
Chapter 4
Elliptic Curves over Finite

Fields

Let F be a finite field and let E be an elliptic curve defined over F. Since
there are only finitely many pairs (x, y) with x, y ∈ F, the group E(F) is
finite. Various properties of this group, for example, its order, turn out to
be important in many contexts. In this chapter, we present the basic theory
of elliptic curves over finite fields. Not only are the results interesting in
their own right, but also they are the starting points for the cryptographic
applications discussed in Chapter 6.

4.1 Examples

First, let’s consider some examples.

Example 4.1

Let E be the curve y2 = x3 +x+1 over F5. To count points on E, we make a
list of the possible values of x, then of x3 + x + 1 (mod 5), then of the square
roots y of x3 + x + 1 (mod 5). This yields the points on E.

x x3 + x + 1 y Points
0 1 ±1 (0, 1), (0, 4)
1 3 – –
2 1 ±1 (2, 1), (2, 4)
3 1 ±1 (3, 1), (3, 4)
4 4 ±2 (4, 2), (4, 3)
∞ ∞ ∞

Therefore, E(F5) has order 9.
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96 CHAPTER 4 ELLIPTIC CURVES OVER FINITE FIELDS

Let’s compute (3, 1) + (2, 4) on E. The slope of the line through the two
points is

4 − 1
2 − 3

≡ 2 (mod 5).

The line is therefore y = 2(x−3)+1 ≡ 2x. Substituting this into y2 = x3+x+1
and rearranging yields

0 = x3 − 4x2 + x + 1.

The sum of the roots is 4, and we know the roots 3 and 2. Therefore the
remaining root is x = 4. Since y = 2x, we have y ≡ 3. Reflecting across the
x-axis yields the sum:

(3, 1) + (2, 4) = (4, 2).

(Of course, we could have used the formulas of Section 2.2 directly.) A little
calculation shows that E(F5) is cyclic, generated by (0, 1) (Exercise 4.1).

Example 4.2
Let E be the elliptic curve y2 = x3 + 2 over F7. Then

E(F7) = {∞, (0, 3), (0, 4), (3, 1), (3, 6), (5, 1), (5, 6), (6, 1), (6, 6)}.
An easy calculation shows that all of these points P satisfy 3P = ∞, so the
group is isomorphic to Z3 ⊕ Z3.

Example 4.3
Let’s consider the elliptic curve E given by y2 +xy = x3 +1 defined over F2.
We can find the points as before and obtain

E(F2) = {∞, (0, 1), (1, 0), (1, 1)}.
This is a cyclic group of order 4. The points (1, 0), (1, 1) have order 4 and the
point (0, 1) has order 2.

Now let’s look at E(F4). Recall that F4 is the finite field with 4 elements.
We can write it as F4 = {0, 1, ω, ω2}, with the relation ω2 + ω + 1 = 0 (which
implies, after multiplying by ω + 1, that ω3 = 1). Let’s list the elements of
E(F4).

x = 0 ⇒ y2 = 1 ⇒ y = 1
x = 1 ⇒ y2 + y = 0 ⇒ y = 0, 1
x = ω ⇒ y2 + ωy = 0 ⇒ y = 0, ω

x = ω2 ⇒ y2 + ω2y = 0 ⇒ y = 0, ω2

x = ∞ ⇒ y = ∞.

Therefore

E(F4) =
{∞, (0, 1), (1, 0), (1, 1), (ω, 0), (ω, ω), (ω2, 0), (ω2, ω2)

}
.
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SECTION 4.1 EXAMPLES 97

Since we are in characteristic 2, there is at most one point of order 2 (see
Proposition 3.1). In fact, (0, 1) has order 2. Therefore, E(F4) is cyclic of
order 8. Any one of the four points containing ω or ω2 is a generator. This
may be verified by direct calculation, or by observing that they do not lie in
the order 4 subgroup E(F2). Let φ2(x, y) = (x2, y2) be the Frobenius map.
It is easy to see that φ2 permutes the elements of E(F4), and

E(F2) = {(x, y) ∈ E(F4) |φ2(x, y) = (x, y)} .

In general, for any elliptic curve E defined over Fq and any extension F of
Fq, the Frobenius map φq permutes the elements of E(F) and is the identity
on the subgroup E(Fq). See Lemma 4.5.

