
Chapter��
Arithmetic of Elliptic Curves

Christophe Doche and Tanja Lange

Contents in Brief

13.1 Summary of background on elliptic curves 268
First properties and group law • Scalar multiplication • Rational points •
Torsion points • Isomorphisms • Isogenies • Endomorphisms • Cardinality

13.2 Arithmetic of elliptic curves defined over FpFpFpFpFpFp 280
Choice of the coordinates • Mixed coordinates • Montgomery scalar
multiplication • Parallel implementations • Compression of points

13.3 Arithmetic of elliptic curves defined over F2dF2dF2dF2dF2dF2d 289
Choice of the coordinates • Faster doublings in affine coordinates • Mixed
coordinates • Montgomery scalar multiplication • Point halving and
applications • Parallel implementation • Compression of points

Elliptic curves constitute one of the main topics of this book. They have been proposed for appli-
cations in cryptography due to their fast group law and because so far no subexponential attack on
their discrete logarithm problem (cf. Section 1.5) is known. We deal with security issues in later
chapters and concentrate on the group arithmetic here. In an actual implementation this needs to be
built on an efficient implementation of finite field arithmetic (cf. Chapter 11).

In the sequel we first review the background on elliptic curves to the extent needed here. For a
more general presentation of elliptic curves, see Chapter 4. Then we address the question of efficient
implementation in large odd and in even characteristics. We refer mainly to [HAME+ 2003] for
these sections.

Note that there are several softwares packages or libraries able to work on elliptic curves, for
example PARI/GP [PARI] and apecs [APECS]. The former is a linkable library that also comes with
an interactive shell, whereas the latter is a Maple package. Both come with full sources. The
computer algebra systems Magma [MAGMA] and SIMATH [SIMATH] can deal with elliptic curves,
too.

Elliptic curves have received a lot of attention throughout the past almost 20 years and many
papers report experiments and timings for various field sizes and coordinates. We do not want
to repeat the results but refer to [AVA 2004a, COMI+ 1998] and Section 14.7 for odd charac-
teristic and [HALÓ+ 2000, LÓDA 1998, LÓDA 1999] for even characteristic. Another excellent
and comprehensive reference comparing point multiplication costs and implementation results is
[HAME+ 2003, Tables 3.12, 3.13 and 3.14 and Chap. 5].

267

268 Ch. 13 Arithmetic of Elliptic Curves

13.1 Summary of background on elliptic curves

13.1.1 First properties and group law

We start with a practical definition of the concept of an elliptic curve.

Definition 13.1 An elliptic curve E over a field K denoted by E/K is given by the Weierstraß
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (13.1)

where the coefficients a1, a2, a3, a4, a6 ∈ K are such that for each point (x1, y1) with coordinates
in K satisfying (13.1), the partial derivatives 2y1 + a1x1 + a3 and 3x2

1 + 2a2x1 + a4 − a1y1 do not
vanish simultaneously.

The last condition says that an elliptic curve is nonsingular or smooth. A point on a curve is called
singular if both partial derivatives vanish (cf. the Jacobi criterion 4.94). For shorter reference we
group the coefficients in (13.1) to the equation

E : y2 + h(x)y = f(x), h(x), f(x) ∈ K[x], deg(h) � 1, deg(f) = 3 with f monic.

The smoothness condition can also be expressed more intrinsically. Indeed, let

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4,

b6 = a2
3 + 4a6, b8 = a2

1a6 − a1a3a4 + 4a2a6 + a2a
2
3 − a2

4.

In odd characteristic, the transformation y �→ y − (a1x + a3)/2 leads to an isomorphic curve given
by

y2 = x3 +
b2

4
x2 +

b4

2
x +

b6

4
· (13.2)

The cubic polynomial above has only simple roots over the algebraic closure K if and only if its
discriminant is nonzero. The equation of the discriminant is therefore useful to determine if (13.2)
is an elliptic curve or not. In addition, it is relevant for characteristic 2 fields as well.

Definition 13.2 Let E be a curve defined over K by (13.1) and let b2, b4, b6 and b8 as above. The
discriminant of the curve E denoted by ∆ satisfies

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

The curve E is nonsingular, and thus is an elliptic curve, if and only if ∆ is nonzero. In this case,
we introduce the j-invariant of E, that is j(E) = (b2

2 − 24b4)3/∆.

Example 13.3 In Fp with p = 2003, an elliptic curve is given by

E1 : y2 + 2xy + 8y = x3 + 5x2 + 1136x + 531. (13.3)

Indeed, we have b2 = 24, b4 = 285, b6 = 185, ∆ = 1707 �= 0 and j = 171.

§ 13.1 Summary of background on elliptic curves 269

We now show how to turn the set of points of E into a group with group operation denoted by ⊕.
For this we visualize it over the reals as in Figure 13.1 and assume h(x) = 0.

Figure 13.1 Group law on elliptic curve y2 = f(x) over R.

P

Q

−(P ⊕ Q)

P ⊕ Q

P

[2]P

−[2]P

To add two points P = (x1, y1) and Q = (x2, y2) in general position one draws a line connecting
them. There is a third point of intersection. Mirroring this point at the x-axis gives the sum P ⊕ Q.
The same construction can be applied to double a point where the connecting line is replaced by the
tangent at P .

Furthermore, we need to define the sum of two points with the same x-coordinate since for them
the group operation cannot be performed as stated. As y2 = f(x) there are at most 2 such points
(x1, y1) and (x1,−y1). Furthermore, we have to find the neutral element of the group.

The way out is to include a further point P∞ called the point at infinity. It can be visualized as
lying far out on the y-axis such that any line x = c, for some constant c, parallel to the y-axis passes
through it. This point is the neutral element of the group. Hence, the line connecting (x1, y1) and
(x1,−y1) passes through P∞. As it serves as the neutral element, the inflection process leaves it
unchanged such that (x1, y1) ⊕ (x1,−y1) = P∞, i.e., (x1,−y1) = −P .

This explanation might sound a little like hand-waving and only applicable to R. We now derive
the addition formulas for an arbitrary field K , which hold universally. For a proof we refer to
Chapter 4.

Take P �= Q with x1 �= x2 as above and let us compute the coordinates of R = P⊕Q = (x3, y3).
The intersecting line has slope

λ =
y1 − y2

x1 − x2

and passes through P . Its equation is thus given by

y = λx +
x1y2 − x2y1

x1 − x2
·

270 Ch. 13 Arithmetic of Elliptic Curves

We denote the constant term by µ and remark µ = y1 −λx1. The intersection points with the curve
are obtained by equating the line and E

(λx + µ)2 + (a1x + a3)(λx + µ) = x3 + a2x
2 + a4x + a6.

This leads to the equation r(x) = 0 where

r(x) = x3 + (a2 − λ2 − a1λ)x2 + (a4 − 2λµ − a3λ − a1µ)x + a6 − µ2 − a3µ.

We already know two roots of r(x), namely the x-coordinates of the other two points. Since

r(x) = (x − x1)(x − x2)(x − x3)

one has λ2 + a1λ − a2 = x1 + x2 + x3. As x1, x2 are defined over K so is x3 and ỹ3 = λx3 + µ.
The inflection at the x-axis has to be translated to the condition that the second point has the same
x-coordinate and also satisfies the curve equation. We observe that if P = (x1, y1) is on the curve
then so is (x1,−y1 − a1x1 − a3), which corresponds to −P since the point at infinity is the neutral
element for this law. Accordingly, we find y3 = −λx3 − µ − a1x3 − a3.

Doubling P = (x1, y1) works just the same with the slope obtained by implicit derivating. Thus
we have P ⊕ Q = (x3, y3) and

−P = (x1,−y1 − a1x1 − a3),
P ⊕ Q = (λ2 + a1λ − a2 − x1 − x2, λ(x1 − x3) − y1 − a1x3 − a3), where

λ =

⎧⎪⎪⎨
⎪⎪⎩

y1 − y2

x1 − x2
if P �= +−Q,

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
if P = Q.

It is immediate from the pictorial description that this law is commutative, has the point at infinity as
neutral element, and that the inverse of (x1, y1) is given by (x1,−y1−a1x1−a3). The associativity
can be shown to hold by simply applying the group law and comparing elements. We leave the
lengthy computation to the reader. Note that Chapter 4 gives extensive background showing in an
abstract way the group of points on E to form a group. For a more geometrical proof, relying on
Bezout’s theorem, see e.g., [CAS 1991].

Example 13.4 One can easily check that the points P1 = (1118, 269) and Q1 = (892, 529) lie on
the curve E1/Fp as defined by (13.3). Then

−P1 = (1118, 1493),
P1 ⊕ Q1 = (1681, 1706),

[2]P1 = (1465, 677)

are also on E1.

The point at infinity can be motivated by giving an alternative description of elliptic curves. Equa-
tion (13.1) expresses the curve in affine coordinates. The same elliptic curve E in projective coor-
dinates is then given by the equation

E : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3.

Let us denote by (X1 : Y1 : Z1) an element of the projective 2-space P2/K , i.e., a class of
K

3
� {(0, 0, 0)} modulo the relation

(X1 : Y1 : Z1) ∼ (X2 : Y2 : Z2) ⇐⇒ there is λ ∈ K
∗ | X2 = λX1, Y2 = λY1 and Z2 = λZ1.

§ 13.1 Summary of background on elliptic curves 271

By abuse of notation, we identify a class with any of its representatives and call (X1 : Y1 : Z1)
a projective point. We remark that only a single point of E satisfies Z1 = 0, namely the point at
infinity, which is in this case P∞ = (0 : 1 : 0). When Z1 �= 0, there is a simple correspondence
between the projective point (X1 : Y1 : Z1) and the affine point (x1, y1) using the formula

(x1, y1) = (X1/Z1, Y1/Z1) (13.4)

As the representation (X1 : Y1 : Z1) is not normalized, one can perform arithmetic in projec-
tive coordinates without any inversion. Note also that generalized projective coordinates involving
suitable powers of Z1 in (13.4) are commonly used, cf. Sections 13.2.1 and 13.3.1.

Example 13.5 The point P ′
1 = (917 : 527 : 687) lies on the curve E1 of equation (13.3) expressed

in projective coordinates, i.e.,

E1 : Y 2Z + 2XY Z + 8Y Z2 = X3 + 5X2Z + 1136XZ2 + 531Z3.

In fact, P ′
1 is in the same class as (1118 : 269 : 1) and thus corresponds to the affine point P1 =

(1118, 269).

13.1.2 Scalar multiplication

Take n ∈ N� {0} and let us denote the scalar multiplication by n on E by [n], or [n]E to avoid
confusion. Namely,

[n] : E → E

P �→ [n]P = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
n times

.

This definition extends trivially to all n ∈ Z, setting [0]P = P∞ and [n]P = [−n](−P) for n < 0.
Chapter 9 deals with exponentiation, i.e., the computation of x to some power n. In the context of
elliptic curves, this corresponds to [n]P . Thus multiplications, squarings, and divisions are replaced
by additions, doublings, and subtractions on E.

As an example, we give the analogue of Algorithm 9.10 with additive notation.

Algorithm 13.6 Sliding window scalar multiplication on elliptic curves

INPUT: A point P on an elliptic curve E, a nonnegative integer n = (nl−1 . . . n0)2, a parameter
k � 1 and the precomputed points [3]P, [5]P, . . . , [(2k − 1)]P .

OUTPUT: The point [n]P .

1. Q ← P∞ and i ← l − 1

2. while i � 0 do

3. if ni = 0 then Q ← [2]Q and i ← i − 1

4. else

5. s ← max(i − k + 1, 0)

6. while ns = 0 do s ← s + 1

7. for h = 1 to i − s + 1 do Q ← [2]Q

8. u ← (ni . . . ns)2 [ni = ns = 1 and i − s + 1 � k]

9. Q ← Q ⊕ [u]P [u is odd so that [u]P is precomputed]

272 Ch. 13 Arithmetic of Elliptic Curves

10. i ← s − 1

11. return Q

Remark 13.7 Since subtractions can be obtained in a straightforward way, signed-digit representa-
tions of n are well suited to compute [n]P , cf. Section 9.1.4.

