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Abstract. It has become increasingly common to implement discrete-logarithm based public-key protocols on
elliptic curves over finite fields. The basic operation isscalar multiplication: taking a given integer multiple of a
given point on the curve. The cost of the protocols depends on that of the elliptic scalar multiplication operation.

Koblitz introduced a family of curves which admit especially fast elliptic scalar multiplication. His algorithm
was later modified by Meier and Staffelbach. We give an improved version of the algorithm which runs 50% faster
than any previous version. It is based on a new kind of representation of an integer, analogous to certain kinds of
binary expansions. We also outline further speedups using precomputation and storage.
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1. Introduction

It has become increasingly common to implement discrete-logarithm based public-key pro-
tocols on elliptic curves over finite fields. More precisely, one works with the points on the
curve, which can be added and subtracted. If we add the pointP to itselfn times, we denote
the result bynP. The operation of computingnP from P is calledscalar multiplicationby
n. Elliptic public-key protocols are based on scalar multiplication, and the cost of executing
such protocols depends mostly on the complexity of the scalar multiplication operation.

Scalar multiplication on an elliptic curve is analogous to exponentiation in the multiplica-
tive group of integers modulo a fixed integerm. Various techniques have been developed
[4] to speed modular exponentiation using memory and precomputations. Such methods,
for the most part, carry over to elliptic scalar multiplication.

There are also efficiency improvements available in the elliptic case that have no analogue
in modular exponentiation. There are three kinds of these:

1. One can choose the curve, and the base field over which it is defined, so as to optimize
the efficiency of elliptic scalar multiplication. Thus, for example, one might choose
the field of integers modulo a Mersenne prime, since modular reduction is particularly
efficient [9] in that case. This option is not available for, say, RSA systems, since the
secret primes are chosen randomly in order to maintain the security of the system.

2. One can use the fact that subtraction of points on an elliptic curve is just as efficient
as addition. (The analogous statement for integers (modm) is false, since modular
division is more expensive than modular multiplication.) The efficient methods for
modular exponentiation all involve a sequence of squarings and multiplications that is

* This paper is an expanded and updated version of the paper appearing in the Proceedings of Crypto ’97.
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based on the binary expansion of the exponent. The analogous procedure for elliptic
scalar multiplication uses a sequence of doublings and additions of points. If we allow
subtractions of points as well, we can replace [15] the binary expansion of the coefficient
n by a more efficientsigned binary expansion(i.e.an expansion in powers of two with
coefficients 0 and±1).

3. One can usecomplex multiplication. Every elliptic curve over a finite field1 comes
equipped with a set of operations which can be viewed as multiplication by complex
algebraic integers (as opposed to ordinary integers). These operations can be carried
out efficiently for certain families of elliptic curves. In these cases, they can be utilized
in various ways [10] to increase the efficiency of elliptic scalar multiplication.

It is the purpose of this paper to present a new technique for elliptic scalar multiplication.
This new algorithm incorporates elements from all three of the above categories. The
new method is 50% faster than any method previously known for operating on a non-
supersingular elliptic curve.

2. Field and Elliptic Operations in F2m

We begin with a brief survey of the various operations we will need in the fieldF2m and on
elliptic curves over this field.

Squaring. We will assume that the fieldF2m is represented in terms of anormal basis: a
basis overF2 of the form{

θ, θ2, θ22
, . . . , θ2m−1

}
.

The advantage of this representation is that squaring a field element can be accomplished
by a one-bit cyclic shift of the bit string representing the element. This property will be
crucial in what follows. Ifm is not divisible by 8, then one can use Gaussian cyclotomic
periods to construct easily [1] an efficient normal basis forF2m. (Since our application will
requirem to be prime, we can always use the Gaussian method.)

Our emphasis in this paper will be the case in which the field arithmetic is implemented
in hardware. Although the algorithms that follow will be efficient in software as well, the
full advantage of our method occurs in hardware, where the bit shifts (and therefore field
squarings) are virtually free.

Addition and Multiplication. We may neglect the cost of additions inF2m since they involve
only bitwise XORs. A multiplication (of distinct elements) takes aboutm times as long,
just as in the case of integer arithmetic. The cost of an elliptic operation depends mostly
on the number of field multiplications it uses.

Inversion. Multiplicative inversion inF2m can be performed in

L(m− 1)+W(m− 1)− 2
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EFFICIENT ARITHMETIC ON KOBLITZ CURVES 197

field multiplications using the method of [7]. HereL(k) represents the length of the binary
expansion ofk, and W(k) the number of ones in the expansion. This fact may be a
consideration when choosing the degreem. (Alternatively, one can use the Euclidean
algorithm [2], but one must first convert from the normal basis representation to the more
familiar polynomial basis form, and then back again after the inversion.)

Elliptic Addition. The standard equation for an elliptic curve overF2m is theWeierstrass
equation

E: y2+ xy= x3+ ax2+ b (1)

whereb 6= 0. Public key protocols based on this curve work on the group consisting of the
points(x, y) on this curve, along with the group identityO. (The elementO is called the
point at infinity, but it is most convenient to represent it2 by (0,0).)

ROUTINE 2 (ELLIPTIC GROUPOPERATION)

Input:
Points P0 and P1 on E

Output:
The sum P2 := P0+ P1

Computation:
If P0 = O then output P2← P1 and stop
If P1 = O then output P2← P0 and stop
If x0 = x1

then
if y0+ y1 = x1

then
output O and stop

else
set λ← x1+ y1/x1

x2← λ2+ λ+ a
y2← x2

1 + (λ+ 1) x2

else
set λ← (y0+ y1)/(x0+ x1)

x2← λ2+ λ+ x0+ x1+ a
y2← (x1+ x2) λ+ x2+ y1

Output P2← (x2, y2)

To subtractthe pointP = (x, y), one adds the point−P = (x, x + y).
Except for the special cases involvingO, the above addition and subtraction operations

each require 1 multiplicative inversion and 2 multiplications.3 (As always, we disregard the
cost of adding and squaring field elements.)
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3. Elliptic Scalar Multiplication

We next discuss the common methods for performing scalar multiplication on an arbitrary
elliptic curve. These results will not be necessary for the subject of this paper, but will serve
to motivate the new algorithms, which are analogues of these methods.

3.1. The Addition-Subtraction Method

The basic technique for elliptic scalar multiplication is theaddition-subtraction method. It
is based on thenonadjacent form(NAF) of the coefficientn: a signed binary expansion
with the property that no two consecutive coefficients are nonzero. For example,

NAF(29) = 〈1,0,0,−1,0,1〉 (3)

since 29= 32− 4+ 1.
Just as every positive integer has a unique binary expansion, it also has a unique NAF.

Moreover, NAF(n) has the fewest nonzero coefficients of any signed binary expansion of
n [4]. There are several ways to construct the NAF ofn from its binary expansion. We
present the one that most resembles the new algorithm we will present in §4.

The idea is to divide repeatedly by 2. Recall that one can derive the binary expansion of
an integer by dividing by 2, storing off the remainder (0 or 1), and repeating the process
with the quotient. To derive a NAF, one allows remainders of 0 or±1. If the remainder is
to be±1, one chooses whichever makes the quotient even.

ROUTINE 4 (NAF)

Input:
a positive integer n

Output:
NAF(n)

Computation:
Set c← n
Set S ← 〈 〉
While c > 0

If c odd
then

set u← 2− (c mod 4)
set c← c− u

else
set u← 0

Prepend u to S
Set c← c/2

EndWhile
Output S
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Figure 1. Computing a NAF.

For example, to derive (3), one applies (4) withn = 29. The results are shown in Fig. 1.
Note that, although we have phrased the algorithm in terms of integer arithmetic, it can

be implemented in terms of bit operations on the binary expansion ofn. No arithmetic
operations are needed beyond integer addition by 1.

In the derivation of the ordinary binary expansion, the sequencec is decreasing, but that
is not true in general in (4). As a result, the NAF of a number may be longer than its binary
expansion. Fortunately, it can be at most one bit longer, because

2` < 3n < 2`+1 (5)

where` is the bit length of NAF(n) [15].
The routine (4) can be modified as follows to produce an algorithm for elliptic scalar

multiplication.

ROUTINE 6 (ADDITION-SUBTRACTION METHOD)

Input:
a positive integer n
an elliptic curve point P

Output:
the point nP

Computation:
Set c← n
Set Q← O, P0← P
While c > 0

If c odd then

129



200 SOLINAS

set u← 2− (c mod 4)
set c← c− u
if u = 1 then set Q← Q+ P0

if u = −1 then set Q← Q− P0

Set c← c/2
Set P0← 2P0

EndWhile
Output Q

This algorithm is aright-to-left method, since (4) builds up the NAF starting at the
least significant bit and ending at the most significant.4 It is possible to give aleft-to-right
addition-subtraction method, but it has the disadvantage that it requires the entire NAF to
be computed first, thus requiring more storage space and memory calls.

The cost of the addition-subtraction method depends on the bit length` of NAF(n), which
we now estimate. It follows from the Hasse theorem [22] that the order of an elliptic curve
overF2m is

#E(F2m) = 2m + O(2m/2).

Most public-key protocols on elliptic curves use a base point of prime orderr . Since all of
the curves (1) have even order, then

r ≤ 2m−1+ O(2m/2).

We can assume thatn < r ; indeed, by using the identity

n(x, y) = (r − n)(x, x + y),

we can assume thatn < r/2. Thus` < m, so that (6) requires aboutm doubles at most.
The number of additions is one less than the Hamming weight of (i.e.number of nonzero

coefficients in) NAF(n). The average density of nonzero coefficients among NAF’s of
length` is

2` (3`− 4)− (−1)` (6`− 4)

9(`− 1) (2` − (−1)`)
, (7)

or approximately (and asymptotically) 1/3 [15]. It follows via (5) that the Hamming weight
H of NAF(n) satisfies

H ≈ 1

3
log2 n. (8)

Therefore, the average cost of (6) is∼ m doubles and∼ m/3 additions, for a total of
∼ 4m/3 elliptic operations. This compares favorably to the classicalbinary method, which
uses the ordinary binary expansion in place of the NAF. For binary expansions, the average
density is exactly 1/2 rather than the value (7); thus the binary method requires about 12%
more elliptic operations than the addition-subtraction method.
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3.2. Window Methods

The addition-subtraction method can be generalized to produce still more efficient algo-
rithms provided extra memory is available and precomputation is permitted. We present
the basic method, called thewidth-w window method.5

Letw be an integer greater than 1. Then each positive integer has a uniquewidth-w NAF:
an expression

n =
`−1∑
j=0

uj 2 j

where:

• each nonzerouj is odd and less than 2w−1 in absolute value;

• among anyw consecutive coefficients, at most one is nonzero.