Two main restrictions on the groups E(Fq) are given in the next two the-
orems.

THEOREM 4.1
Let E be an elliptic curve over the finite field Fq. Then

E(Fq) � Zn or Zn1 ⊕ Zn2

for some integer n ≥ 1, or for some integers n1, n2 ≥ 1 with n1 dividing n2.

PROOF A basic result in group theory (see Appendix B) says that a finite
abelian group is isomorphic to a direct sum of cyclic groups

Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znr
,

with ni|ni+1 for i ≥ 1. Since, for each i, the group Zni
has n1 elements of

order dividing n1, we find that E(Fq) has nr
1 elements of order dividing n1. By

Theorem 3.2, there are at most n2
1 such points (even if we allow coordinates

in the algebraic closure of Fq). Therefore r ≤ 2. This is the desired result
(the group is trivial if r = 0; this case is covered by n = 1 in the theorem).

THEOREM 4.2 (Hasse)
Let E be an elliptic curve over the finite field Fq. Then the order of E(Fq)

satisfies
|q + 1 − #E(Fq)| ≤ 2

√
q.

The proof will be given in Section 4.2.
A natural question is what groups can actually occur as groups E(Fq). The

answer is given in the following two results, which are proved in [130] and [93],
respectively.
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98 CHAPTER 4 ELLIPTIC CURVES OVER FINITE FIELDS

THEOREM 4.3
Let q = pn be a power of a prime p and let N = q+1−a. There is an elliptic
curve E defined over Fq such that #E(Fq) = N if and only if |a| ≤ 2

√
q and

a satisfies one of the following:

1. gcd(a, p) = 1

2. n is even and a = ±2
√

q

3. n is even, p 
≡ 1 (mod 3), and a = ±√
q

4. n is odd, p = 2 or 3, and a = ±p(n+1)/2

5. n is even, p 
≡ 1 (mod 4), and a = 0

6. n is odd and a = 0.

THEOREM 4.4
Let N be an integer that occurs as the order of an elliptic curve over a finite

field Fq, as in Theorem 4.3. Write N = pen1n2 with p � n1n2 and n1|n2

(possibly n1 = 1). There is an elliptic curve E over Fq such that

E(Fq) � Zpe ⊕ Zn1 ⊕ Zn2

if and only if

1. n1|q − 1 in cases (1), (3), (4), (5), (6) of Theorem 4.3

2. n1 = n2 in case (2) of Theorem 4.3.

These are the only groups that occur as groups E(Fq).

4.2 The Frobenius Endomorphism

Let Fq be a finite field with algebraic closure Fq and let

φq : Fq −→ Fq,

x �→ xq

be the Frobenius map for Fq (see Appendix C for a review of finite fields).
Let E be an elliptic curve defined over Fq. Then φq acts on the coordinates
of points in E(Fq):

φq(x, y) = (xq, yq), φq(∞) = ∞.
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SECTION 4.2 THE FROBENIUS ENDOMORPHISM 99

LEMMA 4.5
Let E be defined over Fq, and let (x, y) ∈ E(Fq).

1. φq(x, y) ∈ E(Fq)

2. (x, y) ∈ E(Fq) if and only if φq(x, y) = (x, y).

PROOF One fact we need is that (a + b)q = aq + bq when q is a power of
the characteristic of the field. We also need that aq = a for all a ∈ Fq. See
Appendix C.

Since the proof is the same for the Weierstrass and the generalized Weier-
strass equations, we work with the general form. We have

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

with ai ∈ Fq. Raise the equation to the qth power to obtain

(yq)2 + a1(xqyq) + a3(yq) = (xq)3 + a2(xq)2 + a4(xq) + a6.

This means that (xq, yq) lies on E, which proves (1).
For (2), again recall that x ∈ Fq if and only if φq(x) = x (see Appendix C),

and similarly for y. Therefore

(x, y) ∈ E(Fq) ⇔ x, y ∈ Fq

⇔ φq(x) = x and φq(y) = y

⇔ φq(x, y) = (x, y).

LEMMA 4.6
Let E be an elliptic curve defined over Fq. Then φq is an endomorphism of

E of degree q, and φq is not separable.