Example 13.8 With the settings of Example 13.4, let us compute [763]P1 with Algorithm 13.6 and
a window of size 3. We precompute [3]P1 = (1081, 1674), [5]P1 = (851, 77), [7]P1 = (663, 1787)
and since 763 = (101

5
111

7
101

5
1
1
)2, the intermediate values of Q are

[5]P1 = (851, 77), [10]P1 = (4, 640), [20]P1 = (836, 807),
[40]P1 = (1378, 1696), [47]P1 = (1534, 747), [94]P1 = (1998, 1094),

[188]P1 = (1602, 1812), [376]P1 = (478, 1356), [381]P1 = (1454, 981),
[762]P1 = (1970, 823), [763]P1 = (1453, 1428).

Using the NAF expansion of 763 = (101̄
3

00000 1̄01̄
−5

)s instead, one obtains

[3]P1 = (1081, 1674), [6]P1 = (255, 1499), [12]P1 = (459, 1270),
[24]P1 = (41, 1867), [48]P1 = (1461, 904), [96]P1 = (1966, 1808),

[192]P1 = (892, 529), [384]P1 = (1928, 1803), [768]P1 = (799, 1182),
[763]P1 = (1453, 1428).

The last step, namely [763]P1 = [768]P1 ⊕ [−5]P1, needs [−5]P1 = (851, 216) which is obtained
directly from [5]P1.

13.1.3 Rational points

When we consider a point P on an elliptic curve E/K , it is implicit that P has its coordinates in
K. To stress that P has its coordinates in K , we introduce a new concept.

Definition 13.9 Let E be an elliptic curve defined over K . The points lying on E with coordinates
in K form the set of K-rational points of E denoted by E(K). We have

E(K) = {(x1, y1) ∈ K2 | y2
1 + a1x1y1 + a3y1 = x3

1 + a2x
2
1 + a4x1 + a6} ∪ {P∞}.

The structure of the group of Fq-rational points is easy to describe. Indeed, by Corollary 5.77, E(Fq)
is either cyclic or isomorphic to a product of two cyclic groups, namely E(Fq)
 Z/d1Z× Z/d2Z

where d1 | d2 and d1 | q − 1.
For cryptographic applications one usually works in a subgroup of prime order 	. Hence, one

is interested in curves and finite fields such that |E(Fq)| = c	 for some small cofactor c. See
[GAMC 2000] for conjectural probabilities that the number of points is a prime or has a small
cofactor.

Finding a random Fq-rational point P on an elliptic curve E/Fq is quite easy. See Sections 13.2
and 13.3 for examples. If the curve has a cofactor c > 1 then this random point needs not lie inside
the group of order 	. However, the point Q = [c]P either equals P∞, in which case one has to try
with a different random point P , or is a point in the prime order subgroup.

Example 13.10 Let us consider the curve E1 as defined by (13.3). One can check that |E1(Fp)| =
1956 = 12 × 163. So, there are 1955 affine points with coordinates in Fp and the point at infinity
P∞ lying on E1. The point P1 = (1118, 269) is of order 1956 which implies that the group E1(Fp)
is cyclic generated by P1. The point Q1 = (892, 529) is of prime order 163.

§ 13.1 Summary of background on elliptic curves 273

13.1.4 Torsion points

Definition 13.11 Let E/K be an elliptic curve and n ∈ Z. The kernel of [n], denoted by E[n],
satisfies

E[n] = {P ∈ E(K) | [n]P = P∞}.
An element P ∈ E[n] is called a n-torsion point.

Example 13.12 As E1(Fp) is cyclic of order 1956 = 22 × 3 × 163, there are n-torsion points in
E1(Fp) for every n dividing 1956. For instance, R1 = (1700, 299) on E1 satisfies R1 = −R1. Thus
R1 is a 2-torsion rational point. If n is not a divisor of 1956, the corresponding n-torsion points
have coordinates in some extension of Fp. For example, there is a 9-torsion point with coordinates
in the field Fp3
 Fp[θ] with θ such that θ3 + θ2 + 2 = 0. Indeed, we can check that

S1 = (1239θ2 + 1872θ + 112, 1263θ2 + 334θ + 1752) ∈ E1(Fp3),
[3]S1 = (520, 1568) ∈ E1(Fp),
[8]S1 = (1239θ2 + 1872θ + 112, 265θ2 + 1931θ + 19) = −S1

so that S1 is a 9-torsion point.
See also the related notion of division polynomial in Section 4.4.2.a.

Theorem 13.13 Let E be an elliptic curve defined over K . If the characteristic of K is either zero
or prime to n then

E[n]
 Z/nZ× Z/nZ.

Otherwise, when char(K) = p and n = pr, then either

E[pr] = {P∞}, for all r � 1 or E[pr]
 Z/prZ, for all r � 1.

Definition 13.14 Let char(K) = p and let E be defined over K . If E[pr] = {P∞} for one and in
fact for all positive integers r, then the curve is called supersingular. Otherwise the curve is called
ordinary.

A curve defined over a prime field Fp, p > 3 is supersingular if and only if |E(Fp)| = p + 1,
cf. Proposition 13.31. Note also that if char(Fq) = 2 or 3, E is supersingular if and only if its
j-invariant is zero.

Example 13.15 The curve E1/Fp is ordinary. This implies that E1[p] is a subgroup of
(
E1(Fp),⊕

)
isomorphic to (Fp, +).

13.1.5 Isomorphisms

Some changes of variables do not fundamentally alter an elliptic curve. Let us first describe the
transformations that keep the curve in Weierstraß form.

13.1.5.a Admissible change of variables and twists

Let E/K be an elliptic curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

The maps
x �→ u2x′ + r and y �→ u3y′ + u2sx′ + t

274 Ch. 13 Arithmetic of Elliptic Curves

with (u, r, s, t) ∈ K∗ × K3 are invertible and transform the curve E into

E′ : y′2 + a′
1x

′y′ + a′
3y

′ = x′3 + a′
2x

′2 + a′
4x

′ + a′
6,

where the a′
i’s belong to K and can be expressed in terms of the ai’s and u, r, s, t. Via the inverse

map, we associate to each point of E a point of E′ showing that both curves are isomorphic over
K . These changes of variables are the only ones leaving invariant the shape of the defining equation
and, hence, they are the only admissible change of variables.

In case (u, r, s, t) belongs to K
∗× K

3
whereas the curves E and E′, as above, are still defined

over K , then E and E′ are isomorphic over K or twists of each other.

Corollary 13.16 Assume that the characteristic of K is prime to 6 and let E be given by a short
Weierstraß equation

E : y2 = x3 + a4x + a6.

• If a4 = 0 then for every a′
6 ∈ K∗ the curve E is isomorphic to E′ : y2 = x3 + a′

6 over
K
(
(a6/a′

6)
1/6
)
.

• If a6 = 0 then for every a′
4 ∈ K∗ the curve E is isomorphic to E′ : y2 = x3 + a′

4x over
K
(
(a4/a′

4)
1/4
)
.

• If a4a6 �= 0 then for every v ∈ K∗ the curve E is isomorphic to Ẽv : y2 = x3+a′
4x+a′

6

with a′
4 = v2a4 and a′

6 = v3a6 over the field K(
√

v).

The curves Ẽv are called quadratic twists of E. Note that E is isomorphic to Ẽv over K if and only
if v is a square in K∗. Therefore up to isomorphisms there is only one quadratic twist of a curve
with a4a6 �= 0.

Remark 13.17 Likewise one can define the quadratic twist of E by a quadratic nonresidue v as
Ẽv : vy2 = x3 + a4x + a6, which is isomorphic to the above definition, as can be seen by dividing
by v3 and transforming y �→ y/v, x �→ x/v.

From this form one sees that E and Ẽv together contain exactly two points (x, yi) for each field
element x ∈ Fq .

Proposition 13.18 Let E/K and E′/K be two elliptic curves. If E and E′ are isomorphic over K
then they have the same j-invariant. Conversely, if j(E) = j(E′) then E and E′ are isomorphic
over K.

Using an adequate isomorphism over K , it is always possible to find a short Weierstraß equation
that actually depends on the characteristic of the field and on the value of the j-invariant. All the
cases and equations are summarized in Table 13.2.

Table 13.2 Short Weierstraß equations.

charK Equation ∆ j

�= 2, 3 y2 = x3 + a4x + a6 −16(4a3
4 + 27a2

6) 1728a3
4/4∆

3 y2 = x3 + a4x + a6 −a3
4 0

3 y2 = x3 + a2x
2 + a6 −a3

2a6 −a3
2/a6

2 y2 + a3y = x3 + a4x + a6 a4
3 0

2 y2 + xy = x3 + a2x
2 + a6 a6 1/a6

§ 13.1 Summary of background on elliptic curves 275

Example 13.19 The change of variables (x, y) �→ (x−2, y−x−2) transforms the curve E1 given
by (13.3) into

E2 : y2 = x3 + 1132x + 278.

The point P1 = (1118, 269) is mapped to P2 = (1120, 1391) ∈ E2(Fp).
Let v be a quadratic nonresidue modulo p = 2003 and let u ∈ Fp2 be a square root of v. Then

the change of variables (x, y) �→ (x/u2, y/u3) is an Fp2 -isomorphism between

E2 : y2 = x3 + 1132x + 278.

and its quadratic twist by v, namely

Ẽ2,v : y2 = x3 + 1132v2x + 278v3.

We have ∆(Ẽ2,v) = v6∆(E2) and j(Ẽ2,v) = j(E2) = 171.
The curves E2 and Ẽ2,v are defined over Fp whereas the isomorphism has coefficients in Fp2 .

Remark 13.20 There are many other ways to represent an elliptic curve. For instance, we can cite
the Legendre form

y2 = x(x − 1)(x − λ)

or the Jacobi model
y2 = x4 + ax2 + b.

Over a field of characteristic greater than 3, it is also possible to represent an elliptic curve as the
intersection of two quadrics with a rational point [CAS 1991]. The resulting Jacobi form is used in
[LISM 2001] to prevent SPA/DPA attacks, cf. Section 29.1.2.c. Quite recently, some attention has
been given to another representation, namely the Hessian form, which presents some advantages
from an algorithmic and cryptographic point of view [SMA 2001, FRI 2001, JOQU 2001].

13.1.5.b Hessian form

Let Fq be a finite field where q is a prime power such that q ≡ 2 (mod 3) and consider an elliptic
curve E over Fq with a Fq-rational point of order 3. These assumptions are not fundamentally
necessary but they make the construction of the Hessian form easier and let the equation be defined
over Fq. In particular, one can assume that E is given by the equation

E : y2 + a1xy + a3y = x3,

moving a point of order 3 to the origin, if necessary.
Let δ = (a3

1 − 27a3) so that ∆ = a3
3δ. Now if q ≡ 2 (mod 3) every element α ∈ Fq is a cube.

Thus every α has a unique cube root, denoted by α1/3, which is equal to plus or minus the square
root of α(q+1)/3. This implies that

µ =
1
3
(
(−27a3δ

2 − δ3)1/3 + δ
)
∈ Fq.

With these settings, to every point (x1, y1) on E corresponds (X1 : Y1 : Z1) with

X1 =
a1(2µ − δ)

3µ − δ
x1 + y1 + a3, Y1 =

−a1µ

3µ − δ
x1 − y1, Z1 =

−a1µ

3µ − δ
x1 − a3

on the cubic

H : X3 + Y 3 + Z3 = cXY Z where c = 3
µ − δ

µ
·

276 Ch. 13 Arithmetic of Elliptic Curves

Definition 13.21 The equation H is called the Hessian form of E.

One of the main features of elliptic curves expressed in Hessian form is the simplicity of the group
law, which is independent of the parameter c.

