a right-to-left strategy to compute the αni ’s, cf. Section 9.1.1, this idea shows that
only (lg p − 1) squarings are needed, namely α2, α4, . . . , α2lg p−1

. In addition, each term αni can
be computed in parallel.

Example 11.65 Let n = 27071851865689547117393862889 and let us compute αn. First remark
that n = (22388 12209 20770 63238 8078 10838)p. Using the precomputed values α2, α4, . . . , α215

Algorithm 9.2 gives

αn0 = 13812X5 + 61164X4 + 49159X3 + 1927X2 + 1781X + 31944

αn1 = 4807X5 + 57203X4 + 62178X3 + 3283X2 + 4690X + 33266

αn2 = 49155X5 + 5527X4 + 47396X3 + 13274X2 + 13828X + 60304

αn3 = 21607X5 + 11848X4 + 23310X3 + 30303X2 + 31752X + 44845

αn4 = 29730X5 + 12285X4 + 27469X3 + 798X2 + 9947X + 47295

αn5 = 54710X5 + 18029X4 + 18950X3 + 23518X2 + 10120X + 34955

and with the technique explained above one obtains

αn0 = 13812X5 + 61164X4 + 49159X3 + 1927X2 + 1781X + 31944

αpn1 = 60618X5 + 51323X4 + 3361X3 + 4138X2 + 57415X + 33266

αp2n2 = 8288X5 + 43479X4 + 47396X3 + 53960X2 + 58194X + 60304

αp3n3 = 43932X5 + 11848X4 + 42229X3 + 30303X2 + 33787X + 44845

αp4n4 = 46496X5 + 26171X4 + 27469X3 + 28535X2 + 55771X + 47295

αp5n5 = 37148X5 + 9908X4 + 46589X3 + 49290X2 + 55179X + 34955

so that the product of all these values is

αn = 42336X5 + 42804X4 + 21557X3 + 49577X2 + 22038X + 4278.

11.3.4 Inversion

Although an inverse could be computed with an extended gcd computation in Fpd , it is much faster
to use the Frobenius action and an inversion in Fp to compute it.

Namely, take

r =
pd − 1
p − 1

= pd−1 + pd−2 + · · · + p + 1.

Then αr−1 and αr are easily obtained using the Frobenius and in addition αr ∈ Fp since it is the
norm of α. So αr can be easily inverted to obtain

α−1 = αr−1 × α−r.

Further improvements, reminiscent of an addition chain approach, can be applied to compute the
term αr−1. As an example, let us consider the extension degree d = 6, often used in practice with
32-bit architectures. In this case, the successive steps to compute αr−1 are

αp, αp+1, αp3+p2
, αp5+p4

, αp5+p4+p3+p2
and αp5+p4+p3+p2+p.

The entire algorithm is as follows.

234 Ch. 11 Finite Field Arithmetic

Algorithm 11.66 OEF inversion

INPUT: A nonzero element α ∈ Fpd .

OUTPUT: The inverse of α in Fpd .

1. r ← (pd − 1)/(p − 1)

2. s ← αr−1 [use an addition-chain-like approach]

3. t ← sα [t = αr ∈ Fp]

4. u ← t−1 [compute the inverse of t in Fp]

5. return su

Remarks 11.67

(i) Algorithm 11.66 is in fact a generalization of a method proposed by Itoh and Tsujii
[ITTS 1988] for characteristic 2 fields. See also Remark 11.48 (iv).

(ii) Since t belongs to Fp it is equal to the constant coefficient of the product sα. Thus this
multiplication needs only d multiplications in Fp as does the product su.

(iii) Let ν(k) be the Hamming weight of k, then αr−1 can be computed [HAME+ 2003]
with NM = �lg d − 1� + ν(d − 1) − 1 products in Fpd and at most Nφp Frobenius
computations where

Nφp =

{
NM + 1 if d is odd,

�lg(d − 1)� + ν(d) otherwise.

Example 11.68 Take p, Fp6 and α as defined in Example 11.64 and let us compute the inverse of
α by Algorithm 11.66. First r = p5 + p4 + p3 + p2 + p + 1 and αr−1 is obtained by computing
successively

αp = 23814X5 + 34492X4 + 10602X3 + 7340X2 + 40911X + 63559

αp+1 = 27871X5 + 42246X4 + 20450X3 + 8624X2 + 26549X + 28414

αp3+p2
= 47216X5 + 11126X4 + 20450X3 + 50936X2 + 29251X + 28414

αp5+p4
= 55991X5 + 12167X4 + 20450X3 + 5979X2 + 9739X + 28414

αp5+p4+p3+p2
= 26086X5 + 2404X4 + 35019X3 + 45382X2 + 45825X + 22132

αr−1 = 28310X5 + 14778X4 + 7889X3 + 29498X2 + 2991X + 44851

with 3 multiplications in Fp6 and 3 applications of φp or φ2
p. Finally, t = αr−1α ≡ 42318 (mod p),

u = t−1 ≡ 27541 (mod p) and

α−1 = αr−1u = 33766X5 + 3708X4 + 9164X3 + 48513X2 + 58147X + 27858.