The casew = 2 is that of the ordinary NAF.
The width-w NAF is written

NAFw(n) = 〈u`−1, . . . u0〉.
It can be computed via the following generalization of (4).

ROUTINE 9 (WIDTH-w NAF)

Input:
a positive integer n

Output:
NAFw(n)

Computation:
Set c← n
Set S ← 〈 〉
While c > 0

If c odd
then set u← c mods 2w

set c← c− u
else set u← 0

Prepend u to S
Set c← c/2

EndWhile
Output S

The notation

a := b modsc
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means thata is the integer satisfying

a ≡ b (mod c)

and

−c

2
≤ a <

c

2
.

The routine (9) is commonly described by saying that one slides a “window” of widthw

along the binary expansion from right to left, using the contents to output the next entry of
NAFw(n).

Given the width-w NAF, one can perform elliptic scalar multiplication byn via the
following algorithm.

ROUTINE 10 (WIDTH-w ADDITION-SUBTRACTION METHOD)

Input:
a positive integer n
an elliptic curve point P

Output:
the point nP

Precomputation:
Set P0← P
Set P2w−2−1← 2 P0

For i from 1 to 2w−2− 1 do
Set Pi ← Pi−1+ P2w−2−1

Next i

Computation:
Compute NAFw(n) = 〈u`−1, . . . ,u0〉 (via (9))
Set Q← O
For j from `− 1 downto 0 do

Set Q← 2Q
If uj 6= 0 then

i ← (|uj | − 1)/2
if uj > 0

then set Q← Q+ Pi

else set Q← Q− Pi

Output Q

The routine (10) is a left-to-right algorithm. The right-to-left algorithm (6) does not
generalize well to the width-w case, since each pointPi would have to be doubled̀times.
As remarked in [19], this is a general difficulty with window methods: the binary expansions
must be computed right to left in general, but the elliptic scalar multiplication is best done
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from left to right. This difficulty will not arise with the particular curves that are the subject
of this paper.

The average density of a width-w NAF is (w + 1)−1. Thus one can diminish greatly
the number of elliptic additions in an elliptic scalar multiplication, provided the memory is
available. These speedups, however, do nothing to reduce the number of elliptic doublings.
There seems to be little that can be done about this in general. The following special curves,
however, admit elliptic scalar multiplication that do not use doublings at all.

4. Koblitz Curves

Theanomalous binary curves(or ABC’s) are the curvesE0 andE1 defined overF2 by

Ea: y2+ xy= x3+ a x2+ 1.

They are more commonly calledKoblitz curvessince their efficient scalar multiplication
properties were first presented in [10].

4.1. Basic Properties

We survey the basic properties of Koblitz curves that we will need.

Group Orders. We denote byEa(F2m) the group ofF2m-rational points onEa. This is the
group on which the public-key protocols are performed. The group should be chosen so
that it is computationally difficult to compute discrete logarithms of its elements. Thus, for
example, the order #Ea(F2m) should be divisible by a large prime [17]. Ideally, #Ea(F2m)

should be a prime or the product of a prime and small integer. This can only happen whenm
is itself prime, for otherwise there are large divisors arising from subgroupsEa(F2d) where
d dividesm.

Whenm is prime, the only such divisor is that arising fromd = 1. The Koblitz curves
overF2 are

E1(F2) = {O, (0,1)}
E0(F2) = {O, (0,1), (1,0), (1,1)}.

SinceEa(F2) is a subgroup ofEa(F2m), it follows that the order #Ea(F2m) is always divis-
ible by

f = #Ea(F2) =
{

2 for a = 1
4 for a = 0.

(11)

We define an integer to bevery nearly primeif it is of the form N = f · r , where f = 2
or 4 andr > 2 is prime. Although the orders #Ea(F2m) are never prime form> 1, they are
frequently very nearly prime. The values ofm≤ 512 for which #E1(F2m) is twice a prime are

m= 3,5,7,11,17,19,23,101,107,109,113,163,283,311,331,347,359.
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The values ofm≤ 512 for which #E0(F2m) is 4 times a prime are

m= 5,7,13,19,23,41,83,97,103,107,131,233,239,277,283,349,409.

(The calculation of the orders is quite simple; the technique is given below.) The curves
with very nearly prime order are the ones of most cryptographic interest.

The Main Subgroup. Suppose that #Ea(F2m) = f · r is very nearly prime. We define
themain subgroupto be the subgroup of orderr . It is common6 to perform cryptographic
operations in the main subgroup rather than the entire curve.

PROPOSITION12 Suppose that#Ea(F2m) is very nearly prime, and let P be a point on
Ea(F2m). Then P is in the main subgroup if and only if P= f Q for some Q on Ea(F2m).

Proof. Both curvesEa(F2) are cyclic groups; to see this, one need only observe that
2(1,0) = (1,1) on E1(F2). Thus the curveEa(F2m) is cyclic whenever its order is very
nearly prime. The result follows from the standard properties of finite cyclic
groups.

As a result of (12), we have the following simple conditions to determine whether a
given point is in the main subgroup. Ifa = 1, then a pointP = (x, y) is in the main
subgroup if and only if Tr(x) = 1 [21]. If a = 0, then(x, y) is in the main subgroup if
and only if Tr(x) = 0 and Tr(y) = Tr(λ x), whereλ is an element withλ2 + λ = x. (See
Appendix A for proofs.) With a normal basis representation of the field, both the trace and
the computation ofλ can be done very efficiently. Thus, checking for membership in the
main subgroup is essentially free ifa = 1, and costs only one field multiplication ifa = 0.

Because the main subgroup is the object of cryptographic interest, it is most important to
optimize the elliptic scalar multiplication operation there. In §7.2, an algorithm for elliptic
scalar multiplication in the main subgroup will be presented.

Complex Multiplication. Since the Koblitz curves are defined overF2, they have the
following property: if P = (x, y) is a point on Ea, then so is the point(x2, y2). Moreover,
one can verify from (2) that

(x4, y4)+ 2(x, y) = µ · (x2, y2) (13)

for every(x, y) on Ea, where

µ := (−1)1−a. (14)

This relation can be written more easily in terms of the Frobenius (squaring) map overF2:

τ(x, y) := (x2, y2). (15)

Using this notation, (13) becomes

τ (τ P)+ 2 P = µτ P
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for all P ∈ Ea. Symbolically, this can be written

(τ 2+ 2) P = µτ P.

This means that the squaring map can be regarded as implementing multiplication by the
complex numberτ satisfying

τ 2+ 2= µτ.

Explicitly, this number is

τ = µ+√−7

2
.

By combining the squaring map with ordinary scalar multiplication, we can multiply points
on Ea by any element of the ringZ[τ ]. We say thatEa hascomplex multiplicationby
τ [10].

Lucas Sequences.TheLucas sequencesare sequences of integers that facilitate computa-
tions involving quadratic irrationals. The Lucas sequences for the numbersτ will be used
frequently in what follows; thus we summarize here their relevant properties.

• There are two Lucas sequences,Uk andVk, associated with a given quadratic irrational.
For τ , the sequences are defined as follows.

U0 = 0, U1 = 1 and Uk+1 = µUk − 2Uk−1 for k ≥ 1;

V0 = 2, V1 = µ and Vk+1 = µVk − 2Vk−1 for k ≥ 1. (16)

• It can be proved by induction that

Uk =
(
τ k − τ k

)
/
√−7

Vk = τ k + τ k. (17)

If θ := tan−1(
√

7), then (17) can be written as

Uk = µk+1 2k/2+1 sin(k θ)/
√

7

Vk = µk 2k/2+1 cos(k θ). (18)

• It can be proved by induction that

τ k = Uk τ − 2Uk−1 for k ≥ 1. (19)

Multiplying this equation by its conjugate, one obtains

U2
k − µUk Uk−1+ 2U2

k−1 = 2k−1 for k ≥ 1. (20)
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• The group orders #Ea(F2m) are easily computed via

#Ea(F2m) = 2m + 1− Vm. (21)

This identity follows from the basic properties of zeta functions of curves; [11].

The Norm. Thenormof an elementα ∈ Z[τ ] is the product ofα and its complex conjugate
α. Explicitly, the norm ofδ := d0+ d1 τ is

N(δ) = d2
0 + µd0 d1+ 2d2

1 .

We will require the following properties of the norm.

• The norm function satisfies

N(α β) = N(α) N(β) (22)

for all α, β in Z[τ ].

• The Euclidean distance fromα to 0 in the complex plane is given by
√

N(α). Thus the
Triangle Inequality takes the form√

N(α + β) ≤
√

N(α)+
√

N(β). (23)

• We will require the norms of some specific elements. It is easily checked that

N(τ ) = 2

and that

N(τ − 1) = f

where f is as given in (11).

Finally,

N(τm − 1) = #Ea(F2m) (24)

(see [22]). (As an alternative to (21), the order of a Koblitz curve can be computed
using this identity and (19).)

Sinceτ − 1 dividesτm − 1, it follows that f divides #Ea(F2m) and that

N
(
(τm − 1)/(τ − 1)

) = #Ea(F2m)/ f. (25)

• The ringZ[τ ] is Euclidean with respect to the norm function [23]. That is, given an
elementγ and a nonzero elementδ, there exist elementsκ andρ such thatγ = δ κ +ρ
and

N(ρ) < N(δ). (26)

As a result of this property, the ringZ[τ ] has unique factorization. The elementτ ,
having prime norm, is a prime element.
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4.2. Theτ -adic NAF

The complex multiplication property is useful for elliptic scalar multiplication because mul-
tiplication byτ , being implemented by squaring, is essentially free whenF2m is represented
in terms of a normal basis.7 Thus it is worthwhile, when computingnP, to regardn as an
element ofZ[τ ] rather than as “just” an integer. More precisely, one replaces the (signed)
binary expansion of the coefficient with a (signed)τ -adic expansion. That is, one represents
n as a sum and difference of distinct powers ofτ .

For example, witha = 1 we have

9= τ 5− τ 3+ 1. (27)

Thus, if P = (x, y) is a point onE1, then

9P = (x32, y32)− (x8, y8)+ (x, y).

The above example gives 9 as what we call aτ -adic NAF, since no two consecutive
terms are nonzero. (Both [10] and [18] use signedτ -adic expansions, but neither kind has
the nonadjacency property.) As we shall see, the use ofτ -adic NAF’s gives a significant
reduction in the number of terms, just as NAF’s give a significant improvement over binary
expansions in the case of integers.

The remainder of this section is dedicated to proving the following result, which is
analogous to the case of the ordinary NAF for integers.

THEOREM1 Every element of the ringZ[τ ] has a uniqueτ -adic NAF.