Namely, take P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) on H such that P �= Q, then the point
with coordinates (X3 : Y3 : Z3) such that

X3 = Y 2
1 X2Z2 − Y 2

2 X1Z1, Y3 = X2
1Y2Z2 − X2

2Y1Z1, Z3 = Z2
1X2Y2 − Z2

2X1Y1

is on H and corresponds to P ⊕ Q.
One can check that the neutral element for that law is (1 : −1 : 0) and that the opposite of P1 is

−P1 = (Y1 : X1 : Z1).
The coordinates of [2]P are

X3 = Y1(Z3
1 − X3

1), Y3 = X1(Y 3
1 − Z3

1), Z3 = Z1(X3
1 − Y 3

1).

An addition requires 12 field multiplication and 6 squarings, whereas a doubling needs 6 multiplica-
tions and 3 squarings and both operations can be implemented in a highly parallel way [SMA 2001].
It is also interesting to note that [2]P is equal to (Z1 : X1 : Y1)⊕ (Y1 : Z1 : X1). As a consequence
the same formulas can be used to double, add, and subtract points, which makes Hessian curves
interesting against side-channel attacks [JOQU 2001] (cf. Section 29.1.2.b).

To find the Hessian form of an elliptic curve E/Fq in the general case [FRI 2001], we remark
that the j-invariant of H is equal to

j =
c3(c3 + 216)3

c9 − 81c6 + 2187c3 − 19683
·

So the Hessian form of E is defined over Fq if and only if there exists c ∈ Fq such that

c3(c3 + 216)3 − j(c9 − 81c6 + 2187c3 − 19683) = 0

where j is the j-invariant of E.

Example 13.22 Take
E2 : y2 = x3 + 1132x + 278

defined over Fp with p = 2003. Moving the point (522, 1914) ∈ E2(Fp) of order 3 to the origin by
the transformation

(x, y) �→ (x + 522, y + 555x + 1914)

gives the curve
E3 : y2 + 1110xy + 1825y = x3.

So, from above, δ = 1427 and µ = 1322 so that E3, consequently E2 and E1, are all isomorphic to

H : X3 + Y 3 + Z3 = 274XY Z.

The point (1118, 269) on E1 is sent to (1120, 1391) on E2, from where it is in turn mapped to
(598, 85) on E3, which is finally sent to (1451 : 672 : 935) on H .

Note that all these transformations respect the group laws of the different curves. Indeed, a K-
isomorphism between the curves E and E′ always gives rise to a group homorphism between E(K)
and E′(K). However, these notions are different. That is why we introduce a new concept in the
following.

§ 13.1 Summary of background on elliptic curves 277

13.1.6 Isogenies

Definition 13.23 Two curves E/K and E′/K are isogenous over K if there exists a morphism
ψ : E → E′ with coefficients in K mapping the neutral element of E to the neutral element of E′.
From this simple property, it is possible to show that ψ is a group homomorphism from E(K) to
E′(K).

One important property is that for every isogeny ψ, there exists a unique isogeny ψ̂ : E′ → E called
the dual isogeny such that

ψ̂ ◦ ψ = [m]E and ψ ◦ ψ̂ = [m]E′ .

The degree of the isogeny ψ is equal to this m. For more background on isogenies, we refer to
Section 4.3.4

Proposition 13.24 Two elliptic curves E and E′ defined over Fq are isogenous over Fq if and only
|E(Fq)| = |E′(Fq)|.

Example 13.25 Take
E2 : y2 = x3 + 1132x + 278

and
E4 : y2 = x3 + 500x + 1005.

These two curves have the same cardinality, |E2(Fp)| = |E4(Fp)| = 1956. Then E2 and E4 must
be isogenous over F2003. The isogeny of degree 2 is given by the formula [LER 1997]

ψ : (x, y) �−→
(

x2 + 301x + 527
x + 301

, yx2 + 602yx + 1942y

x2 + 602x + 466

)
·

For instance, the points, P2 = (1120, 1391) and Q2 = (894, 1425) in E2(Fp) are respectively
mapped by ψ on P4 = (565, 302) and Q4 = (1818, 1002) which lie on E4. Now

P2 ⊕ Q2 = (1683, 1388),
P4 ⊕ Q4 = (1339, 821),

ψ(P2 ⊕ Q2) = (1339, 821),
= ψ(P2) ⊕ ψ(Q2).

Note that E2 and E4 are isogenous but not isomorphic since j(E2) = 171 whereas j(E4) = 515.
Furthermore, the group structure is different as E2(Fp) is cyclic while E4(Fp) is the direct product
of a group of order 2 generated by (1829, 0) and a group of order 978 generated by (915, 1071).

13.1.7 Endomorphisms

The multiplication by n is an endomorphism of the curve E for every n ∈ Z. The set of all
endomorphisms of E defined over K will be denoted by EndK(E) or more simply by End(E),
and thus contains at least Z.

Definition 13.26 If End(E) is strictly bigger than Z we say that E has complex multiplication.

Let E be a nonsupersingular elliptic curve over Fq. Such an E always has complex multiplication.
Indeed, the Frobenius automorphism of Fq extends to the points of the curve by sending P∞ to itself
and P = (x1, y1) to φq(P) = (xq

1, y
q
1). One can easily check that the point φq(P) is again a point

on the curve irrespective of the field of definition of P . Hence, φq is an endomorphism of E, called
the Frobenius endomorphism of E/Fq. It is different from [n] for all n ∈ Z.

278 Ch. 13 Arithmetic of Elliptic Curves

Example 13.27 Take P1 = (1120, 391) on E1/Fp. Since P1 has coordinates in Fp, φp(P1) is
simply equal to P1. At present, let us consider a point on E1 with coordinates in an extension of Fp.
For instance, in Example 13.10, we give the point S1 of order 9 in E1(Fp3). We have

S1 = (1239θ2 + 1872θ + 112, 1263θ2 + 334θ + 1752),
φp(S1) = (217θ2 + 399θ + 1297, 681θ2 + 811θ + 102),
φ2

p(S1) = (547θ2 + 1735θ + 297, 59θ2 + 858θ + 325),

φ3
p(S1) = (1239θ2 + 1872θ + 112, 1263θ2 + 334θ + 1752) = S1.

All of them are also 9-torsion points.

13.1.8 Cardinality

The cardinality of an elliptic curve E over Fq , i.e., the number of Fq-rational points, is an important
aspect for the security of cryptosystems built on E(Fq), cf. Section 19.3.

The theorem of Hasse–Weil relates the number of points to the field size.

Theorem 13.28 (Hasse–Weil) Let E be an elliptic curve defined over Fq. Then

|E(Fq)| = q + 1 − t and |t| � 2
√

q.

Remarks 13.29

(i) The integer t is called the trace of the Frobenius endomorphism.

(ii) For any integer t ∈ [−2
√

p, 2
√

p] there is at least one elliptic curve E defined over Fp

whose cardinality is p + 1 − t.

Concerning admissible cardinalities, the more general result is proved in [WAT 1969].

Theorem 13.30 Let q = pd. There exists an elliptic curve E defined over Fq with |E(Fq)| =
q + 1 − t if and only if one of the following conditions holds:

1. t �≡ 0 (mod p) and t2 � 4q.

2. d is odd and either (i) t = 0 or (ii) p = 2 and t2 = 2q or (iii) p = 3 and t2 = 3q.

3. d is even and either (i) t2 = 4q or (ii) p �≡ 1 (mod 3) and t2 = q or (iii) p �≡ 1
(mod 4) and t = 0.

One associates to φq the polynomial

χE(T) = T 2 − tT + q.

It is called the characteristic polynomial of the Frobenius endomorphism, since

χE(φq) = φ2
q − [t]φq + [q] = [0].

So, for each P ∈ E(Fq), we have

φ2
q(P) ⊕ [−t]φq(P) ⊕ [q]P = P∞.

As points in E(Fq) are fixed under φq they form the kernel of (Id−φq) and |E(Fq)| = χE(1).

§ 13.1 Summary of background on elliptic curves 279

From the complex roots τ and τ of χE(φq) one can compute the group order of E(Fqk), that is

|E(Fqk)| = qk + 1 − τk − τk, for all k � 1. (13.5)

More explicitly, one has

|E(Fqk)| = qk + 1 − tk

where the sequence (tk)k∈N satisfies t0 = 2, t1 = t and tk+1 = ttk − qtk−1, for k � 1.

We also have the following properties.

Proposition 13.31 Let E be a curve defined over a field Fq of characteristic p. The curve E is
supersingular if and only if the trace t of the Frobenius satisfies

t ≡ 0 (mod p).

Proposition 13.32 Let E be a curve defined over Fq and let Ẽ be the quadratic twist of E. Then

|E(Fq)| + |Ẽ(Fq)| = 2q + 2.

This can be easily seen to hold from Remark 13.17. One immediately gets χ
eE(T) = T 2 + tT + q.

When one tries to find a curve with a suitable cryptographic order, that is, an order with a large prime
factor, Proposition 13.32 is especially useful since it gives two candidates for each computation, cf.
Chapter 17.

Example 13.33 The cardinality of E2(Fp) is 1956. Therefore, φp satisfies

χE2(T) = T 2 − 48T + 2003.

Let R2 = (443θ2 + 1727θ + 1809, 929θ2 + 280θ + 946). Then

φp(R2) = (857θ2 + 1015θ + 766, 126θ2 + 1902θ + 419),
φ2

p(R2) = (703θ2 + 1264θ + 1568, 948θ2 + 1824θ + 119)

and one can check that

φ2
p(R2) − [48]φ2003(R2) + [2003]R2 = P∞.

Also, we deduce that |E2(Fp2)| = 4013712 and |E2(Fp3)| = 8036231868.
Finally the cardinality of the curve

Ẽ2 : y2 = x3 + 774x + 1867

which is the twist of E2 by the quadratic nonresidue 78, satisfies |Ẽ2| = 2052, and the characteristic
equation of the Frobenius of Ẽ2/Fp is

χ
eE2

(T) = T 2 + 48T + 2003.

280 Ch. 13 Arithmetic of Elliptic Curves

13.2 Arithmetic of elliptic curves defined over FpFpFpFpFpFpFpFp

In this section we consider curves defined over finite prime fields. As they should be used in cryp-
tographic applications, we can assume p to be large, hence, at least p > 3. We remark that all
considerations in this section hold true for an elliptic curve defined over an arbitrary finite field Fq

if char(Fq) > 3 and for supersingular curves over field of characteristic 3.
We already know that an elliptic curve E can be represented with respect to several coordinate

systems, e.g., affine or projective coordinates. In the following we deal with efficient addition and
doubling in the group of points E. To this aim we introduce five different coordinate systems in
which the speeds of addition and doubling differ. We measure the time by the number of field
operations needed to perform the respective operation.

In characteristic p > 3, one can always take for E, cf. Table 13.2, an equation of the form

E : y2 = x3 + a4x + a6,

where a4 and a6 are in Fp. The points lying on the curve can have coordinates in Fp or in some
extension Fq/Fp, for instance in an optimal extension field, cf. Section 11.3. This has two advan-
tages. First, it is straightforward to obtain the cardinality of E(Fq) using (13.5) and one can use the
Frobenius φp to speed up computations, cf. Section 15.1.

In the remainder of this section we deal with addition and doubling in different coordinate sys-
tems, give strategies for choosing optimal coordinates for scalar multiplication and introduce Mont-
gomery coordinates and their arithmetic. Finally, we show how to compress the representation of a
point.

An elementary multiplication in Fq (resp. a squaring and an inversion) will be abbreviated by M
(resp. S and I).

13.2.1 Choice of the coordinates

This section is based on [COMI+ 1998].
In Section 13.1.1 we explained the group law in general. Here we shall give formulas for the

coordinates of the result of the

• addition of two points P and Q ∈ E(Fp) provided P �= +−Q,
• doubling of P .

13.2.1.a Affine coordinates (AAAAAA)

We can assume that E is given by

y2 = x3 + a4x + a6.

By the arguments above, we know that the opposite of the point (x1, y1) lying on E is (x1,−y1).
Also we have:

Addition

Let P = (x1, y1), Q = (x2, y2) such that P �= +−Q and P ⊕Q = (x3, y3). In this case, addition is
given by

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3) − y1, λ =
y1 − y2

x1 − x2
·

§ 13.2 Arithmetic of elliptic curves defined over Fp 281

Doubling

Let [2]P = (x3, y3). Then

x3 = λ2 − 2x1, y3 = λ(x1 − x3) − y1, λ =
3x2

1 + a4

2y1
·

For these formulas one can easily read off that an addition and a doubling require I + 2M + S and
I + 2M + 2S, respectively.