11.3.5 Squares and square roots

For any extension field Fpd of odd characteristic, and not only for OEFs, there is a simple method
relying on Theorem 2.104 and very similar to Algorithm 11.19 to decide if an element of Fpd is a
square or not.

§ 11.3 Optimal extension fields 235

Algorithm 11.69 Legendre–Kronecker–Jacobi symbol

INPUT: A polynomial f(X) ∈ Fp[X] and an irreducible polynomial m(X) ∈ Fp[X].

OUTPUT: The Legendre–Kronecker–Jacobi symbol
` f(X)

m(X)

´·
1. k ← 1

2. repeat

3. if f(X) = 0 then return 0

4. a ← the leading coefficient of f(X)

5. f(X) ← f(X)/a

6. if deg m ≡ 1 (mod 2) then k ← k
`

a
p

´

7. if pdeg m ≡ 3 (mod 4) and deg mdeg f ≡ 1 (mod 2) then k ← −k

8. r(X) ← f(X), f(X) ← m(X) mod r(X) and m(X) ← r(X)

9. until deg m = 0

10. return k

Remark 11.70 Algorithm 11.69 relies on the law (2.7). Since f(X) is not necessarily monic it is
first divided by its leading coefficient a. Now we remark that a ∈ Fp is always a square in an
extension of even degree. When the degree is odd a is a quadratic residue if and only if a = 0 or(

a
p

)
= 1.

Example 11.71 Take p = 7, let m(X) be the irreducible polynomial X9 + 2X8 + X7 + 2X6 +
2X5 +4X2 +6X +6 and f(X) = X6 +X5 +6X4 +2X3 +2X2 +4X +1, both being elements
of F7[X].

After Line 8 the values of r, f , a and k are as follows

r f a k

X6 + 4X5 + 3X4 + X3 + X2 + 2X + 4 4X5 + 3X4 + 4X3 + 3X2 + 2X + 4 1 1

X5 + 6X4 + X3 + 6X2 + 4X + 1 4X3 + 2X2 + 2X + 6 4 1

X3 + 4X2 + 4X + 5 2X2 + 3X 4 −1

X2 + 5X 2X + 5 2 −1

X + 6 6 2 −1

1 0 6 1

So f(X) is a square modulo m(X). Using a trivial generalization of Algorithm 11.26, one finds
that (3X3 + 6X2 + 2X + 1)2 ≡ f(X) (mod m(X)).

To conclude this part, let us remark that the computation of the trace of an element in an OEF
enjoys the same kind of improvements as in characteristic 2, cf. Remark 11.57 (ii).

11.3.6 Specific improvements for degrees 333333 and 555555

For some applications, like the implementation of trace zero varieties, cf. Section 15.3, one needs
to work in an extension field Fpd of small degree d. In particular, d = 3 and d = 5 are interesting
there. Some specific tricks can be used to make multiplication and inversion more efficient.

236 Ch. 11 Finite Field Arithmetic

We use an explicit description of the field extension as Fpd = Fp[θ], where θ is a root of an ir-
reducible binomial Xd − ω. Since d = 3 or 5 is prime, Xd − ω is irreducible whenever p ≡ 1
(mod d) and ω is not a d-th power in Fp. As Fp contains a d-th root of unity ζ, the roots of Xd −ω
are θ, ζθ, . . . , ζd−1θ.

Remark 11.72 It is very likely that there exists ω of small integer value, which is not a d-th power.
In fact, by Čebotarev’s density theorem, we have with probability 1/d that p ≡ 1 (mod d) and
Xd − 2 is irreducible over Fp. With even larger probability, one can find some small ω such that
Xd −ω is irreducible over Fp and the multiplication by ω, i.e., the reduction modulo the irreducible
binomial, can be computed by additions only.

We shall write all elements of Fp3 , respectively Fp5 , as polynomials in θ of degrees at most 2,
respectively 4, over Fp. Addition, subtraction, and negation of elements of Fpd are performed
component-wise. If ω is small we can ignore the costs of reducing modulo Xd − ω.

11.3.6.a Multiplication and squaring

Multiplication of elements of Fpd is split into multiplication of the corresponding polynomials in θ
and then reduction of the result using the fact that θd = ω.

Multiplication for d = 3d = 3d = 3d = 3d = 3d = 3
Multiplication in degree 3 extensions is done using Karatsuba’s method, which we detail here to
have the exact operation count. Let us multiply α =

∑2
i=0 aiθ

i with β =
∑2

i=0 biθ
i. We have

αβ = a0b0 +
(
(a0 + a1)(b0 + b1) − a0b0 − a1b1

)
θ

+
(
(a0 + a2)(b0 + b2) − a0b0 − a2b2 + a1b1

)
θ2 (11.6)

+
(
(a1 + a2)(b1 + b2) − a1b1 − a2b2

)
θ3 + (a2b2)θ4.