We can therefore speak oftheτ -adic NAF of an elementα. We will denote it by TNAF(α).
Thus (27) is written

TNAF(9) = 〈1,0,−1,0,0,1〉.

In the course of proving Thm. 1, we will develop an efficient algorithm for computing the
τ -adic NAF for any element ofZ[τ ].

LEMMA 28 The element c0 + c1 τ of Z[τ ] is divisible byτ if and only if c0 is even. It is
divisible byτ 2 if and only if

c0 ≡ 2c1 (mod 4). (29)

Proof. If µ is defined as in (14), then

(d0+ d1 τ) τ = −2d1+ (d0+ µd1) τ.

It follows at once that, ifτ dividesc0+ c1 τ , thenc0 is even.
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Conversely, ifc0 is even, then

c0+ c1 τ

τ
= µ c0+ 2c1

2
− c0

2
τ

is an element ofZ[τ ].
To prove the corresponding statements forτ 2, we begin with the identity

τ 2 = µτ − 2.

It follows that every multiple ofτ 2 has the form

(d0+ d1 τ) (µ τ − 2) = −2(d0+ µd1)+ (µd0− d1) τ.

It is easily verified that the values

c0 = −2(d0+ µd1)

c1 = µd0− d1

satisfy (29). Conversely,

c0+ c1 τ

τ 2
= − (1+ 2µ) c0+ 2µ c1

4
+ µ · c0− 2c1

4
τ,

which is easily seen to be an element ofZ[τ ] if (29) holds.

In light of (28), we have the following algorithm (joint work with R. Reiter) for computing
theτ -adic NAF. It is completely analogous to (4), but here we are dividing byτ rather than
by 2. Sinceτ has norm 2, then by (26), the possible remainders upon division byτ are
±1. Earlier algorithms chose the remainder that minimized the norm of the quotient; this is
analogous to the basic division algorithm for generating the binary expansion of an integer.
What we shall do instead is to choose the remainder that makes the quotient divisible byτ .
This is analogous to the computation of the NAF for integers.

ALGORITHM 1 (τ -adic NAF)

Input:
integers r0, r1

Output:
TNAF(r0+ r1 τ)

Computation:
Set c0← r0, c1← r1

Set S ← 〈 〉
While c0 6= 0 or c1 6= 0

If c0 odd
then
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Figure 2. Computing aτ -adic NAF.

set u← 2− (c0− 2c1 mod 4)
set c0← c0− u

else
set u← 0

Prepend u to S
Set (c0, c1)← (c1+ µ c0/2,−c0/2)

EndWhile
Output S

For example, to derive (27), one applies Alg. 1 witha = 1, c0 = 9, andc1 = 0. The results
are shown in Fig. 2.

Note that the implementation of Alg. 1 involves nothing more complicated than integer
addition. (This is slightly more than is required by (4), which only adds 1 to an integer.)

Having described how to compute aτ -adic NAF, we now prove that such a representation
is unique.

LEMMA 30 Letα ∈ Z[τ ]. Then precisely one of the following statements hold:

• α is divisible byτ .

• α ≡ 1 (modτ 2).

• α ≡ −1 (modτ 2).

Proof. Letα = c0+c1 τ . If c0 is even, thenτ dividesα by (28). Ifc0 is odd, then precisely
one of c0 ± 1 satisfies (29); thusτ 2 divides precisely one ofα ± 1,
by (28).
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COROLLARY 31 Letα ∈ Z[τ ]. Then any twoτ -adic NAF’s ofα have the same rightmost
entry.

Proof. Depending on which of the three possibilities hold forα, the rightmost entry of a
τ -adic NAF forα is 0, 1, or−1, respectively.

Proof of Thm. 1. The existence of theτ -adic NAF is established by Alg. 1. The uniqueness
follows from (31), using induction on the length of theτ -adic NAF.

4.3. Length and Density ofτ -adic NAF’s

To evaluate the usefulness of theτ -adic NAF as a substitute for an ordinary NAF, it is
necessary to know its Hamming weight (i.e. number of nonzero terms). In the case of the
ordinary NAF, the weight is calculated in terms of the length of the NAF (given by (5)) and
the density of nonzero terms (given by (7)). We now obtain analogous results forτ -adic
NAF’s.

The calculation of the density is trivial.

PROPOSITION32 The average density amongτ -adic NAF’s of length̀ is given by (7), and
is therefore asymptotically1/3.

Proof. The result follows from (7) since the same sequences occur as length-` NAF’s and
length-̀ τ -adic NAF’s.

The estimation of the length of a NAF is more involved. Intuitively, the answer should be

` ≈ log2(N(α)),

because Alg. 1 begins withα, and divides by the norm-2 elementτ in computing each entry
of theτ -adic NAF. Of course this ignores the effect of the additions and subtractions, but
provides a benchmark for the results to follow.

We begin with some notation and terminology. By thelengthof an element ofZ[τ ] we
mean the length of itsτ -adic NAF. LetNmax(k) denote the largest norm occurring among
all length-k elements ofZ[τ ].

LEMMA 33 For all k,

2 Nmax(k) ≤ Nmax(k+ 1).

Proof. If α is a length-k element of maximal norm, thenτα is an element of lengthk+ 1
and norm 2N(α).

COROLLARY 34 Nmax(k) is the largest norm occurring among all elementsα ofZ[τ ] whose
length is at most k.
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LEMMA 35 If c > e, then√
Nmax(c) ≤ 2e/2

√
Nmax(c− e)+

√
Nmax(e).

Proof. Let γ be a length-c element of maximal norm, so that

N(γ ) = Nmax(c). (36)

Let theτ -adic NAF ofγ be

TNAF(γ ) = 〈uc−1, . . . ,u0〉, (37)

and defineρ by

TNAF(ρ) = 〈ue−1, . . . ,u0〉. (38)

Thenρ has length at moste, so that

N(ρ) ≤ Nmax(e) (39)

by (34). Finally,

γ = τ e δ + ρ (40)

for someδ of lengthc− e; note that

N(δ) ≤ Nmax(c− e). (41)

It follows from the Triangle Inequality (23) that√
N(γ ) ≤ 2e/2

√
N(δ)+

√
N(ρ).

The result now follows by (36), (39), and (41).

For convenience we introduce the notation

Mk :=
√

2−k Nmax(k).

In this notation, (33) states that

Mk ≤ Mk+1 (42)

for all k, and (35) states that

Mc ≤ Mc−e+ 2−(c−e)/2 Me (43)

if c > e.
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PROPOSITION44 For d and q positive,

Mdq

1− 2−dq/2
≤ Md

1− 2−d/2
.

Proof. It follows from (43) that

M(k+1)d − Mkd ≤ 2−kd/2 Md

for k = 1, . . . , (q − 1). Summing overk, we obtain

Mdq − Md ≤ Md

q−1∑
k=1

(
2−d/2

)k
.

The result follows from summing the geometric series.

PROPOSITION45 For ` > d,

M` <
Md

1− 2−d/2
.

Proof. Let d q be the smallest multiple ofd greater than or equal tò. ThenM` ≤ Mdq

by (42), and

Mdq <
Md

1− 2−d/2

by (44).

COROLLARY 46 For ` > d,

Nmax(`) <
Nmax(d)

(2d/2− 1)2
· 2`.

The result (46) provides the basic upper bound for the norm of a length-` element. We
now derive a lower bound. LetNmin(k) denote the smallest norm occurring among all
length-k elements ofZ[τ ].

LEMMA 47 If c > e, then√
Nmin(c) ≥ 2e/2

√
Nmin(c− e)−

√
Nmax(e).

Proof. Let γ be a length-c element of minimal norm, so that

N(γ ) = Nmin(c). (48)

Let theτ -adic NAF ofγ be as in (37). Defineρ as in (38), andδ as in (40). Then

N(δ) ≥ Nmin(c− e) (49)
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and

N(ρ) ≤ Nmax(e), (50)

the latter following from (34). By the Triangle Inequality (23),√
N(γ ) ≥ 2e/2

√
N(δ)−

√
N(ρ).

The result now follows by (48), (49), and (50).

COROLLARY 51 For ` > 2d,

Nmin(`) >

(√
Nmin(d)−

√
Nmax(d)

2d/2− 1

)2

· 2`−d.

Proof. Follows from (46) and (47).

Combining (46) and (51), we obtain the main result of this section.

THEOREM2 Let` > 2d, and letα be a length-̀ element ofZ[τ ]. Then(√
Nmin(d)−

√
Nmax(d)

2d/2− 1

)2

· 2`−d < N(α) <
Nmax(d)

(2d/2− 1)2
· 2`.

To apply Thm. 2, we choose a small value ofd, and evaluateNmax(d) andNmin(d) by
direct evaluation of all length-d elements ofZ[τ ]. This is only feasible ifd is quite small,
but the resulting bounds are quite accurate.

For example, we apply Thm. 2 withd = 15. The bounds are

Nmax(15) = 47324 and Nmin(15) = 2996.

It follows that

1.399009614· 2`−4 < N(α) < .7301517653· 2`+1. (52)

In other words, the length of theτ -adic NAF is bounded by

log2(N(α))− .5462682713< ` < log2(N(α))+ 3.51559412 (53)

when` > 30.
To measure the quality of these bounds, we compare them with the norms and lengths of

some specific (infinite) families of elements.
Let a = 1 and

β := τ 14+ τ 11− τ 9+ τ 7− τ 4+ τ.
ThenN(β) = 2996, minimal among elements of length 15. Since

N(β) ≈ (1.4628906) · 211,
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it follows that, for anyk ≥ 0, the elementα := β τ k of length` := k+ 15 satisfies

N(α) ≈ (1.4628906) · 2`−4.

This exceeds the lower bound given in (52) by only a small amount.
Now leta = 1 and

β := τ 11− τ 9+ τ 6− τ 4+ τ.
ThenN(β) = 5842, maximal among elements of length up to 12. Let

γ := (τ 13− 1) β.

Clearly, theτ -adic NAF ofγ is the concatenation of two copies of that ofβ, separated by
a zero. Thusγ has length 25. Its norm is

N(γ ) = 5842· N(τ 13− 1)

by (22). Now

N(τ 13− 1) = 213+ 1− V13

by (24) and (21). Computing the Lucas elementV13 via (16), we find that

N(τ 13− 1) = 8374,

so that

N(γ ) ≈ (.7289783) · 226.

It follows that, for anyk ≥ 0, the elementα := γ τ k of length` := k+ 25 satisfies

N(α) ≈ (.7289783) · 2`+1.