Doubling followed by an addition

Building on the ideas in [EILA+ 2003], the authors of [CIJO+ 2003] show how to speed up the
computation of a doubling followed by an addition using [2]P ⊕Q as (P ⊕Q)⊕P . The basic idea,
i.e., omitting the computation of the intermediate values y3 and x3, saves one multiplication and the
new formulas are more efficient whenever a field inversion is more expensive than 6 multiplications.
The formulas are as follows where we assume that P �= +−Q and [2]P �= −Q

A = (x2 − x1)2, B = (y2 − y1)2 C = A(2x1 + x2) − B,

D = C(x2 − x1), E = D−1, λ = CE(y2 − y1),
λ2 = 2y1A(x2 − x1)E − λ, x4 = (λ2 − λ)(λ + λ2) + x2, y4 = (x1 − x4)λ2 − y1,

needing I + 9M + 2S.

13.2.1.b Projective coordinates (PPPPPP)

In projective coordinates, the equation of E is

Y 2Z = X3 + a4XZ2 + a6Z
3.

The point (X1 : Y1 : Z1) on E corresponds to the affine point (X1/Z1, Y1/Z1) when Z1 �= 0 and to
the point at infinity P∞ = (0 : 1 : 0) otherwise. The opposite of (X1 : Y1 : Z1) is (X1 : −Y1 : Z1).

Addition

Let P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) such that P �= +−Q and P ⊕ Q = (X3 : Y3 : Z3).
Then set

A = Y2Z1 − Y1Z2, B = X2Z1 − X1Z2, C = A2Z1Z2 − B3 − 2B2X1Z2

so that

X3 = BC, Y3 = A(B2X1Z2 − C) − B3Y1Z2, Z3 = B3Z1Z2.

Doubling

Let [2]P = (X3 : Y3 : Z3) then put

A = a4Z
2
1 + 3X2

1 , B = Y1Z1, C = X1Y1B, D = A2 − 8C

and

X3 = 2BD, Y3 = A(4C − D) − 8Y 2
1 B2, Z3 = 8B3.

No inversion is needed, and the computation times are 12M+2S for a general addition and 7M+5S
for a doubling. If one of the input points to the addition is given by (X2 : Y2 : 1), i.e., directly
transformed from affine coordinates, then the requirements for an addition decrease to 9M + 2S.

282 Ch. 13 Arithmetic of Elliptic Curves

13.2.1.c Jacobian and Chudnovsky Jacobian coordinates (JJJJJJ and J cJ cJ cJ cJ cJ c)

With Jacobian coordinates the curve E is given by

Y 2 = X3 + a4XZ4 + a6Z
6.

The point (X1 : Y1 : Z1) on E corresponds to the affine point (X1/Z
2
1 , Y1/Z

3
1) when Z1 �= 0 and to

the point at infinity P∞ = (1 : 1 : 0) otherwise. The opposite of (X1 : Y1 : Z1) is (X1 : −Y1 : Z1).

Addition

Let P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) such that P �= +−Q and P ⊕ Q = (X3 : Y3 : Z3).
Then set

A = X1Z
2
2 , B = X2Z

2
1 , C = Y1Z

3
2 , D = Y2Z

3
1 , E = B − A, F = D − C

and

X3 = −E3 − 2AE2 + F 2, Y3 = −CE3 + F (AE2 − X3), Z3 = Z1Z2E.

Doubling

Let [2]P = (X3 : Y3 : Z3). Then set

A = 4X1Y
2
1 , B = 3X2

1 + a4Z
4
1

and

X3 = −2A + B2, Y3 = −8Y 4
1 + B(A − X3), Z3 = 2Y1Z1.

The complexities are 12M + 4S for an addition and 4M + 6S for a doubling. If one of the points is
given in the form (X1 : Y1 : 1) the costs for addition reduce to 8M + 3S.

The doubling involves one multiplication by the constant a4. If it is small this multiplication
can be performed by some additions and hence be neglected in the operation count. Especially if
a4 = −3 one can compute T = 3X2

1 − 3Z4
1 = 3(X1 − Z2

1)(X1 + Z2
1) leading to only 4M + 4S

for a doubling. Brier and Joye [BRJO 2003] study the use of isogenies to map a given curve to an
isogenous one having this preferable parameter. Their conclusion is that for most randomly chosen
curves there exists an isogeny of small degree mapping it to a curve with a4 = −3, which justifies
that the curves in the standards have this parameter.

The parameter a4 = 0 is even more advantageous as the costs drop down to 3M + 4S. However,
this choice is far more special and the endomorphism ring End(E) contains a third root of unity.

In Jacobian coordinates, doublings are faster and additions slower than for the projective coor-
dinates. To improve additions, a point P can be represented as a quintuple (X1, Y1, Z1, Z

2
1 , Z3

1).
These coordinates are called Chudnovsky Jacobian coordinates. Additions and doublings are given
by the same formulas as for J but the complexities are 11M + 3S and 5M + 6S.

13.2.1.d Modified Jacobian coordinates (J mJ mJmJmJmJm)

Modified Jacobian coordinates were introduced by Cohen et al. [COMI+ 1998]. They are based on
J but the internal representation of a point P is the quadruple (X1, Y1, Z1, a4Z

4
1). The formulas

are essentially the same as for J . The main difference is the introduction of C = 8Y1
4 so that

Y3 = B(A − X3) − C and a4Z
4
3 = 2C(a4Z

4
1) with the notation of Section 13.2.1.c. An addition

takes 13M + 6S and a doubling 4M + 4S. If one point is in affine coordinates, an addition takes
9M + 5S. As I takes on average between 9 and 40M and S is about 0.8M, this system offers the
fastest doubling procedure.

§ 13.2 Arithmetic of elliptic curves defined over Fp 283

13.2.1.e Example

Take
E2 : y2 = x3 + 1132x + 278

and let P2 = (1120, 1391) and Q2 = (894, 1425) be two affine points on E2. We recall below
the equation and the internal representation of P2 and Q2 for each coordinate system. Note that for
projective like systems we put Z to some random value and multiply X and Y by the respective
powers.

System Equation P2 Q2

A y2 = x3 + 1132x + 278 (1120, 1391) (894, 1425)

P Y 2Z = X3 + 1132XZ2 + 278Z3 (450 : 541 : 1449) (1774 : 986 : 1530)

J Y 2 = X3 + 1132XZ4 + 278Z6 (1213 : 408 : 601) (1623 : 504 : 1559)

J c — (1213, 408, 601, 661, 667) (1623, 504, 1559, 842, 713)

J m — (1213, 408, 601, 1794) (1623, 504, 1559, 1232)

With these particular values of P2 and Q2, let us compute P2 ⊕ Q2, [2]P2 and [763]P2 within the
different systems using the double and add method.

System P2 ⊕ Q2 [2]P2 [763]P2

A (1683, 1388) (1467, 143) (1455, 882)

P (185 : 825 : 1220) (352 : 504 : 956) (931 : 1316 : 1464)

J (763 : 440 : 1934) (1800 : 1083 : 1684) (752 : 1146 : 543)

J c (763, 440, 1934, 755, 1986) (1800, 1083, 1684, 1611, 862) (752, 1146, 543, 408, 1214)

J m (763, 440, 1934, 1850) (1800, 1083, 1684, 1119) (752, 1146, 543, 1017)

For each computation, one can check that we obtain a result equivalent to the affine one.

13.2.2 Mixed coordinates

To compute scalar multiples of a point one can use all the methods introduced in Chapter 9, espe-
cially the signed-digit representations, which are useful, as the negative of P is obtained by simply
negating the y-coordinate.

The main idea here is to mix the different systems of coordinates defined above. This idea was
already mentioned in adding an affine point to one in another system. In general, one can add points
expressed in two different systems and give the result in a third one. For example J + J c = Jm

means that we add points in Jacobian and Chudnovsky Jacobian coordinates and express the result
in the modified Jacobian system. So, we are going to choose the most efficient combination for
each action we have to perform. See Table 13.3 on page 284 for a precise count of the required
operations.

Precomputations

The following analysis is given in [COMI+ 1998, Section 4]. Suppose that we want to compute
[n]P . We shall use the NAFw representation of n; see Section 9.1.4. So, we need to precompute
[i]P for each odd i such that 1 < i < 2w−1. For these precomputations, it is useful to choose
either A if some inversions can be performed in the precomputation stage, or J c otherwise, as these
systems give rise to the most efficient (mixed) addition formulas. If A is selected, the Montgomery
trick of simultaneous inversions in Fp should be used, cf. Algorithm 11.15. This leads to

(w − 1)I +
(
5 × 2w−2 + 2w − 12

)
M +

(
2w−2 + 2w − 5

)
S

284 Ch. 13 Arithmetic of Elliptic Curves

Table 13.3 Operations required for addition and doubling.

Doubling Addition

Operation Costs Operation Costs

2P 7M + 5S Jm + Jm 13M + 6S
2J c 5M + 6S Jm + J c = Jm 12M + 5S
2J 4M + 6S J + J c = J m 12M + 5S

2Jm = J c 4M + 5S J + J 12M + 4S
2Jm 4M + 4S P + P 12M + 2S

2A = J c 3M + 5S J c + J c = J m 11M + 4S
2Jm = J 3M + 4S J c + J c 11M + 3S
2A = J m 3M + 4S J c + J = J 11M + 3S
2A = J 2M + 4S J c + J c = J 10M + 2S

— — J + A = Jm 9M + 5S
— — J m + A = J m 9M + 5S
— — J c + A = Jm 8M + 4S
— — J c + A = J c 8M + 3S
— — J + A = J 8M + 3S
— — Jm + A = J 8M + 3S
— — A + A = J m 5M + 4S
— — A + A = J c 5M + 3S
2A I + 2M + 2S A + A I + 2M + S

for the precomputations. Note also that it is possible to avoid some doublings as explained in
Remark 9.11 (iii).

Scalar multiplication

A scalar multiplication [n]P consists of a sequence of doublings and additions. If a signed win-
dowing method is used with precomputations, there are often runs of doublings interfered with only
a few additions. Thus it is worthwhile to distinguish between intermediate doublings, i.e., those
followed by a further doubling, and final doublings, which are followed by an addition and choose
different coordinate systems for them. Cohen et al. propose to perform the intermediate doublings
within J m and to express the result of the last doubling in J since the next step is an addition.
More explicitly, for each nonzero coefficient in the expansion of n the intermediate variable Q is
replaced in each step by some

[2s]Q +− [u]P,

where [u]P is in the set of precomputed multiples. So, we actually perform (s − 1) doublings of
the type 2Jm = Jm, a doubling of the form 2Jm = J , and then an addition J + A = J m or
J + J c = J m depending on the coordinates of the precomputed values.

Let the windowing work as

n = 2n0(2n1(· · · 2nv−1(2nvW [v] + W [v − 1]) · · ·) + W [0]),

where W [i] is an odd integer in the range−2w−1+1 � W [i] � 2w−1−1 for all i, W [v] > 0, n0 � 0
and ni � w + 1 for i � 1.

§ 13.2 Arithmetic of elliptic curves defined over Fp 285

In the main loop we perform u =
∑v

i=0 ni doublings and v additions. Put l1 = l − (w − 1)/2 and
K = 1/2 − 1/(w + 1). On average l1 + K doublings and (l1 − K)/(w + 1) additions are used.