This is the same as Lemma 2.20.
Note that the kernel of the endomorphism φq is trivial. This is related to

the fact that φq is not separable. See Proposition 2.21.
The following result is the key to counting points on elliptic curves over

finite fields. Since φq is an endomorphism of E, so are φ2
q = φq ◦ φq and also

φn
q = φq ◦ φq ◦ · · · ◦ φq for every n ≥ 1. Since multiplication by −1 is also an

endomorphism, the sum φn
q − 1 is an endomorphism of E.

PROPOSITION 4.7
Let E be defined over Fq and let n ≥ 1.

1. Ker(φn
q − 1) = E(Fqn).
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100 CHAPTER 4 ELLIPTIC CURVES OVER FINITE FIELDS

2. φn
q − 1 is a separable endomorphism, so #E(Fqn) = deg(φn

q − 1).

PROOF Since φn
q is the Frobenius map for the field Fqn , part (1) is just

a restatement of Lemma 4.5. The fact that φn
q − 1 is separable was proved in

Proposition 2.29. Therefore (2) follows from Proposition 2.21.

Proof of Hasse’s theorem:
We can now prove Hasse’s theorem (Theorem 4.2). Let

a = q + 1 − #E(Fq) = q + 1 − deg(φq − 1). (4.1)

We want to show that |a| ≤ 2
√

q. We need the following.

LEMMA 4.8
Let r, s be integers with gcd(s, q) = 1. Then deg(rφq − s) = r2q + s2 − rsa.

PROOF Proposition 3.16 implies that

deg(rφq −s) = r2 deg(φq)+s2 deg(−1)+rs(deg(φq −1)−deg(φq)−deg(−1)).

Since deg(φq) = q and deg(−1) = 1, the result follows from (4.1).

REMARK 4.9 The assumption that gcd(s, q) = 1 is not needed. We
include it since we have proved Proposition 3.16 not in general, but only
when the endomorphisms are separable or φq.

We can now finish the proof of Hasse’s theorem. Since deg(rφq − s) ≥ 0,
the lemma implies that

q
(r

s

)2

− a
(r

s

)
+ 1 ≥ 0

for all r, s with gcd(s, q) = 1. The set of rational numbers r/s such that
gcd(s, q) = 1 is dense in R. (Proof: Take s to be a power of 2 or a power of 3,
one of which must be relatively prime with q. The rationals of the form r/2m

and those of the form r/3m are easily seen to be dense in R.) Therefore,

qx2 − ax + 1 ≥ 0

for all real numbers x. Therefore the discriminant of the polynomial is negative
or 0, which means that a2 − 4q ≤ 0, hence |a| ≤ 2

√
q. This completes the

proof of Hasse’s theorem.

There are several major ingredients of the above proof. One is that we can
identify E(Fq) as the kernel of φq − 1. Another is that φq − 1 is separable,
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SECTION 4.2 THE FROBENIUS ENDOMORPHISM 101

so the order of the kernel is the degree of φq − 1. A third major ingredient
is the Weil pairing, especially part (6) of Theorem 3.9, and its consequence,
Proposition 3.16.

Proposition 4.7 has another very useful consequence.

THEOREM 4.10
Let E be an elliptic curve defined over Fq. Let a be as in Equation 4.1. Then

φ2
q − aφq + q = 0

as endomorphisms of E, and a is the unique integer k such that

φ2
q − kφq + q = 0.

In other words, if (x, y) ∈ E(Fq), then
(
xq2

, yq2
)
− a (xq, yq) + q(x, y) = ∞,

and a is the unique integer such that this relation holds for all (x, y) ∈ E(Fq).
Moreover, a is the unique integer satisfying

a ≡ Trace((φq)m) mod m

for all m with gcd(m, q) = 1.

PROOF If φ2
q − aφq + q is not the zero endomorphism, then its kernel

is finite (Proposition 2.21). We’ll show that the kernel is infinite, hence the
endomorphism is 0.

Let m ≥ 1 be an integer with gcd(m, q) = 1. Recall that φq induces a
matrix (φq)m that describes the action of φq on E[m]. Let

(φq)m =
(

s t
u v

)
.

Since φq−1 is separable by Proposition 2.29, Propositions 2.21 and 3.15 imply
that

#Ker(φq − 1) = deg(φq − 1) ≡ det((φq)m − I)
= sv − tu − (s + v) + 1 (mod m).