It enables us to multiply two degree 2 polynomials by 6 multiplications. By delaying all modu-
lar reductions and using incomplete reduction (see [AVMI 2004]), we need to perform 3 modular
reductions modulo p.

Multiplication for d = 5d = 5d = 5d = 5d = 5d = 5
In the degree 5 extension case, to multiply α =

∑4
i=0 aiθ

i with β =
∑4

i=0 biθ
i we put ξ = θ3 and

let A0 =
∑2

i=0 aiθ
i, A1 = a3 + a4θ, B0 =

∑2
i=0 biθ

i, and B1 = b3 + b4θ. Karatsuba’s method is
then used to obtain

αβ = (A0 + A1ξ)(B0 + B1ξ)

= A0B0 +
(
(A0 + A1)(B0 + B1) − A0B0 − A1B1

)
ξ + A1B1ξ

2.

The product A1B1 is computed using Karatsuba’s method, and A0B0 and (A0 + A1)(B0 + B1)
are both computed using (11.6). Note, however, that having A0, B0 of degree 2 and A1, B1 of
degree 1, the coefficients of θ4 in A0B0 and (A0 + A1)(B0 + B1) are the same, so we can save one
Fp-multiplication. The amount of Fp-multiplications needed to multiply two degree 4 polynomials
is thus 3 + 2× 6− 1 = 14. By delaying all modular reductions and using incomplete reduction, we
need to compute just 5 modular reductions modulo p.

Squaring

The squarings are more efficiently carried out using the schoolbook method, since this reduces
the number of additions significantly and in several libraries, squarings in Fp are no cheaper than

§ 11.3 Optimal extension fields 237

ordinary multiplications. If this is not the case one should implement both versions (the schoolbook
version and the Karatsuba one) and compare their running time.

For d = 3, we need 3 squarings and 3 multiplications in Fp by

(a0 + a1θ + a2θ
2)2 = a2

0 + ωa1a2 + (ωa2
2 + a0a1)θ + (a2

1 + a0a2)θ2.

Likewise, for d = 5 we have 5 squarings and 10 multiplications. The number of modular reductions
are again 3 and 5 as in the case of multiplications.

11.3.6.b Inversion

For the inversion, the difference from the general OEF approach becomes obvious. To compute the
inverse of α ∈ Fpd , we can consider the multiplication as a linear map and determine a preimage.
This method is faster for d = 3 and also for d = 2 but we do not investigate that case any further.
Note that for d = 5, the general method made explicit is faster.

Inversion for d = 3d = 3d = 3d = 3d = 3d = 3
Let β = b0 + b1θ + b2θ

2, with b0, b1, b2 ∈ Fp, be the inverse of α = a0 + a1θ + a2θ
2 ∈ Fp3 and

using θ3 = ω, the relation αβ = 1 can be written as:⎡
⎢⎣a0 a2ω a1ω

a1 a0 a2ω

a2 a1 a0

⎤
⎥⎦
⎡
⎢⎣b0

b1

b2

⎤
⎥⎦ =

⎡
⎢⎣1
0
0

⎤
⎥⎦ .

Hence⎡
⎢⎣b0

b1

b2

⎤
⎥⎦ =

⎡
⎢⎣a0 a2ω a1ω

a1 a0 a2ω

a2 a1 a0

⎤
⎥⎦
−1 ⎡
⎢⎣1
0
0

⎤
⎥⎦ = (a3

0 + ω a3
1 + ω2a3

2 − 3 ω a0a1a2)−1

⎡
⎢⎣a2

0 − ω a1a2

ω a2
2 − a0a1

a2
1 − a0a2

⎤
⎥⎦ .

From this formula we obtain a method for inverting elements in Fp3 , which requires (ignoring
multiplications by 3 and by ω) just one inversion, 3 squarings, and 9 multiplications in Fp.

This method can be generalized to very small extensions. It is described e.g., in [KOMO+ 1999].

Inversion for d = 5d = 5d = 5d = 5d = 5d = 5
In this case we use the inversion technique described in Algorithm 11.66 but can save a bit by
combining the powers of the Frobenius automorphism, i.e., making the addition chain explicit.

Thus we compute the inversion in Fp5 as:

α−1 =
(αpαp2

(αpαp2
)p2

α
(
αpαp2(αpαp2)p2

) ·
Note that if the result of a Fp5-multiplication is known in advance to be in Fp (such as the norm), its
computation requires just 5 Fp-multiplications. This way we compute inverses in Fp5 by one inver-
sion and 50 multiplications in Fp. This strategy is optimal for d = 5 and needs less multiplications
than the generalization of the linear algebra approach used for d = 3.