Then we need approximately

(
l1 + K +

l1 − K

w + 1

)
I +
(
2(l1 + K) +

2
w + 1

(l1 − K)
)
M +

(
2(l1 + K) +

2
w + 1

(l1 − K)
)
S

to compute [n]P excluding the costs for the precomputations if only affine coordinates are used,

(
4(l1 + K) +

8
w + 1

(l1 − K)
)
M +

(
4(l1 + K) +

5
w + 1

(l1 − K)
)
S

if the precomputed points are in A and the computations are done without inversions using J and
Jm for the intermediate points, and

(
4(l1 + K) +

11
w + 1

(l1 − K)
)
M +

(
4(l1 + K) +

5
w + 1

(l1 − K)
)
S

if the precomputed points are in J c. Now depending on the ratio I/M, A or J c should be cho-
sen. For instance, for a 192-bits key length we choose A if I < 33.9M and J c otherwise, cf.
[COMI+ 1998].

13.2.3 Montgomery scalar multiplication

This technique was first described by Montgomery [MON 1987] for a special type of curve in large
characteristic and has been generalized to other curves and to even characteristic; see Section 13.3.4.

13.2.3.a Montgomery form

Let EM be an elliptic curve expressed in Montgomery form, that is

EM : By2 = x3 + Ax2 + x. (13.6)

The arithmetic on EM relies on an efficient x-coordinate only computation and can be easily imple-
mented to resist side-channel attacks, cf. Chapter 29. Indeed, let P = (x1, y1) be a point on EM .
In projective coordinates, we write P = (X1 : Y1 : Z1) and let [n]P = (Xn : Yn : Zn). The sum
[n + m]P = [n]P ⊕ [m]P is given by the following formulas where Yn never appears.

Addition: n �= m

Xm+n = Zm−n

(
(Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn)

)2
,

Zm+n = Xm−n

(
(Xm − Zm)(Xn + Zn) − (Xm + Zm)(Xn − Zn)

)2
.

Doubling: n = m

4XnZn = (Xn + Zn)2 − (Xn − Zn)2,
X2n = (Xn + Zn)2(Xn − Zn)2,
Z2n = 4XnZn

(
(Xn − Zn)2 +

(
(A + 2)/4

)
(4XnZn)

)
.

Thus an addition takes 4M and 2S whereas a doubling needs only 3M and 2S.

286 Ch. 13 Arithmetic of Elliptic Curves

For some systems, the x-coordinate xn of [n]P is sufficient but others, like some signature schemes,
need the y-coordinate as well, cf. Chapter 1. To recover yn = Yn/Zn, we use the following formula
[OKSA 2001]

yn =
(x1xn + 1)(x1 + xn + 2A) − 2A − (x1 − xn)2xn+1

2By1

, (13.7)

where P = (x1, y1) and xn and xn+1 are the affine x-coordinates of [n]P and [n + 1]P .

13.2.3.b General case

Brier et Joye [BRJO 2002] generalized Montgomery’s idea to any curve in short Weierstraß equation

E : y2 = x3 + a4x + a6.

Their formulas require more elementary operations.

Addition: n �= m

Xm+n = Zm−n

(
−4a6ZmZn(XmZn + XnZm) + (XmXn − a4ZmZn)2

)
,

Zm+n = Xm−n(XmZn − XnZm)2.

Doubling: n = m

X2n = (X2
n − a4Z

2
n)2 − 8a6XnZ3

n,

Z2n = 4Zn

(
Xn(X2

n + a4Z
2
n) + a6Z

3
n

)
.

When P is an affine point, an addition requires 9M and 2S whereas a doubling needs 6M and 3S.
To recover yn in this case, we apply the formula

yn =
2a6 + (x1xn + a4)(x1 + xn) − (x1 − xn)2xn+1

2y1

.

13.2.3.c Transformation to Montgomery form

It is always possible to convert a curve in Montgomery form (13.6) into short Weierstraß equation,
putting a4 = 1/B2 − A2/3B2 and a6 = −A3/27B3 − a4A/3B. But the converse is false. Not
all elliptic curves can be written in Montgomery form. However, this holds true as soon as p ≡ 1
(mod 4) and x3 + a4x + a6 has three roots in Fp. More generally, a curve in short Weierstraß form
can be converted to Montgomery form if and only if

• the polynomial x3 + a4x + a6 has at least one root α in Fp,

• the number 3α2 + a4 is a quadratic residue in Fp.

Put A = 3αs, B = s where s is a square root of (3α2 + a4)−1 and the change of variables
(x, y) �→ (x/s + α, y/s) is an isomorphism that transforms E into EM . For such curves (0, 0) is a
point of order 2 and |E(Fp)| is divisible by 4.

Note that recent standards [SEC, NIST] recommend that the cardinality of E should be a prime
number times a cofactor less than or equal to 4. One can state divisibility conditions in terms of
the Legendre symbol

(·
p

)
· For a curve in Montgomery form |E(Fp)| is not divisible by 8 in the

following cases:

§ 13.2 Arithmetic of elliptic curves defined over Fp 287

p ≡ 1 (mod 4) p ≡ 3 (mod 4)
“

A+2
p

” “
A−2

p

” “
B
p

” “
A+2

p

” “
A−2

p

”

−1 +1 −1 −1 +1

+1 −1 −1

+1 +1 −1

−1 −1 +1

Let v be a quadratic nonresidue and let Ẽv be the quadratic twist of E by v, cf. Example 13.19. Then
either both E and Ẽv are transformable to Montgomery form or none is. Together with Schoof’s
point counting algorithm (see Section 17.2) this gives an efficient method for generating a curve
transformable to Montgomery form whose cofactor is equal to 4.

Example 13.34 Let us show that E2/Fp

E2 : y2 = x3 + 1132x + 278

can be expressed in Montgomery form.
First, α = 1702 satisfies

α3 + 1132α + 278 = 0

and 3α2 + a4 = 527 is a quadratic residue modulo p = 2003. Since s = 899 is an inverse square
root of 527, we have A = 1421, B = 899 and the isomorphism (x, y) �→

(
899(x − 1702), 899y

)
maps the points of E2 on the points of

E2,M : 899y2 = x3 + 1421x2 + x.

For instance, P2 = (1120, 1391) on E2 is sent on P2,M = (1568, 637) on E2,M .

13.2.3.d Montgomery ladder

Whatever the form of the curve, we use a modified version of Algorithm 9.5 adapted to scalar
multiplication to compute [n]P .

Algorithm 13.35 Scalar multiplication using Montgomery’s ladder

INPUT: A point P on E and a positive integer n = (n�−1 . . . n0)2.

OUTPUT: The point [n]P .

1. P1 ← P and P2 ← [2]P

2. for i = � − 2 down to 0 do

3. if ni = 0 then

4. P1 ← [2]P1 and P2 ← P1 ⊕ P2

5. else

6. P1 ← P1 ⊕ P2 and P2 ← [2]P2

7. return P1

288 Ch. 13 Arithmetic of Elliptic Curves

Remarks 13.36

(i) At each step, one performs one addition and one doubling, which makes this method interest-
ing against side-channel attacks, cf. Chapter 29.

(ii) We can check that P2�P1 is equal to P at each step so that Zm−n = Z1 in the formulas above.
If P is expressed in affine coordinates this saves an extra multiplication in the addition. So the
total complexity to compute [n]P is (6M + 4S)(|n|2 − 1) for elliptic curves in Montgomery
form and (14M + 5S)(|n|2 − 1) in short Weierstraß form.

Example 13.37 Let us compute [763]P2,M with Algorithm 13.35. We have 763 = (1011111011)2
and the different steps of the computation are given in the following table where P stands for P2,M

and the question mark indicates that the y-coordinate is unknown.

i ni (P1, P2) P1 P2

9 1 (P, [2]P) (1568 : 637 : 1) (35 : ? : 1887)

8 0 ([2]P, [3]P) (35 : ? : 1887) (1887 : ? : 1248)

7 1 ([5]P, [6]P) (531 : ? : 162) (120 : ? : 1069)

6 1 ([11]P, [12]P) (402 : ? : 1041) (909 : ? : 1578)

5 1 ([23]P, [24]P) (1418 : ? : 1243) (1389 : ? : 1977)

4 1 ([47]P, [48]P) (613 : ? : 37) (1449 : ? : 231)

3 1 ([95]P, [96]P) (1685 : ? : 1191) (1256 : ? : 842)

2 0 ([190]P, [191]P) (119 : ? : 1871) (1501 : ? : 453)

1 1 ([381]P, [382]P) (1438 : ? : 956) (287 : ? : 868)

0 1 ([763]P, [764]P) (568 : ? : 746) (497 : ? : 822)

To recover the y-coordinate of [763]P2,M , we apply (13.7) with x1 = 1568, y1 = 637, xn and xn+1

respectively equal to 568/746 and 497/822. Finally, [763]P2,M = (280, 1733).

13.2.4 Parallel implementations

For the addition formulas in affine coordinates only a few field operations are used and, hence,
parallelization is not too useful. In the other coordinate systems two processors can be applied to
reduce the time for a group operation.

For Montgomery coordinates a parallel implementation using two processors is immediate, name-
ly one can take care of the addition while the other performs the doubling. This is possible as both
operations need about the same amount of operations, reducing the idle time.

Smart [SMA 2001] investigates parallel implementations of Hessian coordinates.
For Jacobian coordinates on arbitrary curves, Izu and Takagi [IZTA 2002a] propose a parallel

version that additionally proposes methods for k-fold doubling. It can be implemented together
with precomputations and windowing methods for scalar multiplication. Also [FIGI+ 2002] deals
with parallel implementation. We come back to efficient parallel implementations in the chapter on
side-channel attacks, cf. Chapter 29.

13.2.5 Compression of points

For some applications it might be desirable to store or transmit as few bits as possible and still keep
the same amount of information.

The following technique works for elliptic curves E/Fq over arbitrary finite fields Fq = Fpd =
Fp(θ) of odd characteristic p (for details on the arithmetic of finite fields we refer to Chapter 11).

§ 13.3 Arithmetic of elliptic curves defined over F2d 289

For an elliptic curve E : y2 = x3 + a2x
2 + a4x + a6 there are at most two points with the same

x-coordinate, namely P = (x1, y1) and −P = (x1,−y1). They are equal if and only if y1 = 0, i.e.,
for the Weierstraß points.

Compression

To uniquely identify the point one saves x1 and one bit b(y1). It is set to 0 if in the field representa-
tion y1 =

∑d−1
i=0 ciθ

i the value of c0 taken as a nonnegative integer is even and set to 1 otherwise.
This procedure works as −y1 has p−c0 as its least significant coefficient, which is of opposite parity
as p is odd. Hence, one simply needs to check for the least significant bit of the least significant
coefficient of y1.

Decompression

To recover the y-coordinate from
(
x1, b(y1)

)
some more work needs to be done. Namely, one

evaluates x3
1 + a2x

2
1 + a4x1 + a6, which has to be a square in Fq since x1 is the x-coordinate of a

point on E. Algorithms for square root computation, cf. Section 11.1.5, allow us to recover the two
values +− y1 and the bit b(y1) determines the correct y-coordinate.

Example 13.38 On the curve E2/Fp the point P2 = (1120, 1391) ∈ E(Fp) is coded by (1120, 1)
while R2 = (443θ2 + 1727θ + 1809, 929θ2 + 280θ + 946) ∈ E(Fp3) is represented by (443θ2 +
1727θ + 1809, 0).

13.3 Arithmetic of elliptic curves defined over F2dF2dF2dF2dF2dF2dF2dF2d

In this section we consider elliptic curves over F2d . We first provide the transfer to short Weierstraß
equations and state formulas for the arithmetic on supersingular and ordinary elliptic curves in affine
coordinates. For the remainder of the section we concentrate on ordinary curves. The curves given
in Weierstraß form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

can be transformed depending on the value of a1.

Supersingular curves

If a1 = 0, we need to have a3 �= 0 as otherwise the curve is singular. The transformation x �→ x+a2

leads to the equation

E : y2 + a3y = x3 + a′
4x + a′

6,

which is nonsingular as a3 �= 0. Such a curve E has no point P = (x1, y1) of order two over F2d ,
as these satisfy P = −P , i.e., y1 = y1 + a3 and this would only be true for a3 = 0. Therefore,
E[2] = {P∞} and E is supersingular by Definition 13.14.