This is just slightly under the upper bound given in (52).
It follows from (32) that the average Hamming weight among length-` TNAF’s is roughly

`/3. If we assume that this average value holds for the subset of TNAF’s of rational integers,
then it follows from (53) that the Hamming weightH of theτ -adic NAF for the integern
satisfies

H ≈ 2

3
log2 n. (54)

This is twice as large as the Hamming weight of an ordinary NAF, because theτ -adic
NAF is twice as long. If we replace the ordinary NAF by theτ -adic NAF, then, we will
have eliminated the elliptic doublings in our scalar multiplication method, but doubled the
number of elliptic additions. This largely mitigates the advantage of theτ -adic method.

Fortunately, this situation can be fixed. The solution is to replace theτ -adic NAF by an
equivalent expression, called areducedτ -adic NAF, that is only half as long.

Before presenting this, however, it is necessary to develop the machinery of modular
reduction in the ringZ[τ ].
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5. Modular Reduction in Z[τ ]

In this section, we define precisely what is meant by modular reduction in the ringZ[τ ],
and present an efficient method for implementing it.

Our technique is a generalization of the notion of modular reduction in the ringZ of
rational integers. Supposec andd > 1 are integers. It is desired to reducec modulod, i.e.
find the integer

ρ := c modsd

where the “mods” notation is as in §3.2. The integerρ can be found by integer division: if

Round(λ) := bλ+ 1/2c ,

then

ρ = c− κ d,

where

κ := Round(c/d).

A more compact way of describingρ is in terms of thefractional part operation. The
fractional part ofλ is defined to be

((λ)) := λ− Round(λ).

The modular reduction process can then be described by

ρ = d
(( c

d

))
. (55)

Since(( c

d

))
<

1

2
,

it follows that

N(ρ) <
N(d)

2
.

We now generalize these concepts to the ringZ[τ ].

5.1. Rounding and Fractional Parts inZ[τ ]

We begin by extending toZ[τ ] the definitions ofRound(λ) and((λ)). (The variableλ now
denotes the expressionλ0+ λ1 τ , where theλi are real numbers.)
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Figure 3. The regionU for the casea = 1.

We defineU to be the region in the(λ0, λ1)-plane given by the inequalities

−1 ≤ 2λ0+ µλ1 < 1

−2 ≤ λ0+ 4µλ1 < 2

−2 ≤ λ0− 3µλ1 < 2. (56)

(See Fig. 3 fora = 1 and Fig. 4 fora = 0.) Copies ofU tile the plane (see Fig. 5 for the
casea = 1), with each copy having as its center an element ofZ[τ ]. Givenλ ∈ Q(τ ),
we “round off” by choosing asκ ∈ Z[τ ] the center of the copy ofU containingλ. We will
denote this operation either by

(q0,q1) = Round(λ0, λ1)

or by

q0+ q1 τ = Round(λ0+ λ1 τ),

since there is no danger of confusion.
As in the integer case, we define

((λ)) := λ− Round(λ)

for all complexλ. It is easy to see that the set of possible values for((λ)) is precisely the
regionU .

We next prove the main properties of these operations.
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Figure 4. The regionU for the casea = 0.

Figure 5. Copies ofU for the casea = 1.
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PROPOSITION57 Suppose thatλ is in the interior of the regionU . Then

N(λ) <
4

7
.

Proof. The set of points in the(λ0, λ1)-plane of norm 4/7 forms the ellipse

λ2
0+ µλ0 λ1+ 2λ2

1 =
4

7
.

Now each of the six vertices ofU has norm 4/7, and so lies on the ellipse. SinceU is
convex, it lies entirely in the ellipse. The result follows from the fact that the points inside
the ellipse are those of norm less than 4/7.

PROPOSITION58 Suppose thatλ is in the interior of the regionU . Then

N(λ) < N(λ+ α)
for every nonzeroα ∈ Z[τ ].

Proof. It is straightforward to check that

N(λ) < N(λ± 1) if and only if |2λ0+ µλ1| < 1;
that

N(λ) < N(λ± τ) if and only if |µλ0+ 4λ1| < 2;
and that

N(λ) < N(λ± τ) if and only if |µλ0− 3λ1| < 2.

Sinceλ lies in the interior ofU , then by (56) it satisfies all three conditions. Thus the
result is proved forα = ±1, ±τ , ±τ . Now let α be any other nonzero element of
Z[τ ]. Then N(α) ≥ 4; andN(λ) < 4/7 by (57). Thus the result in this case follows
from (23).

The following properties follow from (57) and (58).

COROLLARY 59 If κ := Round(λ) andζ := ((λ)) = λ− κ, then:

• N(ζ ) ≤ N(ζ + α) for everyα ∈ Z[τ ].

• N(ζ ) ≤ 4

7
.

The first condition of (59) simply says thatRound(λ) is the element ofZ[τ ] closest toλ,
justifying the terminology. The second condition was proved in [18].

We now give an algorithm for computingRound(λ).
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ROUTINE 60 (ROUNDING OFF)

Input:
real numbersλ0, λ1 specifying the complex numberλ := λ0+ λ1 τ

Output:
real numbers q0, q1 specifying q0+ q1 τ := Round(λ)

Set f0← Round(λ0)

f1← Round(λ1)

Set η0← λ0− f0

η1← λ1− f1

Set h0← 0
h1← 0

Set η← 2η0+ µη1

If η ≥ 1
then

if η0− 3µη1 < −1
then set h1← µ

else set h0← 1
else

if η0+ 4µη1 ≥ 2
then set h1← µ

If η < −1
then

if η0− 3µη1 ≥ 1
then set h1←−µ
else set h0←−1

else
if η0+ 4µη1 < −2

then set h1←−µ
Set q0← f0+ h0

q1← f1+ h1

Output q0, q1

5.2. Division and Modular Reduction inZ[τ ]

We now use the rounding-off operation to develop algorithms for division and modular
reduction inZ[τ ].

The analogue of integer division is as follows. Given a dividendγ = c0 + c1 τ and a
divisorδ = d0+d1 τ , we wish to find a quotientκ = q0+q1 τ and a remainderρ = r0+r1 τ ,
such that

γ = κ δ + ρ
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and such thatρ is as small (in norm) as possible. To do this, we obtainκ by rounding off
γ /δ and then solving forρ. That is, we let

λ := γ

δ

= γ δ

N(δ)

= g0+ g1 τ

N
,

find κ via

κ := Round
(g0

N
+ g1

N
τ
)
, (61)

and obtainρ via

ρ := γ − κ δ.
The following algorithm gives these steps explicitly in terms of the coefficients.

ROUTINE 62 (DIVISION IN Z[τ ])

Input:
the dividendγ = c0+ c1 τ and divisorδ = d0+ d1 τ

Output:
the quotientκ = q0+ q1 τ and the remainderρ = r0+ r1 τ

Computation:
g0← c0 d0+ µ c0 d1+ 2c1 d1

g1← c1 d0− c0 d1

N ← d2
0 + µd0 d1+ 2d2

1
λ0← g0/N
λ1← g1/N
(q0,q1)← Round(λ0, λ1)

r0← c0− d0 q0+ 2d1 q1

r1← c1− d1 q0− d0 q1− µd1 q1

Output q0, q1, r0, r1

If we disregard the quotientκ and only output the remainderρ, this routine may be viewed
as a modular reduction algorithm. In this case, we write

ρ := γ modδ.

In analogy with (55) we have

ρ = δ
((γ
δ

))
. (63)
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It follows via the first item of (59) that the remainder as we have defined it does indeed have
norm as small as possible. It follows via the second item of (59) that

N(ρ) ≤ 4

7
N(δ). (64)

This represents a strengthening of the ordinary Euclidean condition (26) for this particular
ring.

6. Reducedτ -adic NAF’s

Having developed the modular reduction operation inZ[τ ], we now define the reduced
τ -adic NAF and apply it to the problem of efficient elliptic scalar multiplication.

6.1. Equivalence ofτ -adic NAF’s

We recall from the discussion at the end of §4.3 that our goal is a reducedτ -adic NAF for
n, equivalent to the ordinaryτ -adic NAF forn but only half as long.

We first define what we mean byequivalent.Let G be a set of points on a Koblitz curve,
and suppose thatγ andρ are two elements ofZ[τ ] for which γ P = ρ P for all P ∈ G.
Then we say that TNAF(γ )and TNAF(ρ)areequivalentwith respect toG. The terminology
comes from the fact either TNAF(γ ) or TNAF(ρ) can be used to multiply a point inG by
γ .

The following result of [18] gives a simple condition for twoτ -adic NAF’s to be equivalent
with respect to the entire setG := Ea(F2m) of F2m-rational points onE.

PROPOSITION65 If γ andρ are elements ofZ[τ ] with

γ ≡ ρ (mod τm − 1), (66)

then

γ P = ρ P

for all P ∈ Ea(F2m). ThusTNAF(γ ) andTNAF(ρ) are equivalent with respect to Ea(F2m).

Proof. Applying the mapping (15)m times toP := (x, y), we obtain

τm P = (x2m
, y2m

).

But x2m = x andy2m = y sincex andy are elements ofF2m. Thus

τm P = P
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for all P ∈ Ea(F2m). It follows that

(τm − 1) P = O (67)

for all P ∈ Ea(F2m).
Suppose now that (66) holds. Then

γ = ρ + κ · (τm − 1)

for someκ ∈ Z[τ ]. Therefore

γ P = ρ P + κ · (τm − 1) P

= ρ P + κ O
= ρ P +O
= ρ P,

proving the result.

6.2. Equivalence for Points of Prime Order

One can sharpen (65) in the case of cryptographic interest, namely the main subgroup in
a Koblitz curve of very nearly prime order (see §4.1). As in that section, the order of the
curve is

#Ea(F2m) = f · r,
wherer is prime andf = 2 or 4 according to (11). By (25), the element

δ := (τm − 1)/(τ − 1) (68)

has normr .
In this section, we will show that one can weaken the hypotheses of (65) and still retain

equivalence with respect to the main subgroup.

PROPOSITION69 Let P be a point in the main subgroup in a Koblitz curve of very nearly
prime order, and defineδ as in (68). Then

δ P = O.

Proof. By (12), there is a pointQ such thatP = f Q. By (67), we have

(τm − 1) Q = O.
By (68), it follows that

δ · (τ − 1) Q = O. (70)
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Applying the operationτ − 1 to both sides of (70), we obtain

O = δ · (τ − 1) · (τ − 1) Q

= δ · N(τ − 1) Q

= δ · f Q

= δ P,

proving the result.

THEOREM3 Let P be a point in the main subgroup in an Koblitz curve of very nearly prime
order, and defineδ as in (68). Ifγ andρ are elements ofZ[τ ] with

γ ≡ ρ (mod δ),

then

γ P = ρ P.

ThusTNAF(γ ) andTNAF(ρ) are equivalent with respect to the main subgroup.

Proof. The result follows from (69) in the same way as (65) follows from (67).