By Proposition 3.15, sv−tu = det((φq)m) ≡ q (mod m). By (4.1), #Ker(φq−
1) = q + 1 − a. Therefore,

Trace((φq)m) = s + v ≡ a (mod m).
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102 CHAPTER 4 ELLIPTIC CURVES OVER FINITE FIELDS

By the Cayley-Hamilton theorem of linear algebra, or by a straightforward
calculation (substituting the matrix into the polynomial), we have

(φq)2m − a(φq)m + qI ≡ 0 (mod m),

where I is the 2×2 identity matrix. (Note that X2−aX+q is the characteristic
polynomial of (φq)m.) This means that the endomorphism φ2

q − aφq + q is
identically zero on E[m]. Since there are infinitely many choices for m, the
kernel of φ2

q − aφq + q is infinite, so the endomorphism is 0.
Suppose a1 
= a satisfies φ2

q − a1φq + q = 0. Then

(a − a1)φq = (φ2
q − a1φq + q) − (φ2

q − aφq + q) = 0.

By Theorem 2.22, φq : E(Fq) → E(Fq) is surjective. Therefore, (a − a1)
annihilates E(Fq). In particular, (a − a1) annihilates E[m] for every m ≥ 1.
Since there are points in E[m] of order m when gcd(m, q) = 1, we find that
a − a1 ≡ 0 (mod m) for such m. Therefore a − a1 = 0, so a is unique.

We single out the following result, which was proved during the proof of
Theorem 4.10.

PROPOSITION 4.11
Let E be an elliptic curve over Fq and let (φq)m denote the matrix giving the
action of the Frobenius φq on E[m]. Let a = q + 1 − #E(Fq). Then

Trace((φq)m) ≡ a (mod m), det((φq)m) ≡ q (mod m).

The polynomial X2−aX+q is often called the characteristic polynomial
of Frobenius.

4.3 Determining the Group Order

Hasse’s theorem gives bounds for the group of points on an elliptic curve
over a finite field. In this section and in Section 4.5, we’ll discuss some methods
for actually determining the order of the group.

4.3.1 Subfield Curves

Sometimes we have an elliptic curve E defined over a small finite field Fq

and we want to know the order of E(Fqn) for some n. We can determine the
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SECTION 4.3 DETERMINING THE GROUP ORDER 103

order of E(Fqn) when n = 1 by listing the points or by some other elementary
procedure. The amazing fact is that this allows us to determine the order for
all n.

THEOREM 4.12
Let #E(Fq) = q + 1 − a. Write X2 − aX + q = (X − α)(X − β). Then

#E(Fqn) = qn + 1 − (αn + βn)

for all n ≥ 1.

PROOF First, we need the fact that αn + βn is an integer. This could
be proved by remarking that it is an algebraic integer and is also a rational
number. However, it can also be proved by more elementary means.

LEMMA 4.13
Let sn = αn + βn. Then s0 = 2, s1 = a, and sn+1 = asn − qsn−1 for all

n ≥ 1.

PROOF Multiply the relation α2 − aα + q = 0 by αn−1 to obtain αn+1 =
aαn − qαn−1. There is a similar relation for β. Add the two relations to
obtain the lemma.

It follows immediately from the lemma that αn + βn is an integer for all
n ≥ 0.

Let

f(X) = (Xn − αn)(Xn − βn) = X2n − (αn + βn)Xn + qn.

Then X2 − aX + q = (X − α)(X − β) divides f(X). It follows immediately
from the standard algorithm for dividing polynomials that the quotient is
a polynomial Q(X) with integer coefficients (the main points are that the
leading coefficient of X2 − aX + q is 1 and that this polynomial and f(X)
have integer coefficients). Therefore

(φn
q )2 − (αn + βn)φn

q + qn = f(φq) = Q(φq)(φ2
q − aφq + q) = 0,

as endomorphisms of E, by Theorem 4.10. Note that φn
q = φqn . By Theo-

rem 4.10, there is only one integer k such that φ2
qn − kφqn + qn = 0, and such

a k is determined by k = qn + 1 − #E(Fqn). Therefore,

αn + βn = qn + 1 − #E(Fqn).

This completes the proof of Theorem 4.12.

© 2008 by Taylor & Francis Group, LLC
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Example 4.4
In Example 4.3, we showed that the elliptic curve E given by y2+xy = x3+1
over F2 satisfies #E(F2) = 4. Therefore, a = 2 + 1 − 4 = −1, and we obtain
the polynomial

X2 + X + 2 =
(

X − −1 +
√−7

2

) (
X − −1 −√−7

2

)
.