In Section 24.2.1, we extensively study supersingular curves as they come with an efficiently
computable pairing. This has many consequences. For instance, the DLP is easier to solve for these
curves. However, there also exist constructive aspects of pairings, e.g., see Chapter 24, and this
justifies to investigate the arithmetic of these curves. Indeed, the arithmetic on the supersingular
curve

E : y2 + a3y = x3 + a4x + a6

is given by the following formulas where P = (x1, y1) and Q = (x2, y2) are two points in E(F2d)

290 Ch. 13 Arithmetic of Elliptic Curves

• −P = (x1, y1 + a3).

• if P �= +−Q, we have P ⊕ Q = (x3, y3) where

x3 = λ2 + x1 + x2, y3 = λ(x1 + x3) + y1 + a3, λ =
y1 + y2

x1 + x2
·

• if P �= −P , we have [2]P = (x3, y3) where

x3 = λ2, y3 = λ(x1 + x3) + y1 + a3, λ =
x2

1 + a4

a3
·

Example 13.39 Let us consider F211 , represented as F2(θ) with θ11 + θ2 + 1 = 0. The elements of
F211 will be represented using hexadecimal basis. For instance, 0x591 corresponds to the sequence
of bits (0101 1001 0001) and therefore stands for the element θ10 + θ8 + θ7 + θ4 + 1.

A supersingular elliptic curve over F211 is given by

E5 : y2 + a3y = x3 + a4x + a6

with a3 = 0x6EE, a4 = 0x1CC and a6 = 0x3F6. The discriminant of E5 is ∆ = 0x722 while its
j-invariant is zero.

The points P5 = (0x3DF, 0x171) and Q5 = (0x732, 0x27D) belong to E5(F211) and

−P5 = (0x3DF, 0x79F),
P5 ⊕ Q5 = (0x314, 0x4BC),

[2]P5 = (0xEF, 0x6C3).

The cardinality of E5(F211) is equal to 211 + 26 + 1 = 2113 which is prime. Thus the group
E5(F211) is cyclic and is generated by any one of its element.

Ordinary curves

If a1 �= 0, the transformations

y �→ a3
1y +

a2
3 + a2

1a4

a3
1

, x �→ a2
1x +

a3

a1

followed by a division by a6
1 lead to an isomorphic curve given by

y2 + xy = x3 + a′
2x

2 + a′
6,

which is nonsingular whenever a′
6 �= 0. In this case, the curve is ordinary.

Remark 13.40 It is always possible to choose a′
2 small in the sense that multiplications by a′

2 can
be carried out by a few additions only. Let c be an element of absolute trace 0, i.e., TrF2d /F2(c) = 0,
such that multiplications by a′

2 + c can be carried out efficiently. In practice, d should be odd, (cf.
Section 23.2.2.c) and in this case if TrF2d/F2(a

′
2) = 1 then TrF2d /F2(a

′
2 + 1) = 0. So in any case, c

can be taken equal to a′
2 or a′

2 + 1 with the result that a′
2 + c is an element of F2. Let λ be such that

λ2 + λ + c = 0. Indeed, (13.8) allows for a further transformation

x �→ x, y �→ y + λx,

which leads to the curve
y2 + xy = x3 + (a′

2 + c)x2 + a′
6.

§ 13.3 Arithmetic of elliptic curves defined over F2d 291

Example 13.41 An ordinary elliptic curve over F211 is given by

E6 : y2 + xy = x3 + a2x
2 + a6

with a2 = 0x6EE and a6 = 0x1CC. As the trace of a2 is 1 we can put c = a2 + 1 which is of trace
0 and find λ = 0x51E such that λ2 + λ = c. Now the change of variables x �→ x, y �→ y + λx,
with λ = 0x68B transforms the curve E6 into

E7 : y2 + xy = x3 + x2 + a6.

The discriminant of E7 is ∆ = a6 and its j-invariant is 1/a6 = 0x37F. The points P7 =
(0x420, 0x5B3) and Q7 = (0x4B8, 0x167) are on E7. The curve E7 has 2026 rational points
in F211 and E7(F211) is cyclic generated by P7.

13.3.1 Choice of the coordinates

The remainder of this chapter is entirely devoted to ordinary curves, i.e., curves given by

E : y2 + xy = x3 + a2x
2 + a6, (13.8)

with a2, a6 ∈ F2d such that a6 �= 0. The coefficient a2 can be chosen with a reduced number of
terms and can even be taken in F2 when d is odd, cf. Remark 13.40 for explanations.

We first give a study on the addition formulas in different coordinate systems and study mixed
coordinate systems, then give a generalization of Montgomery coordinates and introduce a further
endomorphism on the curve, the point halving. Finally we discuss compression techniques.

As in Section 13.2, an elementary multiplication in F2d (respectively a squaring and an inversion)
will be represented by M (respectively S and I).

This section is mainly based on [HALÓ+ 2000]. As for curves over prime fields we study differ-
ent systems of coordinates, namely affine, projective, Jacobian and López–Dahab. For these binary
fields some extra tricks are applicable.

We shall give formulas for the

• addition of two points P and Q ∈ E(F2d) provided P �= +−Q,

• doubling of P .

13.3.1.a Affine coordinates (AAAAAA)

Recall that we can choose an elliptic curve of the form

E : y2 + xy = x3 + a2x
2 + a6.

The opposite of P = (x1, y1) equals −P = (x1, x1 + y1).

Addition

Let P = (x1, y1), Q = (x2, y2) such that P �= +−Q then P ⊕ Q = (x3, y3) is given by

x3 = λ2 + λ + x1 + x2 + a2, y3 = λ(x1 + x3) + x3 + y1, λ =
y1 + y2

x1 + x2

.

Doubling

Let P = (x1, y1) then [2]P = (x3, y3), where

x3 = λ2 + λ + a2, y3 = λ(x1 + x3) + x3 + y1, λ = x1 +
y1

x1
·

Thus an addition and a doubling require exactly the same number of operations, that is, I+ 2M+S.

292 Ch. 13 Arithmetic of Elliptic Curves

Doubling followed by an addition

Extending an idea presented in Section 13.2.1.a (see also [EILA+ 2003]), Ciet et al. [CIJO+ 2003],
propose a method to compute [2]P ⊕Q as as single operation. The formulas are given below where
we assume that P �= +−Q and [2]P �= −Q

A = x2 + x1, B = y2 + y1, C = A2(x2 + a2) + B(B + A),

D = (AC)−1, λ = BCD, λ2 = A3Dx1 + λ + 1,

x4 = (λ + λ2)2 + λ + λ2 + x2, y4 = (x1 + x4)λ2 + y1 + x4,

requiring I + 9M + 2S.

13.3.1.b Projective coordinates (PPPPPP)

With projective coordinates the curve is parameterized by the equation

Y 2Z + XY Z = X3 + a2X
2Z + a6Z

3.

Like in odd characteristic, we let (X1 : Y1 : Z1) represent the affine point (X1/Z1, Y1/Z1) if
Z1 �= 0 and P∞ = (0 : 1 : 0) otherwise. The opposite of (X1 : Y1 : Z1) is (X1 : X1 + Y1 : Z1).

Addition

Let P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) such that P �= +−Q then P ⊕ Q = (X3 : Y3 : Z3) is
given by

A = Y1Z2 + Z1Y2, B = X1Z2 + Z1X2, C = B2,

D = Z1Z2, E = (A2 + AB + a2C)D + BC,

X3 = BE, Y3 = C(AX1 + Y1B)Z2 + (A + B)E, Z3 = B3D.

Doubling

If P = (X1 : Y1 : Z1) then [2]P = (X3 : Y3 : Z3) is given by

A = X2
1 , B = A + Y1Z1, C = X1Z1,

D = C2, E = (B2 + BC + a2D),

X3 = CE, Y3 = (B + C)E + A2C, Z3 = CD.

In projective coordinates, no inversion is needed. An addition needs 16M + 2S and a doubling
requires 8M + 4S.

If the addition receives one input point in affine coordinates, i.e., as (X2 : Y2 : 1), the costs
reduce to 12M + 2S. Such an addition in mixed coordinates is studied in larger generality in the
next section.

All operations profit from small a2 as one multiplication is saved.

13.3.1.c Jacobian coordinates (JJJJJJ)

In Jacobian coordinates, the curve is given by the equation

Y 2 + XY Z = X3 + a2X
2Z2 + a6Z

6.

The point represented by (X1 : Y1 : Z1) corresponds to the affine point (X1/Z
2
1 , Y1/Z

3
1) when

Z1 �= 0 and to P∞ = (1 : 1 : 0) otherwise. The opposite of (X1 : Y1 : Z1) is (X1 : X1Z1 + Y1 :
Z1).

§ 13.3 Arithmetic of elliptic curves defined over F2d 293

Addition

Let P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) such that P �= +−Q then P ⊕ Q = (X3 : Y3 : Z3) is
given by

A = X1Z
2
2 , B = X2Z

2
1 , C = Y1Z

3
2 ,

D = Y2Z
3
1 , E = A + B, F = C + D,

G = EZ1, H = FX2 + GY2, Z3 = GZ2,

I = F + Z3, X3 = a2Z
2
3 + FI + E3, Y3 = IX3 + G2H.

Doubling

If P = (X1 : Y1 : Z1) then [2]P = (X3 : Y3 : Z3) is given by

A = X2
1 , B = A2, C = Z2

1 ,

X3 = B + a6C
4, Z3 = X1C, Y3 = BZ3 + (A + Y1Z1 + Z3)X3.

In Jacobian coordinates an addition requires 16M+3S in general and only 11M+3S if one input is
in affine coordinates. Also if a2 ∈ {0, 1} we need one multiplication less in the addition of points.
A doubling needs 5M + 5S including one multiplication by a6.

13.3.1.d López–Dahab coordinates (LDLDLDLDLDLD)

López and Dahab [LÓDA 1998] introduced a further set of coordinates in which the curve is given
by the equation

Y 2 + XY Z = X3Z + a2X
2Z2 + a6Z

4.

The triple (X1 : Y1 : Z1) represents the affine point (X1/Z1, Y1/Z
2
1) when Z1 �= 0 and P∞ = (1 :

0 : 0) otherwise. The opposite of (X1 : Y1 : Z1) is (X1 : X1Z1 + Y1 : Z1).

Addition

Let P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) such that P �= +−Q then P ⊕ Q = (X3 : Y3 : Z3) is
given by

A = X1Z2, B = X2Z1, C = A2,

D = B2, E = A + B, F = C + D,

G = Y1Z
2
2 , H = Y2Z

2
1 , I = G + H,

J = IE, Z3 = FZ1Z2, X3 = A(H + D) + B(C + G),

Y3 = (AJ + FG)F + (J + Z3)X3.

A general addition P ⊕Q in this coordinate system takes 13M+4S as shown by Higuchi and Takagi
[HITA 2000]. Note that the original formulas proposed in [LÓDA 1998] need 14M + 6S.

Mixed Addition

If Q is in affine coordinates the costs drop to 10M+3S. In fact, it is possible to do a bit better, since
Al–Daoud et al. [ALMA+ 2002] proved that only 9M + 5S are sufficient in this case. The formulas
are given below.

A = Y1 + Y2Z
2
1 , B = X1 + X2Z1, C = BZ1,

Z3 = C2, D = X2Z3, X3 = A2 + C(A + B2 + a2C),

Y3 = (D + X3)(AC + Z3) + (Y2 + X2)Z2
3 .

294 Ch. 13 Arithmetic of Elliptic Curves

Note that when a2 ∈ {0, 1} one further multiplication is saved.

Doubling

If P = (X1 : Y1 : Z1) then [2]P = (X3 : Y3 : Z3) is given by [LÓDA 1998]

A = Z2
1 , B = a6A

2, C = X2
1 ,

Z3 = AC, X3 = C2 + B, Y3 = (Y 2
1 + a2Z3 + B)X3 + Z3B.

To analyze the complexity, first note that in practice a2 can be chosen in F2, cf. Remark 13.40,
saving one product.
For fixed a2 and a6 it is also possible to use less additions if

√
a6 can be precomputed. E.g., for

a2 = 1 one can use

A = X2
1 , B =

√
a6Z

2
1 , C = X1Z1,

Z3 = C2, X3 = (A + B)2, Y3 =
(
AC + (Y1 + B)(A + B)

)2
requiring 4M + 5S including one multiplication by

√
a6.