6.3. The Reducedτ -adic NAF

Suppose thatEa(F2m) has very nearly prime order, and thatr is the order of the main
subgroup. Letn be a positive integer less thanr/2, and letδ be as in (68). We define the
reducedτ -adic NAFof n to be

RTNAF(n) := TNAF(ρ),

where

ρ := n modδ.

It follows from Thm. 3 that RTNAF(n) and TNAF(n) are equivalent with respect to
the main subgroup. Thus RTNAF(n) can be used in place of TNAF(n) for elliptic scalar
multiplication in the main subgroup. It follows from the next theorem that this is a more
efficient choice.

THEOREM4 The average Hamming weight among reducedTNAF’s is∼ m/3.

Proof. Since the Hamming weight of an RTNAF is the product of its length and its density,
we estimate both. We begin with the length.

It follows from (21) that

r = 2m−2+a − (Vm − 1)2a−2; (71)
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thus

r = 2m−2+a + O(2m/2)

by (18). Now

N(ρ) ≤ 4

7
r

by (64), so that

N(ρ) ≤ 2m+a

7
+ O(2m/2).

By (53), we may conclude that the length`RTNAF of RTNAF(n) satisfies

`RTNAF < m+ a+ .7082392.

Since`TNAF is an integer, it follows that

`RTNAF ≤ m+ a. (72)

We now consider the density of a RTNAF. B. Poonen has outlined a proof8 that the
TNAF’s of integers moduloτm − 1 have average density 1/3+ o(1) asm increases. The
proof is easily modified to the case of RTNAF’s. The result now follows via (72).

It follows from (54) that the RTNAF has about half the weight of the ordinaryτ -adic NAF.
By (8), the weight of RTNAF(n) is about equal to that of NAF(n). Thus, replacing NAF(n)
by RTNAF(n) eliminates the elliptic doubles and keeps roughly constant the number of
elliptic additions. We have therefore solved the difficulty mentioned at the end of §4.3.

7. Elliptic Scalar Multiplication on Koblitz Curves

We have now identified the procedure to use for elliptic scalar multiplication on a Koblitz
curve, namely the analogue of the binary method using the RTNAF. We now present the
explicit algorithms for computing the RTNAF, and give the elliptic scalar multiplication
algorithms. Finally, we develop theτ -adic analogue of the window method.

7.1. Computing the Reducedτ -adic NAF

To give an algorithm for computing the reducedτ -adic NAF, we need only specialize the
modular reduction algorithm (62) to the case of reducing an integern moduloδ.

Thus we setγ := n, and letδ = d0 + d1 τ be the norm-r element given by (68). Then
the integersgi appearing in (62) are

gi := si n,
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where

s0 := d0+ µd1

s1 := −d1.

The integerssi can be expressed in terms of the Lucas sequenceUk via

si = (−1)i

f
(1− µUm+3−a−i ) , (73)

where f is as in (11) andµ is as in (14). Since the Lucas sequenceUk can be computed
efficiently, so can the integerssi . They need only be computed once per curve. Once that
is done, the reduction method is as follows.

ROUTINE 74 (REDUCTION MODULO (τm − 1)/(τ − 1)))

Per-Curve Parameters:
m, a, s0, s1, r

Input:
n

Output:
integers r0, r1 specifying r0+ r1 τ := n mod(τm − 1)/(τ − 1)

Computation:
d0← s0+ µ s1

λ0← s0 n/r
λ1← s1 n/r
(q0,q1)← Round(λ0, λ1) (via (60))
r0← n− d0 q0− 2s1 q1

r1← s1 q0− s0 q1

Output r0, r1

Note that one could stored0 rather than computing it during each reduction. This would
save one integer addition per reduction, but require an additional∼ m/2 bits of memory.

It will be helpful to have a geometric description of the the elementsρ resulting from
reducing moduloδ the integersn with 0 ≤ n < r . Following [4], we define theVoronoi
region

V := {δ λ : λ ∈ U}.
More explicitly,V is given by the equations

−r ≤ (2d0+ µd1) λ0+ (µd0+ 4d1) λ1 < r

−2r ≤ (d0+ 4µd1) λ0− (3µd0− 2d1) λ1 < 2r

−2r ≤ (d0− 3µd1) λ0+ (4µd0+ 2d1) λ1 < 2r.
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PROPOSITION75 The lattice points

λ0+ λ1 τ, λi ∈ Z

in V are precisely the elements

n modδ, 0≤ n < r. (76)

Proof. It follows from (63) that every element (76) must be a lattice point inV. We must
now prove the converse,i.e. that every lattice point inV is the result of reducing moduloδ
an integern.

We know that every lattice point inV is the result of reducing moduloδ an element of
Z[τ ]. Since the lattice points are incongruent moduloδ, this means that they correspond to
the elements ofZ[τ ]/δ Z[τ ]. Now, sinceδ has normr , then

Z[τ ]

δ Z[τ ]
∼= Z

r Z
.

Thus there are preciselyr lattice points inV. Finally, since

Z ∩ δ Z[τ ] = r Z

(see [23]), the integers 0, 1, . . . , r − 1 are incongruent moduloδ; thus ther elements (76)
are distinct. Thus each of ther lattice points inV is an element (76) for somen.

Finally, we combine the modular reduction routine (74) with Alg. 1 to obtain the following
algorithm for computing the reducedτ -adic NAF.

ALGORITHM 2 (Reducedτ -adic NAF)

Parameters:
m, a, s0, s1, r

Input:
a positive integer n

Output:
RTNAF(n)

Computation:
Compute ρ ← n modδ (via (74))
Compute S ← TNAF(ρ) (via Alg. 1)
Output S
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7.2. Theτ -adic Method for Elliptic Scalar Multiplication

We now apply the reducedτ -adic NAF to produce an efficient procedure for performing
elliptic scalar multiplication on the main subgroup ofEa(F2m). This is done by modify-
ing Alg. 2 in the same way as was done for (4). This produces the following analogue
of (6).

ALGORITHM 3 Scalar Multiplication on Koblitz Curves

Per-Curve Parameters:
m, a, s0, s1, r

Input:
n, a positive integer less than r/2
P, a point in the main subgroup

Output:
nP

Computation:
Compute (r0, r1)← n modδ (via (74))
Set Q← O

P0← P
While r0 6= 0 or r1 6= 0

If r0 odd then
set u← 2− (r0− 2r1 mod 4)
set r0← r0− u
if u = 1 then set Q← Q+ P0

if u = −1 then set Q← Q− P0

Set P0← τ P0 (=RightShift[ P0])
Set (r0, r1)← (r1+ µ r0/2,−r0/2)

EndWhile
Output Q

Since` ≈ m, then Alg. 3 requires∼ m/3 additions and no doubles. This is at least
50% faster than any of the earlier versions, as shown in Table 1. The “length” and “den-
sity” columns in Table 1 give the approximate length of the relevant representation of the
number and the average density of nonzero terms. The density figure of 3/8 for Koblitz’
“balanced” expansions is from experimental observation and may be only an approxima-
tion.

It should also be noted that the advantage of the threeτ -adic methods over the general
methods is slightly overstated in Table 1, since doubling is more efficient than adding on a
general elliptic curve.
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Table 1.Comparison of elliptic scalar multiplication techniques.

Avg. # of
Type of Length of Avg. Elliptic
Curve Method Expansion Density Operations

General Binary Method m 1/2 3m/2
’’ Addition-Subtraction (1989) m 1/3 4m/3

Koblitz Koblitz, Balanced (1991) 2m 3/8 3m/4
’’ Meier-Staffelbach (1992) m 1/2 m/2
’’ τ -adic NAF (1997) m 1/3 m/3

7.3. The Width-w τ -adic NAF

It remains to extend Alg. 3 to a “τ -adic window method” analogous to (10). In order to do
this, we first develop a width-w τ -adic NAF.

In order to motivate our method, we recall the strategy used in the ordinary width-w

window method. With that method, we precompute and store the pointsu P as u runs
over representatives of each odd congruence class (mod 2w). When an odd integerc is
encountered, thew rightmost bits are examined to determine which congruence class (mod
2w) containsc. The corresponding pointeP is subtracted off, and the new coefficientc−e
is divisible by 2w.

For aτ -adic window method, we precompute and store a point corresponding to each
odd congruence class (modτw). (By “odd” is meant that the elemente0+e1 τ has odde0.)
When an odd elementr0+ r1 τ is encountered, we must determine which congruence class
(modτw) containsr0+ r1 τ . We can then subtract off the representative of that congruence
class and produce a new coefficient which is divisible byτw.

In analogy with the ordinary case, we can make the determination by examining thew

rightmost bits of the appropriate combination ofr0 andr1. Define the quantitiestk via

tk := 2Uk−1 U−1
k (mod 2k).

Since the Lucas elementsUk are odd, it follows thattk is a well-defined integer modulo 2k

that is even but not divisible by 4. Therefore

t2
k − µ tk + 2≡ 0 (mod 2k)

by (20). Thustk satisfies the same polynomial equation overZ/2kZ thatτ satisfies over the
complex numbers. It follows that the correspondenceτ 7→ tk induces a ring homomorphism
fromZ[τ ] ontoZ/2kZ via

φk: Z[τ ] −→ Z/2kZ

u0+ u1 τ 7−→ u0+ u1 tk.

It is easy to see that the odd elements ofZ[τ ] correspond precisely to the odd elements of
Z/2kZ.

We now compute the kernel of the mappingφk.

158



EFFICIENT ARITHMETIC ON KOBLITZ CURVES 229

LEMMA 77 Letα ∈ Z[τ ]. Thenφk(α) = 0 if and only ifα is divisible byτ k.

Proof. Sinceφk(τ ) = tk ≡ 2 (mod 4), it follows thatφk(τ
j ) = t j

k is divisible by 2j but
not by 2j+1. Thus the power of 2 dividingφk(α) is the power ofτ dividing α.

It follows that each congruence class (modτ k) in Z[τ ] corresponds underφk with an
element ofZ/2kZ. Moreover, the odd congruence classes (modτ k) in Z[τ ] correspond
underφk with the odd elements ofZ/2kZ.

We now apply these results to construct a width-w TNAF. It follows from the above
correspondence that the odd numbers

±1, ±3, . . . ,±(2w−1− 1)

are incongruent moduloτw. Therefore, if

αu := u modτw,

then the numbers

±α1, ±α3, . . .± α2w−1−1

also incongruent moduloτw. If one precomputes the numbersαu, then there is the following
simple algorithm for generating a width-w τ -adic NAF.