For fixed a2 = 0, X3 and Z3 are given as above whereas Y3 =
(
BC + (Y1 + B)(A + B)

)2
,

which also requires 4M + 5S including one multiplication by
√

a6.
It is also possible to trade this multiplication by a constant and a squaring for a general multipli-

cation [LAN 2004b], which might be interesting if the curve varies or if
√

a6 is big. The formulas
are as follows

A = X1Z1, B = X2
1 , C = B + Y1, (13.9)

D = AC, Z3 = A2, X3 = C2 + D + a2Z3,

Y3 = (Z3 + D)X3 + B2Z3

requiring 5M + 4S including one multiplication by a2.

13.3.1.e Example

Take the curve

E7 : y2 + xy = x3 + x2 + a6 (13.10)

with a6 = 0x1CC. We recall below the equation of E7 as well as the coordinates of P7 =
(0x420, 0x681) and Q7 = (0x4B8, 0x563) on E7 for each coordinate system. Note that the third
coordinate in projective, Jacobian and López–Dahab systems is chosen at random.

System Equation P7 Q7

A y2 + xy = x3 + x2 + a6 (0x420, 0x5B3) (0x4B8, 0x167)

P Y 2Z + XY Z = X3 + X2Z + a6Z
3 (0x64F : 0x5BA : 0x1C9) (0x4DD : 0x1F0 : 0x3FA)

J Y 2 + XY Z = X3 + X2Z2 + a6Z
6 (0x4DA : 0x1F7 : 0x701) (0x383 : 0x5BA : 0x1E1)

LD Y 2 + XY Z = X3Z + X2Z2 + a6Z
4 (0x6BE : 0x15F : 0x7B3) (0x757 : 0x3EF : 0xA1C)

With these particular values of P7 and Q7, let us compute P7 ⊕ Q7, [2]P7 and [763]P7 within the
different systems using the double and add method.

§ 13.3 Arithmetic of elliptic curves defined over F2d 295

System P7 ⊕ Q7 [2]P7 [763]P7

A (0x724, 0x7B3) (0x14D, 0x4CB) (0x84, 0x475)

P (0x675 : 0x6D5 : 0x4D5) (0x4D5 : 0x21E : 0x705) (0x582 : 0x14 : 0x543)

J (0x12 : 0x46B : 0x5F) (0x5B1 : 0x417 : 0x7D) (0x2F7 : 0x572 : 0x3E2)

LD (0x7C5 : 0x1D2 : 0x3D2) (0x444 : 0x4A0 : 0x193) (0x2F : 0x265 : 0x220)

For each computation, the obtained result is equivalent to the affine one.

13.3.2 Faster doublings in affine coordinates

Let P = (x1, y1) be a point lying on the ordinary curve

E : y2 + xy = x3 + a2x
2 + a6.

When the solution of a quadratic equation can be quickly found, e.g., if F2d is represented by a nor-
mal basis, the following method [SOL 1997] replaces one general multiplication by a multiplication
by the fixed constant a6.

Namely, compute x3 = x2
1 + a6/x2

1, which is also equal to λ2 + λ + a2. Then find µ such that
µ2+µ = x3+a2, see Section 11.2.6. So λ = µ+ε where ε = 0 or 1. Therefore µx1+x2

1+y1 = εx1

and we deduce ε from this equation. Note that it is not necessary to perform µx1 in full but rather to
compute one well chosen coordinate in the product. Thus the computation of λ is almost free and it
remains to perform y3 = x2

1 + (λ + 1)x3.

To perform several doublings in a row of P = (x1, y1), it is faster to store the intermediate values by
the x-coordinate and the slope of the tangent, i.e., to represent [2i]P as (x2i , λ2i). This is possible
because

x2 = λ2
1 + λ1 + a2 and

λ2 = λ2
1 + λ1 + a2 +

λ1(x1 + λ2
1 + λ1 + a2) + λ2

1 + λ1 + a2 + y1

λ2
1 + λ1 + a2

= λ2
1 + a2 +

a6

x4
1 + a6

·

This idea leads to the following algorithm described in [LÓDA 2000b].

Algorithm 13.42 Repeated doublings

INPUT: A point P = (x1, y1) on E such that [2k]P �= P∞ and an integer k � 2.

OUTPUT: The point [2k]P of coordinates (x3, y3).

1. λ ← x1 + y1/x1 and u ← x1

2. for i = 1 to k − 1 do

3. x′ ← λ2 + λ + a2

4. λ′ ← λ2 + a2 +
a6

u4 + a6

5. u ← x′ and λ ← λ′

6. x3 ← λ2 + λ + a2 and y3 ← u2 + (λ + 1)x3

7. return (x3, y3)

296 Ch. 13 Arithmetic of Elliptic Curves

This algorithm needs kI + (k + 1)M + (3k − 1)S.

Example 13.43 Take P7 on E7 as defined in Example 13.41 and let us compute [25]P7. The values
of λ and u along the execution of Algorithm 13.42 are given below.

i — 1 2 3 4

λ 0x1C 0x67 0x6F7 0x96 0x719

u 0x420 0x14D 0x479 0x344 0x1AB

At the end, x3 = 0x67C and y3 = 0x71C.

Another strategy is to use a closed formula to get [2k]P directly rather than computing succes-
sive doublings. The interest is to perform only one inversion at the cost of extra multiplications
[GUPA 1997]. We do not state these formulas here as the same number of operations can be ob-
tained by using López–Dahab coordinates for the intermediate doublings and transforming the result
to affine coordinates afterwards.

13.3.3 Mixed coordinates

In the previous part we introduced different representations for the point on E together with the
algorithms to perform addition and doubling. For the additions we also mentioned the number of
operations needed if one of the input points is in affine coordinates. Like in odd characteristic
we now study arbitrary mixes of coordinates to perform scalar multiplications where we use two
(different) systems of coordinates as input and one as output. By J + A = LD we denote the
addition taking as input one point in Jacobian coordinates and one in affine and giving the result in
López–Dahab coordinates.

Additionally we use the abbreviations A′ to denote the representation by (x, λ) introduced in the
previous section for multiple doublings. For A′ coordinates the table entry refers to the asymptotic
complexity of a doubling in a sequence of k consecutive doublings, thus we neglect other marginal
operations. Table 13.4 on page 297 gives the number of field operations needed depending on the
coordinate systems. Compared to the case of odd characteristic, changes between the coordinate
systems are not too interesting and are therefore not listed. We denote the costs for multiplication
with a2 by M2 and concentrate on the most interesting cases. We do not take into account the effects
of small a6 as this cannot be achieved generically.

No precomputation

If the system offers no space to store precomputations one should use A if inversions are affordable,
i.e., less than 8 times as expensive as a multiplication, and otherwise use LD for the doublings and
LD + A = LD for the additions if the input is in affine coordinates and as LD + LD otherwise.

Precomputations

Also in even characteristic, using the NAFw representation, cf. Section 9.1.4 is advantageous to
compute scalar multiples [n]P . This requires precomputing all odd multiples [i]P for 1 < i <
2w−1. They can be obtained as a sequence of additions and one doubling.

If inversions in F2d are not too expensive one should choose affine coordinates as a system for the
precomputations as they offer the fastest mixed coordinates. Like in the case of odd characteristic
this does not mean that one needs to perform 2w−2 inversions but one can follow [COMI+ 1998,
section 4] and apply Montgomery’s trick of simultaneous inversions. For details we refer to the
study for odd characteristic, cf. Section 13.2.2. Then one needs:

(w − 1)I +
(
5 × 2w−2 + 2w − 12

)
M +

(
2w−2 + w − 3

)
S.

§ 13.3 Arithmetic of elliptic curves defined over F2d 297

Table 13.4 Operations required for addition and doubling.

Doubling Addition

Operation Costs Operation Costs

2P 7M + 4S + M2 J + J 15M + 3S + M2

2J 5M + 5S P + P 15M + 2S + M2

2LD 4M + 4S + M2 LD + LD 13M + 4S

2A = P 5M + 2S + M2 P + A = P 11M + 2S + M2

2A = LD 2M + 3S + M2 J + A = J 10M + 3S + M2

2A = J M + 2S + M2 LD + A = LD 8M + 5S + M2

— — A + A = LD 5M + 2S + M2

2A I + 2M + S A + A = J 4M + S + M2

2A′ I + M + S A + A = A′ 2I + 3M + S

2A′ = A M + 2S A + A I + 2M + S

If inversions are prohibitively expensive one should choose LD coordinates as they are the most
efficient inversion-free system, provided that one multiplication is at least as expensive as three
squarings, which is usually the case in binary fields. This way(

13 × 2w−2 − 8
)
M + 4 × 2w−2S

are needed for the precomputations.
Using one I and 3(2w−2 − 2)M the resulting precomputed points can be transformed to affine.

Furthermore, the use of precomputations leads to long runs of doublings in the algorithms and they
are much faster in LD than in P , which otherwise would offer the lowest number of operations per
addition.

Scalar multiplication

A scalar multiplication consists of a sequence of doublings and additions. If a signed windowing
method is used with precomputations there are often runs of doublings interfered with only a few
additions. Thus it is worthwhile to distinguish between intermediate doublings, i.e., those followed
by a further doubling, and final doublings, which are followed by an addition, and to choose different
coordinate systems for them.

We first assume that the precomputed points are in A as this leads to the most interesting mixes of
coordinates. If one inversion per bit of the scalar is affordable one should use A′ for the intermediate
doublings.

More explicitly, the intermediate variable Q is replaced each step by some

[2s]Q +− [u]P,

where [u]P is in the set of precomputed multiples. So we actually perform (s− 1) doublings of the
type 2A′ = A′, a doubling of the form 2A′ = A and then an addition A + A = A′.

Let l be the binary length of n, let l1 = l − (w − 1)/2, and K = 1/2 − 1/(w + 1).

298 Ch. 13 Arithmetic of Elliptic Curves

In the main loop, we perform on average l1 + K − v doublings of the form 2A′ = A′, v doublings
of the form 2A′ = A, and v additions, where v = (l1 − K)/(w + 1). Then we need approximately

(
l1 + K +

l1 − K

w + 1

)
I +

(
l1 + K + 3

l1 − K

w + 1

)
M +

(
l1 + K + 2

l1 − K

w + 1

)
S.

If the algorithm should not make use of inversions but the precomputed points are in A, Table 13.4
shows that the doublings should be performed within LD. This is followed by one addition of the
type LD + A = LD. This needs approximately

(
4(l1 + K) + 8

l1 − K

w + 1

)
M +

(
4(l1 + K) + 5

l1 − K

w + 1

)
S +

(
l1 + K +

l1 − K

w + 1

)
M2.

If the precomputed points are in LD the most efficient way is to choose this coordinate system for
all operations. In total this needs asymptotically

(
4(l1 + K) + 13

l1 − K

w + 1

)
M +

(
4(l1 + K) + 4

l1 − K

w + 1

)
S +

(
l1 + K

)
M2.

13.3.4 Montgomery scalar multiplication

López and Dahab [LÓDA 1999] generalized Montgomery’s idea, cf. Section 13.2.3, to binary
curves. Let P = (x1, y1) be a point on E. In projective coordinates, we write P = (X1 : Y1 : Z1)
and let [n]P = (Xn : Yn : Zn). The sum [n + m]P = [n]P ⊕ [m]P is given by the following
formulas where Yn does not occur.

Addition: n �= m

Zm+n = (XmZn)2 + (XnZm)2,
Xm+n = Zm+nXm−n + XmZnXnZm.

Doubling: n = m

X2n = X4
n + a6Z

4
n =

(
X2

n +
√

a6Z
2
n

)2
,

Z2n = X2
nZ2

n.

An addition takes 4M and 1S whereas a doubling needs only 2M and 3S, if
√

a6 is precomputed.
For the full scalar multiplication [n]P , we use Montgomery’s ladder, cf. Algorithm 13.35, which
requires (6M + 4S)(|n|2 − 1) in total.