ALGORITHM 4 (Width-w τ -adic NAF)

Parameters:
a, w, tw
αu := βu + γu τ for u = 1, 3, . . . , (2w−1− 1)

Input:
an elementρ := r0+ r1 τ ofZ[τ ]

Output:
TNAFw(ρ)

Computation:
Set S ← 〈 〉
While r0 6= 0 or r1 6= 0

If r0 odd
then

set u← r0+ r1 tw mods 2w

if u > 0
then

ξ ← 1
else

ξ ←−1
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u←−u
set r0← r0− ξ βu

set r1← r1− ξ γu

prepend ξ αu to S
else

prepend 0 to S
Set (r0, r1)← (r1+ µ r0/2,−r0/2)

EndWhile
Output S

As before, we define thereduced width-w τ -adic NAFof n to be

RTNAFw(n) := TNAFw(ρ),

where

ρ := n modδ.

The following algorithm uses the reduced width-w τ -adic NAF to perform elliptic scalar
multiplication.

ALGORITHM 5 τ -adic Width-w Window Method

Per-Curve Parameters:
m, a, s0, s1, r , w, tw
αu := βu + γu τ for u = 1, 3, . . . , (2w−1− 1)

Input:
a positive integer n
an elliptic curve point P

Output:
the point nP

Precomputation:
ComputePu := αu P for u = 1, 3, . . . , (2w−1− 1)

Computation:
Set j ← 0
Compute (r0, r1) := n mod δ (via (74))
Set Q← O
While r0 6= 0 or r1 6= 0

If r0 odd
then

set u← r0+ r1 tw mods 2w

if u > 0
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then
ξ ← 1

else
ξ ←−1
u←−u

set Q← Q+ ξ Pu

Set j ← j + 1
Set Q← τ−1Q =LeftShift[ Q]
Set (r0, r1)← (r1+ µ r0/2,−r0/2)

EndWhile
Set Q← τ j Q =RightShift[ Q] ( j times)

Output Q

Alg. 5 is a right-to-left window algorithm. We saw in §3.2 that this is usually impossible,
but it can be done in the case of Koblitz curves because the Frobenius mapτ can be inverted
efficiently.

7.4. Performance

We now discuss the performance of Alg. 5.
The precomputation involves computing and storing 2w−2−1 points. For practical values

of w, this requires 2w−2 − 1 elliptic additions and no storage beyond that needed to store
the precomputed points. We illustrate forw = 5, a = 1.

In this case, the precomputation is to produceαu P for u = 3, 5, 7, . . . , 15. The numbers
αu have the following TNAF’s.

α3 = τ 2− 1

α5 = τ 2+ 1

α7 = −τ 3− 1

α9 = −τ 5− τ 3+ 1= −τ 3 α5+ 1

α11 = −τ 4− τ 2− 1= −τ 2 α5− 1

α13 = −τ 4− τ 2+ 1= −τ 2 α5+ 1

α15 = τ 4− 1

Therefore, the pointsPu := αu P can be computed as follows.

P3 = τ 2 P − P

P5 = τ 2 P + P

P7 = −τ 3 P − P

P9 = −τ 3 P5+ P
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Table 2.Performance at various widths.

Number of Elliptic Operations

Width Precomp- Real Time Total
utation (avg) (avg)

2 0 54.3 54.3
3 1 40.8 41.8
4 3 32.6 35.6
5 7 27.2 34.2
6 15 23.3 38.3
7 31 20.4 51.4

P11 = −τ 2 P5− P

P13 = −τ 2 P5+ P

P15 = τ 4 P − P

Since multiplication byτ is essentially free, computing each pointPu requires one elliptic
addition.

This approach works for allw from 3 to 8, and most likely for largerw as well.
The main computation is performed on a sequence of length∼ m and average density

(w + 1)−1. It follows that a scalar multiplication onEa(F2m) requires

∼ 2w−2− 1+ m

w + 1
(78)

elliptic additions on average.
Table 2 gives the performance of Alg. 5 on the curveE1(F2163) for various widths, based

on the estimate (78). (Entries are rounded to the nearest tenth of an integer.) The case
w = 2 is just Alg. 3. By choosingw = 5, one saves well over one-third the work. For
largerw, the precomputation costs overshadow any savings on the real-time computation.
Thus such larger widths would only be used for a long-term fixed pointP (e.g.a public
key).

It is remarkable that one can perform a general elliptic scalar multiplication onE1(F2163)

using only about 34 multiplicative inversions and 68 field multiplications.
One could obtain still further speedups by using more general window methods. These

would be straightforward adaptations of existing methods such as those found in [13].
On the other hand, such methods are less automatic than the above fixed-width-window
technique, so that more complicated up-front calculations are needed.

8. Efficient Modular Reduction

The modular reduction algorithm (74) is central to computing the reducedτ -adic NAF, but
it can be expensive to implement. The main computational difficulty is in the divisions
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necessary in computing the expression (61). The purpose of this section is to present an
equivalent method which is far more efficient.

8.1. Partial Modular Reduction

The equivalent method involves replacing the modular reduction process (74) by a simplified
technique calledpartial modular reduction. As a result, one obtains an elementρ ′ ∈ Z[τ ]
that is congruent ton moduloδ, but not necessarily of minimal norm.

This is done by replacing the rational numbersλi by approximationsλ′i which can be
computed more efficiently. We denote byC the number of bits of accuracy of the approxi-
mationsλ′i . The largerC is, the more work is required in computingλ′i , but the greater the
likelihood thatλ′i will actually equalλi .

We begin by presenting the algorithm for computingλ′i . We call this processapproximate
divisionbecause it replaces the division used to computesi n/r by twoK -bit multiplications,
where

K := m+ 5

2
+ C. (79)

ALGORITHM 6 (Approximate Division by r)

Per-Curve Parameters:
si , r
Vm (see§4.1)

Input:

a positive integer n less than r/2

Output:

λi := si n/r to C bits of accuracy

Computation:

1 n′ ←
⌊ n

2m−K−2+a

⌋
2 g′ ← si n′

3 h′ ←
⌊

g′

2m

⌋
4 j ′ ← Vm h′

5 `′ ← Round

(
g′ + j ′

2K−C

)
6 Output λ′ := `′ / 2C .
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When the output of Alg. 6 is used in the modular reduction process (74), the resulting
algorithm is what we callpartial reductionmoduloδ := (τm− 1)/(τ − 1). We shall write

ρ ′ = n partmodδ

for the result. The explicit algorithm is as follows.

ALGORITHM 7 (Partial Reduction modulo(τm − 1)/(τ − 1))

Per-Curve Parameters:
m, a, s0, s1, r

Input:
n

Output:
integers r′0, r ′1 specifying r′0+ r ′1 τ := n partmodδ

Computation:
d0← s0+ µ s1

λ′0← s0 n/r to ∼ K places via Alg. 6
λ′1← s1 n/r to ∼ K places via Alg. 6
(q′0,q

′
1)← Round(λ′0, λ

′
1)

r ′0← n− d0 q′0− 2s1 q′1
r ′1← s1 q′0− s0 q′1
Output r ′0, r ′1

We define thepartially reducedτ -adic NAFof n by

PRTNAF(n) := TNAF(ρ ′).

The elementρ ′ is congruent ton moduloδ, since

ρ ′ = n− κ ′ δ

whereκ ′ := q′0+q′1 τ . Therefore, PRTNAF(n) and TNAF(n) are equivalent with respect to
the main subgroup. Thus PRTNAF(n) can be used in place of TNAF(n) for elliptic scalar
multiplication in the main subgroup.

On the other hand,ρ ′ may not be of minimal norm, asρ would have been. Thus
PRTNAF(n) may be longer than RTNAF(n). If so, then more elliptic operations will
be required in the scalar multiplication step. This would mitigate, and in all likelihood wipe
out, the savings in avoiding the integer divisions in (74).

We examine this question in the next section. In particular, we shall prove that PRTNAF(n)
is never much longer than RTNAF(n). More importantly, we will show that the probability
that RTNAF(n) 6= PRTNAF(n) can be made arbitrarily small, so that the possibility need
not trouble us in practice.
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8.2. Analysis of Partial Modular Reduction

We begin by analyzing the computational requirements of the partial modular reduction
process.

PROPOSITION80 Partial modular reduction, as implemented by Algs. 6 and 7, requires
eight K -bit multiplications and no integer divisions, where K is given by (79).

Proof. Since Alg. 7 requires two executions of Alg. 6 (one for eachi ), a total of eight
multiplications is required. No integer divisions are required since all denominators are
powers of 2, so that the required divisions are implemented by simple bit shifts.

The only remaining issue is the number of bits in the numbers to be multiplied. Those
numbers aren′, h′, Vm, d0, andsi andq′i for i = 0, 1. Each must be less than 2K in absolute
value.

The desired bound onn′ follows from the fact thatn < r/2. The bounds forsi , d0, and
Vm come from (18) via (73). From these bounds is derived the bound forh′, along with

|λ′i | < 2(m−1)/2

for eachi . Thus|q′i | < 2K .

We next address the accuracy of partial modular reduction.

THEOREM5 If λi := gi /r , andλ′i is the approximation obtained by Alg. 6, then

|λi − λ′i | < 2−C.

Proof. It follows from (71) that

gi

r
= gi

2m−a+2
+ (Vm − 1) gi

22m−a+2
+ (Vm − 1)2 gi

22m r
,

so that

gi

r
= gi

2m−a+2
+ Vm gi

22m−a+2
+ O(2−m/2).

Therefore

2K gi

r
= gi

2m−K−a+2

(
1+ Vm

2m

)
+ O(2K−m/2). (81)

Now it follows from the definition ofg′ that∣∣∣ gi

2m−K−a+2
− g′

∣∣∣ < |si |.

Thus by (81),

2K gi

r
= g′ + g′ Vm

2m
+ θ0 si + O(2K−m/2)
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for someθ0 with |θ0| < 1. It follows from the definition ofj ′ that∣∣∣∣ j ′ − g′ Vm

2m

∣∣∣∣ < |Vm|.

Thus

2K gi

r
= g′ + j ′ + θ0 si + θ1 Vm + O(2K−m/2)

for someθ1 with |θ1| < 1. It follows that

2K gi

r
= g′ + j ′ + θ (|si | + |Vm|)

for someθ with |θ | < 1. Now

|si | + |Vm| < 21+m/2+ 2(m−1)/2

< 2(m+3)/2

≤ 2K−C−1,

so that∣∣∣∣2K gi

r
− (g′ + j ′)

∣∣∣∣ < 2K−C−1.

It follows that∣∣∣∣2C gi

r
− g′ + j ′

2K−C

∣∣∣∣ < 1

2
,

so that∣∣∣∣2C gi

r
− `′

∣∣∣∣ < 1.

Dividing this equation by 2C gives the result.

8.3. Worst-Case Effect of Partial Modular Reduction

In this section and the next, we retain the notationκ, ρ for the results of modular reduction
andκ ′, ρ ′ for the results of partial modular reduction ofn moduloδ.

We have seen that

N(ρ) ≤ 4

7
r,

and that therefore the TNAF(ρ) has length at mostm+ a. (See Thm. 4.) We now obtain
corresponding results forρ ′.
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LEMMA 82 If ρ ′ := n partmodδ, then

N(ρ ′) ≤
(

2√
7
+
√

N(ε)

)2

r,

whereε = κ − κ ′.
Proof. Since

ρ ′ − ρ = (n− κ ′ δ)− (n− κ δ)
= ε δ,

then √
N(ρ ′) ≤

√
N(ρ)+

√
N(ε)
√

r

by the Triangle Inequality (23). The result then follows from (64).

THEOREM6 If C ≥ 2, then the length ofPRTNAF(n) is at most m+ a+ 3.

Proof. By Thm. 5,∣∣λi − λ′i
∣∣ < 1

4

for eachi . It is easy to deduce thatλ andλ′ are either in the same copy ofU or adjacent
copies. It follows that the centers of those copies satisfy

κ − κ ′ = 0, ±1, ±τ, or ± τ .
ThusN(κ − κ ′) ≤ 2, so that

N(ρ ′) < 4.7095185r

by (82). It follows via (53) that the length of TNAF(ρ ′) is less thanm+ a + B, where
B = 3.7511737. The result now follows from the fact that the length must be an integer.

Thm. 6 states that the upper bound for the length of the PRTNAF is three bits higher than
the corresponding bound for the RTNAF. In any given instance, the difference in length
need not be three bits, since neither TNAF need attain its maximum possible length. Indeed,
we will next prove that the two TNAF’s are identical almost all of the time.

8.4. Practical Effect of Partial Modular Reduction

PROPOSITION83 Let T > 0 and λ := g/r , where g is an integer not divisible by r for
which

|g modsr | ≤ r

2
− T. (84)
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(The “mods” notation is as in§3.2.) If z is a rational number with

|z− λ| < T

r
,

then

Round(λ) = Round(z).

Proof. The inequality (84) can be rewritten as

| ((λ)) | ≤ 1

2
− T

r
.

If κ = Round(λ), then,

|λ− κ| ≤ 1

2
− T

r
.

Therefore

|z− κ| ≤ |z− λ| + |λ− κ|

<
T

r
+
(

1

2
− T

r

)
≤ 1

2
,

so thatRound(z) = κ.

COROLLARY 85 Let T > 0, and let s be an integer not divisible by r. Ifε is a real number
with

|ε| < T

r
,

then

Round
(s n

r

)
= Round

(s n

r
+ ε

)
for all n between0 and r/2, with at most T exceptions.

Proof. By (83), the only exceptions are the values ofn for which

r

2
− T ≤ |s nmodsr | < r

2
.

The following result is proved similarly to (85).
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PROPOSITION86 Let T > 0, and let s be an integer not divisible by r. If

|ε| < T

r
,

then ⌊s n

r

⌋
=
⌊s n

r
+ ε

⌋
for all n between0 and r/2, with at most T exceptions.

LEMMA 87 Let r be an odd prime, and let s0 and s1 be integers not divisible by r. For n
an integer between0 and r/2, let λi := si n/r for i = 0, 1. For each i, write

λi = λ′i + δi

where

|δi | < L

r
. (88)

Then

Round(λ0, λ1) = Round(λ′0, λ
′
1)

for all values of n with at most14L exceptions.

Proof. We examine the quantitiesfi , ηi , andhi which are computed in the course of
executing the algorithm (60) onλ0+λ1 τ , and compare them to the corresponding quantities
f ′i , η′i , andh′i from the same computation onλ′0+ λ′1 τ .

It follows from (85) with T := L andε := δ0 that f0 = f ′0 for all n with at mostL
exceptions. Similarly,f1 = f ′1 for all n with at mostL exceptions. Therefore, we have
fi = f ′i for both i , for all n with at most 2L exceptions.

For each nonexceptionaln, we have

ηi = η′i + δi

for eachi . It follows that

|η − η′| = |2δ0+ µδ1|

<
3 L

r
.

It follows from (86) withT := 3L andε := η − η′ that

bηc = bη′c

for all n with at most 3L exceptions. For thesen,

η ≥ 1 if and only ifη′ ≥ 1
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and

η < −1 if and only ifη′ < −1.

Similarly, one finds that

η0− 3µη1 ≥ 1 if and only ifη′0− 3µη′1 ≥ 1,

η0− 3µη1 < −1 if and only ifη′0− 3µη′1 < −1

for all n with at most 4L exceptions; and that

η0+ 4µη1 ≥ 2 if and only ifη′0+ 4µη′1 ≥ 2,

η0+ 4µη1 < −2 if and only ifη′0+ 4µη′1 < −2

for all n with at most 5L exceptions.
It follows that all of the above conditions hold for alln, with at most 14L exceptions.

For each nonexceptionaln, we havefi = f ′i for bothi , and all of theif conditions in (60)
evaluate the same for the two computations. Thushi = h′i for i = 0,1. It follows that
q0 = q′0 andq1 = q′1, for each nonexceptionaln.

THEOREM7 If partial modular reduction with an accuracy of C bits is used, then the
probability thatρ 6= ρ ′ is less than

Prob < 2−(C−5).

Proof. Let L := 2−Cr . Then (88) holds by Thm. 5. By (87), the number ofn for which
ρ 6= ρ ′ is at most 14L; thus the probability that this happens is at most

14L

r/2
<

1

2C−5
.

8.5. Conclusion

We now summarize the advantages and disadvantages of partial modular reduction.
If ordinary modular reduction (74) is used, then fourK -bit multiplications are required,

whereK := (m+ 3)/2. Also, two divisions are required, where the dividend is∼ 3m/2
bits in length and the divisor is∼ m bits.

Using partial modular reduction (Algs. 6 and 7) with accuracyC has the following effects.

• The two divisions are no longer required.

• Four additional multiplications are required.

• The bit length of the integers to be multiplied is increased byC + 1.

• An answerρ of non-minimal norm can be obtained with probability< 2−(C−5).
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One can often chooseC large enough that no non-minimal answer will be encountered
in practice, at little practical cost. For example, ifm = 163, then a multiplier of at least
83 bits is required. The likeliest available multiplier sizes are 96 or 128 bits. In the former
case, one can chooseC := 12, for an non-minimal answer at most once every 128 times. In
that case, about three bits will be added to the TNAF, for an increase of about 1.8%. Thus
the average cost comes to .08%, well worth it to avoid the divisions. For the latter case, one
can chooseC up to 54, guaranteeing that non-minimal answers will not occur in practice.

9. Recent Developments and Open Problems

Since the publication in the Proceedings of CRYPTO ’97 of many of these results, the
following advances have been made in the study of Koblitz curves.

• The results of [18] have recently been generalized [19] to curves defined over fields
of 2d elements for smalld. For example, the curves with complex multiplication by
(±1+√−15)/2 are defined overF22. (The results of this paper should also carry over
to this more general situation.)

• Analogues of Koblitz curves over fields of small odd characteristic have been studied
[12], and representations analogous to theτ -adic NAF (but with even fewer nonzero
terms) have been obtained.

• It has been observed [3], [24] that the best square-root attack on elliptic curves [20] can
be modified in the case of Koblitz curves. Rather than working with the points on the
curve, one instead works with the cycles under the Frobenius operation. The resulting
algorithm requires fewer steps than in the general case; however, each step is slightly
more expensive.

• Finally, C. Günther and A. Stein have extended the concepts in this paper to the case
of hyperelliptic curves [5].

The following are open problems in this field.

• We have presented worst-case upper bounds for the length of TNAF(α) in terms of
N(α). It may be more useful to possess analogous average-case results. For example,
let

F(α) := `(α)− log2(N(α))

for α ∈ Z[τ ], where`(α) denotes the length of TNAF(α). It follows from (53) that

−.5462682713< F(α) < 3.51559412

whenever̀ (α) > 30. It would be a nice result to prove the existence of an average
value forF(α) and to evaluate it. (Note that the examples at the end of §4.3 prove that
there is no asymptotic value forF(α) asN(α) gets large.)
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• It is often required (e.g.in many cryptographic algorithms such as the ECDSA digital
signature [8]) to take a random multiple of a point on an elliptic curve. More precisely,
let P be in the main subgroup of a Koblitz curve of very nearly prime order. To take a
random multiple ofP, one generates a random integern modulor , reduces it modulo
the elementδ given in (68), and uses the resultρ to computeρ P. The techniques in this
paper provide a particularly efficient way of doing the latter, but it would be cheaper
still to produce a random point in the main subgroup directly. This could be done9 by
generating a “randomτ -adic NAF” of lengthm+ a.

By a “randomτ -adic NAF” we mean a sequence of 0’s and±1’s which is generated as
follows. Generate the first signed bit according to the following probability distribution:

u :=
 0 prob= 1/2

1 prob= 1/4
−1 prob= 1/4.

(89)

To generate subsequent signed bits, follow each±1 by a 0, and generate each signed
bit following a 0 according to (89).

The sequences generated in this way represent random selections from the set of all
τ -adic NAF’s of given length. In particular, each signed bit occurs with the proper
average frequency.10

Once the sequence is generated, one computesα P whereα is the element represented
by the sequence.

This method gives random points, but their distribution is not known. It would be useful
to measure how uniformly distributed such points are in the main subgroup.

More precisely, it follows from the proof of Thm. 4 that everyn < r has a reducedτ -adic
NAF of length at mostm+ a. Thus every point in the main subgroup can be obtained
by scalar multiplication using some nonadjacent sequence ofm+ a signed bits. It is
easy to see that the number of such sequences is the integer closest to 2m+a+2/3. Since
there arer ≈ 2m−2+a points in the main subgroup, the average number of sequences
leading to a given point is 16/3. It would be useful to know how much deviation there
is from this average.

A. Main Subgroup Membership

In this appendix we state and prove the conditions that are used in §4.1 to determine when
a point on a Koblitz curve of very nearly prime order is an element of the main subgroup.
We work on a general Weierstrass curve

E: y2+ x y= x3+ a x2+ b

over GF(2m). It should be recalled that the order ofE(GF(2m)) is always even, and
divisible by 4 if and only ifa has trace 0.
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PROPOSITION90 Let (x2, y2) be a point on E. Then

(x2, y2) = 2(x1, y1) (91)

for some(x1, y1) on E if and only if Tr(x2) = Tr(a).

See [21].