To recover the y-coordinate of [n]P = (Xn : Yn : Zn) we first compute the affine x-coordinates
of [n]P and [n + 1]P , that is xn = Xn/Zn and xn+1 = Xn+1/Zn+1 and then use the formula
[LÓDA 1999, OKSA 2001]

yn =
(xn + x1)

(
(xn + x1)(xn+1 + x1) + x2

1 + y1

)
x1

+ y1. (13.11)

Example 13.44 Let us compute [763]P7 with Algorithm 13.35. The different steps of the compu-

§ 13.3 Arithmetic of elliptic curves defined over F2d 299

tation are given in the following table where P stands for P7 ∈ E7, given by (13.10).

i ni (P1, P2) P1 P2

9 1 (P, [2]P) (0x420 : ? : 0x1) (0x158 : ? : 0x605)

8 0 ([2]P, [3]P) (0x158 : ? : 0x605) (0x7E9 : ? : 0x2FD)

7 1 ([5]P, [6]P) (0x295 : ? : 0x56B) (0x620 : ? : 0x43B)

6 1 ([11]P, [12]P) (0x5D0 : ? : 0x247) (0xA6 : ? : 0x6CE)

5 1 ([23]P, [24]P) (0x755 : ? : 0x21B) (0x409 : ? : 0x93)

4 1 ([47]P, [48]P) (0xBD : ? : 0x25E) (0x26 : ? : 0x4BE)

3 1 ([95]P, [96]P) (0x4EE : ? : 0x51D) (0x4D6 : ? : 0x304)

2 0 ([190]P, [191]P) (0x4C1 : ? : 0x58C) (0x553 : ? : 0x386)

1 1 ([381]P, [382]P) (0x613 : ? : 0x7E4) (0x2BB : ? : 0x60B)

0 1 ([763]P, [764]P) (0x6C4 : ? : 0x105) (0x655 : ? : 0x485)

To end the computation, we apply (13.11) to obtain that [763]P7 = (0x84, 0x475).

13.3.5 Point halving and applications

In this section we introduce a further map on the group of points of an elliptic curve.
Let |E(F2d)| = 2k	, where 	 is odd. If k = 1 then E is said to have minimal 2-torsion as curves

of the form

E : y2 + xy = x3 + a2x
2 + a6 (13.12)

considered here always have one point of order 2, namely the point T = (0,
√

a6). Hence, the
doubling map [2] is not injective. Now assume E to have minimal 2-torsion and let G be a subgroup
of odd order. If P belongs to G then there is a unique point Q ∈ G such that P = [2]Q. Then
denote Q =

[
1
2

]
P and define the one-to-one halving map by[

1
2

]
: G → G

P �→ Q such that [2]Q = P.

In the following, we shall represent a point P = (x1, y1) as (x1, λ1) where λ1 = x1 + y1/x1.
In the context of a scalar multiplication based on halvings, this representation leads to a faster
implementation as for repeated doublings.

In [KNU 1999] Knudsen develops an efficient technique to halve a point in affine coordinates
lying on an elliptic curve with minimal 2-torsion. Independently, Schroeppel proposed the same
method [SCH 2000c].

Note that half the curves of the form (13.12) defined over F2d have minimal 2-torsion, since this
property is equivalent to Tr(a2) = 1.

Let P = (x1, λ1) ∈ G and Q =
[

1
2

]
P = (x2, λ2). Inverting doubling formulas, one has

λ2
2 + λ2 = a2 + x1,

x2
2 = x1(λ2 + 1) + y1 = x1(λ2 + λ1 + x1 + 1),

y2 = x2(x2 + λ2).

300 Ch. 13 Arithmetic of Elliptic Curves

The algorithm is as follows. First find γ such that γ2 + γ = a2 + x1. The other solution of the
equation is then γ + 1, cf. Lemma 11.56. One corresponds to λ2 and Q and the other one to λ2 + 1
and Q ⊕ T . If E has minimal 2-torsion it is possible to determine if γ is equal to λ2 or not. Indeed
only Q can be halved but not Q ⊕ T . So (x2, λ2) is equal to

[
1
2

]
P if and only if the equation

X2 + X = a2 + x2 has a solution in F2d . This holds true if and only if Tr(a2 + x2) = 0. Clearly
Tr(a2 + x2) = Tr(a2

2 + x2
2) and this remark saves a square root computation.

So one first obtains w = x1(γ + λ1 + x1 + 1), which is a candidate for x2
2. If Tr(a2

2 + w) = 0
then λ2 = γ and x2 =

√
w. Otherwise λ2 = γ + 1 and x2 =

√
w + x1.

All these steps are summarized in the following algorithm.

Algorithm 13.45 Point halving

INPUT: The point P = (x1, y1) ∈ G represented as (x1, λ1).

OUTPUT: The point
[

1
2

]
P = (x2, y2) represented as (x2, λ2).

1. compute γ such that γ2 + γ = a2 + x1

2. w ← x1(γ + λ1 + x1 + 1)

3. if Tr(a2
2 + w) = 1 then γ ← γ + 1 and w ← w + x1

4. λ2 ← γ and x2 ← √
w

5. return Q = (x2, λ2)

Remarks 13.46

(i) To determine (x2, λ2) Algorithm 13.45 requires us to compute the solution of a quadratic
equation, one square root, one multiplication, and one absolute trace. A further multiplication
is necessary to obtain y2.

(ii) See Section 11.2.6 for a description of algorithms to compute γ and
√

w.

(iii) The computation of the trace in Line 3 is straightforward, cf. Remarks 11.57.

(iv) Algorithm 13.45 can be easily generalized when E(F2d) has a subgroup isomorphic toZ/2kZ

with k > 1 [KNU 1999]. Nevertheless, it is necessary, in this case, to solve k equations,
perform k + 1 multiplications, one test, and k or k + 1 square root computations to find
(x2, y2), so that in practice the technique is usually not interesting for k > 1.

Example 13.47 The point P7 = (0x420, 0x5B3) on E7 is a point of order 2026. This implies that
R7 = [2]P7 = (0x14D, 0x4CB) is a point of odd order 	 = 1013. Thus in the group G = 〈R7〉,
the halving map is well defined. Let us compute

[
1
2

]
R7 with Algorithm 13.45. First, we have

λ1 = 0x67. We deduce that γ = 0x1C and w = 0x605. Since the trace of a2
2 + w is equal to one,

the values of γ and w are changed to 0x1D and 0x748. Finally, λ2 = 0x1D and x2 = 0x3B8. It
follows that the unique point S7 ∈ G such that [2]S7 = R7 is (0x3B8, 0x441).

We also have P7 = S7 ⊕ T7 where T7 = (0x0, 0x19A) is the 2-torsion point of E7.

Now, let us explain how to compute the scalar multiplication [n]P of a point P of odd order 	1 | 	.
Let m = �lg 	1�. Then if

2m−1n =
m−1∑
i=0

n̂i2i mod 	1, with ni ∈ {0, 1}

§ 13.3 Arithmetic of elliptic curves defined over F2d 301

one has

n ≡
m−1∑
i=0

n̂m−1−i

2i
(mod 	1)

and [n]P can be obtained by the following algorithm. We additionally put
[

1
2

]
P∞ = P∞.

Algorithm 13.48 Halve and add scalar multiplication

INPUT: A point P ∈ E(F2d) of odd order �1 and a positive integer n.

OUTPUT: The point [n]P .

1. m ← �lg �1�
2. bn ← (2m−1n) mod �1 [bn = (bnm−1 . . . bn0)2]

3. Q ← P∞

4. for i = 0 to m − 1 do

5. Q ← ˆ
1
2

˜
Q

6. if bni = 1 then Q ← Q ⊕ P

7. return Q

Remarks 13.49

(i) All the window and recoding techniques seen in Chapter 9 apply as well. In particular, if∑m
i=0 n̂i2i is the NAFw representation of 2mn modulo 	1, then

n ≡
m∑

i=0

n̂m−i

2i
(mod 	1).

(ii) No method is currently known to halve a point in projective coordinates. In [HAME+ 2003]
two halve-and-add algorithms for the NAFw representation are given. The one operating from
the right to the left halves the input P rather than the accumulators, which can therefore be
represented in projective coordinates. In this case mixed addition formulas can be used for a
better efficiency.

(iii) Point halving can be used to achieve faster scalar multiplication on Koblitz curves; see Chap-
ter 15 and [AVCI+ 2004].

Example 13.50 Let us compute [763]R7 with Algorithm 13.48. As R7 is of odd order 1013, we
have m = 10 and 29 × 763 ≡ 651 (mod 1013). Now 651 = (1010001011)2 which implies that

763 ≡ 1
29

+
1
28

+
1
26

+
1
22

+ 1 (mod 1013).

Thus, the main steps of the computation, expressed in the form (x, λ), are[
1
2

]
R7 ⊕ R7 = (0x1, 0x21D),[

1
2

]3
R7 ⊕

[
1
2

]2
R7 ⊕ R7 = (0x644, 0x184),[

1
2

]7
R7 ⊕

[
1
2

]6
R7 ⊕

[
1
2

]4
R7 ⊕ R7 = (0x77C, 0x3EC),[

1
2

]9
R7 ⊕

[
1
2

]8
R7 ⊕

[
1
2

]6
R7 ⊕

[
1
2

]2
R7 ⊕ R7 = (0x2EA, 0x281).

302 Ch. 13 Arithmetic of Elliptic Curves

We deduce that [763]R7 = (0x2EA, 0x7C8) in affine coordinates.
It is also easy to obtain the multiple of a point that does not belong to G. For instance, let us

compute [763]P7. We have P7 =
[

1
2

]
R7 ⊕ T7 and since the maps

[
1
2

]
and [n] commute, it follows

that

[763]P7 =
[

1
2

]
[763]R7 ⊕ T7,

= (0x5CF, 0x485) ⊕ (0x0, 0x19A),
= (0x84, 0x475).

13.3.6 Parallel implementation

Also, for fields of even characteristic, parallel implementations have gained some interest, one of
the first works being [KOTS 1993]. However, applications using affine coordinates usually try to
achieve parallelism on the lower level of field arithmetic.

In the chapter on side-channel attacks, cf. Chapter 29, we discuss several parallel implementa-
tions as this is mainly of interest for small devices like smart cards. There, the additional restriction
is that the implementation should be secured against some particular attacks. Common choices are
Montgomery coordinates distributed on two processors. We refer the reader to that chapter for de-
tails and mention here only the work of Mishra [MIS 2004a], who derives a pipelined computation
such that in a scalar multiplication the average number of clock cycles needed per group operation
is only 6 when using two processors.

13.3.7 Compression of points

Let P = (x1, y1) be a point on E/F2d : y2 + xy = f(x). As for odd characteristic, we show how
to represent P by

(
x1, b(y1)

)
, where b(y1) is a bit distinguishing P from −P = (x1, y1 + x1).

There exists exactly one Weierstraß point having x1 = 0. For the other points we follow the steps
in the next paragraphs.

Decompression

In even characteristic it is easier to explain decompression first. Thus, assume that P is given
by
(
x1, b(y1)

)
, and b(y1) ∈ {0, 1}. As x1 is the x-coordinate of a point, the quadratic equation

y2 + x1y + x3
1 + a2x

2
1 + a6 has two solutions. It is clear that such a solution exists if Y 2 + Y +

(x3
1 + a2x

2
1 + a6)/x2

1 has a solution, i.e., if Tr
(
(x3

1 + a2x
2
1 + a6)/x2

1

)
= 0, cf. Section 11.2.6. If y′

1

is one solution then y′
1 + 1 is the other. Hence, for the roots y′

1 the least significant bit allows us to
distinguish between the solutions and we need to resort to the equation in Y to compute the roots.
To find the solutions of the original equation we put y1 = y′

1x1 for the y′
1 determined by b(y1).

Compression

We have just seen that the least significant bit of y′
1 = y1/x1 should be used as b(y1). Unfortunately,

this requires one inversion, hence, some work is also needed to compress a point. This is in contrast
to the case of odd characteristic.