PROPOSITION92 Suppose that a has trace0. Let(x4, y4) be a point on E. Then

(x4, y4) = 4(x1, y1) (93)

for some(x1, y1) on E if and only ifTr(x4) = 0 and

Tr(y4) = Tr(λ x4) (94)

for someλ satisfying

λ2+ λ = x4+ a. (95)

Proof. Suppose first that (93) holds for some(x1, y1). Let

(x2, y2) := 2(x1, y1),

so that(x4, y4) = 2(x2, y2). By (90), it follows that

Tr(x4) = Tr(x2) = 0. (96)

Let

λ := x2+ y2

x2
; (97)

then it follows from the doubling formula that (95) holds and that

y4 := x2
2 + (λ+ 1) x4. (98)

Since Tr(x2
2) = Tr(x2), it follows (via (96)) that (94) holds.

Conversely, suppose now that Tr(x4) = 0, and that (94) holds for someλ for which
(95) holds. Then in fact (94) holds foreither value of λ satisfying (95). It follows
from (90) that(x4, y4) = 2(x2, y2) for some(x2, y2) on E. We may conclude that
(97) holds (where we have replacedλ by λ + 1 if necessary). Moreover, (98) holds,
so that

y4+ λ x4 = x2
2 + x4.

It follows that Tr(x2
2) = 0, so that Tr(x2) = 0. By (90), it follows that(x2, y2) = 2(x1, y1)

for some(x1, y1) on E. Thus(x4, y4) = 4(x1, y1).
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B. Gaussian Normal Bases

In anticipation of the specific Koblitz curves presented in Appendix 9, we describe the
Gaussian normal basis representation for the binary fieldGF(2m).

Let m be prime, and letT be an even positive integer for whichp := T m+ 1 is prime.
Then a TypeT Gaussian normal basis exists forGF(2m) if and only if m is relatively prime
to (p− 1)/k, wherek is the order of 2 modulop. For each primem, a TypeT Gaussian
normal basis exists for someT . To maximize efficiency, the lowest available value ofT is
used.

Once the typeT has been identified, the multiplication rule can be constructed. One first
constructs a functionF(u, v) on inputs

u = (u0 u1 . . . um−1)

and

v = (v0 v1 . . . vm−1)

as follows. Letu be an integer having orderT modulo p. Compute the sequence
J(1), J(2), . . . , J(p− 1) as follows:

1 Set w← 1
2 For j from 0 to T − 1 do

2.1 Set n← w

2.2 For i from 0 to m− 1 do
2.2.1 Set J(n)← i
2.2.2 Set n← 2n mod p

2.3 Set w← uw mod p

ThenF is given by the formula

F(u, v) :=
p−2∑
k=1

uJ(k+1) vJ(p−k).

This computation need only be performed once per basis. Given the functionF for B, one
computes the product

(c0 c1 . . . cm−1) = (a0 a1 . . .am−1)× (b0 b1 . . .bm−1)

as follows.

1 Set (u0 u1 . . . um−1)← (a0 a1 . . . am−1)

2 Set (v0 v1 . . . vm−1)← (b0 b1 . . . bm−1)

3 For k from 0 to m− 1 do
3.1 Compute ck := F(u, v)
3.2 Set u←LeftShift (u) and v←LeftShift (v),

where LeftShift denotes the
circular left shift operation.

4 Output c := (c0 c1 . . . cm−1)
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Example: For the type 4 normal basis forGF(27), one hasp = 29 andu = 12 or 17.
Thus the values ofF are given by

F(1) = 0 F(8) = 3 F(15) = 6 F(22) = 5
F(2) = 1 F(9) = 3 F(16) = 4 F(23) = 6
F(3) = 5 F(10) = 2 F(17) = 0 F(24) = 1
F(4) = 2 F(11) = 4 F(18) = 4 F(25) = 2
F(5) = 1 F(12) = 0 F(19) = 2 F(26) = 5
F(6) = 6 F(13) = 4 F(20) = 3 F(27) = 1
F(7) = 5 F(14) = 6 F(21) = 3 F(28) = 0

Therefore

F(u, v) = u0 v1+ u1 (v0+ v2+ v5+ v6)+ u2 (v1+ v3+ v4+ v5)

+ u3 (v2+ v5)+ u4 (v2+ v6)+ u5 (v1+ v2+ v3+ v6)

+ u6 (v1+ v4+ v5+ v6).

Thus, if

a = (1 0 1 0 1 1 1) and b = (1 1 0 0 0 0 1),

then

c0 = F( (1 0 1 0 1 1 1), (1 1 0 0 0 0 1) ) = 1,

c1 = F( (0 1 0 1 1 1 1), (1 0 0 0 0 1 1) ) = 0,

...

c6 = F( (1 1 0 1 0 1 1), (1 1 1 0 0 0 0) ) = 1,

so thatc = ab= (1 0 1 1 0 0 1).

C. Standard Curves

The following five Koblitz curves appear in the document “Recommended Elliptic Curves
for Federal Government Use,” issued July 1999 by NIST and available on their website

http://csrc.nist.gov/encryption.
Each curve has very nearly prime order. For each curve is given a base pointG = (Gx,Gy)

generating the main subgroup.

Curve K-163
a = 1
r = 5846006549323611672814741753598448348329118574063

Polynomial Basis t163+ t7+ t6+ t3+ 1
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Gx = 2 fe13c053 7bbc11ac aa07d793 de4e6d5e 5c94eee8
Gy = 2 89070fb0 5d38ff58 321f2e80 0536d538 ccdaa3d9

Type4 Normal Basis

Gx = 0 5679b353 caa46825 fea2d371 3ba450da 0c2a4541
Gy = 2 35b7c671 00506899 06bac3d9 dec76a83 5591edb2

Curve K-233
a = 0
r = 34508731733952818937173779311385127605709409888622521263280\

87024741343

Polynomial Basis t233+ t74+ 1

Gx = 172 32ba853a 7e731af1
29f22ff4 149563a4 19c26bf5 0a4c9d6e efad6126

Gy = 1db 537dece8 19b7f70f
555a67c4 27a8cd9b f18aeb9b 56e0c110 56fae6a3

Type2 Normal Basis

Gx = 0fd e76d9dcd 26e643ac
26f1aa90 1aa12978 4b71fc07 22b2d056 14d650b3

Gy = 064 3e317633 155c9e04
47ba8020 a3c43177 450ee036 d6335014 34cac978

Curve K-283
a = 0
r = 38853377844514581418389238136470378132848117337930613242958\

74997529815829704422603873

Polynomial Basis t283+ t12+ t7+ t5+ 1

Gx = 503213f 78ca4488 3f1a3b81 62f188e5
53cd265f 23c1567a 16876913 b0c2ac24 58492836

Gy = 1ccda38 0f1c9e31 8d90f95d 07e5426f
e87e45c0 e8184698 e4596236 4e341161 77dd2259

Type6 Normal Basis

Gx = 3ab9593 f8db09fc 188f1d7c 4ac9fcc3
e57fcd3b db15024b 212c7022 9de5fcd9 2eb0ea60

Gy = 2118c47 55e7345c d8f603ef 93b98b10
6fe8854f feb9a3b3 04634cc8 3a0e759f 0c2686b1
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Curve K-409
a = 0
r = 33052798439512429947595765401638551991420234148214060964232\

4395022880711289249191050673258457777458014096366590617731\
358671

Polynomial Basis t409+ t87+ 1

Gx = 060f05f 658f49c1 ad3ab189
0f718421 0efd0987 e307c84c 27accfb8 f9f67cc2
c460189e b5aaaa62 ee222eb1 b35540cf e9023746

Gy = 1e36905 0b7c4e42 acba1dac
bf04299c 3460782f 918ea427 e6325165 e9ea10e3
da5f6c42 e9c55215 aa9ca27a 5863ec48 d8e0286b

Type4 Normal Basis

Gx = 1b559c7 cba2422e 3affe133
43e808b5 5e012d72 6ca0b7e6 a63aeafb c1e3a98e
10ca0fcf 98350c3b 7f89a975 4a8e1dc0 713cec4a

Gy = 16d8c42 052f07e7 713e7490
eff318ba 1abd6fef 8a5433c8 94b24f5c 817aeb79
852496fb ee803a47 bc8a2038 78ebf1c4 99afd7d6

Curve K-571
a = 0
r = 19322687615086291723476759454659936721494636648532174993286\

1762572575957114478021226813397852270671183470671280082535\
1461273674974066617311929682421617092503555733685276673

Polynomial Basis t571+ t10+ t5+ t2+ 1

Gx = 26eb7a8 59923fbc 82189631
f8103fe4 ac9ca297 0012d5d4 60248048 01841ca4
43709584 93b205e6 47da304d b4ceb08c bbd1ba39
494776fb 988b4717 4dca88c7 e2945283 a01c8972

Gy = 349dc80 7f4fbf37 4f4aeade
3bca9531 4dd58cec 9f307a54 ffc61efc 006d8a2c
9d4979c0 ac44aea7 4fbebbb9 f772aedc b620b01a
7ba7af1b 320430c8 591984f6 01cd4c14 3ef1c7a3

Type10Normal Basis

Gx = 04bb2db a418d0db 107adae0
03427e5d 7cc139ac b465e593 4f0bea2a b2f3622b
c29b3d5b 9aa7a1fd fd5d8be6 6057c100 8e71e484
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bcd98f22 bf847642 37673674 29ef2ec5 bc3ebcf7
Gy = 44cbb57 de20788d 2c952d7b

56cf39bd 3e89b189 84bd124e 751ceff4 369dd8da
c6a59e6e 745df44d 8220ce22 aa2c852c fcbbef49
ebaa98bd 2483e331 80e04286 feaa2530 50caff60
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Notes

1. We restrict our attention to elliptic curves that are notsupersingular, since such curves are cryptographically
weaker than ordinary curves [16]. But see [12] for cryptographic applications of supersingular curves.

2. This does not cause confusion, because the origin is never onE.

3. There do exist special-purpose improvements to the basic elliptic operations,e.g.[14], but they are not relevant
to this paper.

4. It is easy to prove there is no left-to-right method for computing the NAF. On the other hand, there exist signed
binary expansions that are as good as the NAF and that can be computed from left to right.

5. More elaborate window methods exist (see [4]), but they can require a great deal of initial calculation and
seldom do much better than the technique presented here.

6. See,e.g.[6].

7. As R. Schroeppel has remarked, these algorithms are also useful when using a polynomial basis, since squaring
is still relatively efficient in that case.

8. A brief summary of Poonen’s approach is given in [4] by D. Gordon, who has since presented a more detailed
version of the proof.

9. This is an adaptation of an idea of H. Lenstra (see [10]).

10. It was proved in (32) that 0 occurs with frequency 2/3 after the initial±1. It is easy to see that 1 and−1 are
equally likely on average.
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