Theorem 4.12 says that

#E(F4) = 4 + 1 −
(−1 +

√−7
2

)2

−
(−1 −√−7

2

)2

.

Rather than computing the last expression directly, we can use the recurrence
in Lemma 4.13:

s2 = as1 − 2s0 = −(−1) − 2(2) = −3.

It follows that #E(F4) = 4 + 1 − (−3) = 8, which is what we calculated by
listing points.

Similarly, using the recurrence or using sufficiently high precision floating
point arithmetic yields

(−1 +
√−7

2

)101

+
(−1 −√−7

2

)101

= 2969292210605269.

Therefore,

#E(F2101) = 2101 + 1 − 2969292210605269
= 2535301200456455833701195805484.

The advantage of Theorem 4.12 is that it allows us to determine the group
order for certain curves very quickly. The disadvantage is that it requires the
curve to be defined over a small finite field.

4.3.2 Legendre Symbols

To make a list of points on y2 = x3 + Ax + B over a finite field, we tried
each possible value of x, then found the square roots y of x3 +Ax+B, if they
existed. This procedure is the basis for a simple point counting algorithm.

Recall the Legendre symbol
(

x
p

)
for an odd prime p, which is defined as

follows:
(

x

p

)
=

⎧⎨
⎩

+1 if t2 ≡ x (mod p) has a solution t 
≡ 0 (mod p),
−1 if t2 ≡ x (mod p) has no solution t

0 if x ≡ 0 (mod p).
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This can be generalized to any finite field Fq with q odd by defining, for
x ∈ Fq,

(
x

Fq

)
=

⎧⎨
⎩

+1 if t2 = x has a solution t ∈ F×
q ,

−1 if t2 = x has no solution t ∈ Fq,
0 if x = 0.

THEOREM 4.14

Let E be an elliptic curve defined by y2 = x3 + Ax + B over Fq. Then

#E(Fq) = q + 1 +
∑

x∈Fq

(
x3 + Ax + B

Fq

)
.

PROOF For a given x0, there are two points (x, y) with x-coordinate x0

if x3
0 + Ax0 + B is a nonzero square in Fq, one such point if it is zero, and no

points if it is not a square. Therefore, the number of points with x-coordinate
x0 equals 1 +

(
x3
0+Ax0+B

Fq

)
. Summing over all x0 ∈ Fq, and including 1 for

the point ∞, yields

#E(Fq) = 1 +
∑

x∈Fq

(
1 +

(
x3 + Ax + B

Fq

))
.

Collecting the term 1 from each of the q summands yields the desired formula.

COROLLARY 4.15

Let x3 + Ax + B be a polynomial with A,B ∈ Fq, where q is odd. Then

∣∣∣∣∣∣
∑

x∈Fq

(
x3 + Ax + B

Fq

)∣∣∣∣∣∣ ≤ 2
√

q.

PROOF When x3 +Ax+B has no repeated roots, y2 = x3 +Ax+B gives
an elliptic curve, so Theorem 4.14 says that

q + 1 − #E(Fq) = −
∑

x∈Fq

(
x3 + Ax + B

Fq

)
.

The result now follows from Hasse’s theorem.
The case where x3 + Ax + B has repeated roots follows from Exercise 4.3.

© 2008 by Taylor & Francis Group, LLC



106 CHAPTER 4 ELLIPTIC CURVES OVER FINITE FIELDS

Example 4.5

Let E be the curve y2 = x3 + x + 1 over F5, as in Example 4.1. The nonzero
squares mod 5 are 1 and 4. Therefore

#E(F5) = 5 + 1 +
4∑

x=0

(
x3 + x + 1

5

)

= 6 +
(

1
5

)
+

(
3
5

)
+

(
1
5

)
+

(
1
5

)
+

(
4
5

)

= 6 + 1 − 1 + 1 + 1 + 1 = 9.

When using Theorem 4.14, it is possible to compute each individual gen-
eralized Legendre symbol quickly (see Exercise 4.4), but it is more efficient
to square all the elements of F×

q and store the list of squares. For simplicity,
consider the case of Fp. Make a vector with p entries, one for each element
of Fp. Initially, all entries in the vector are set equal to −1. For each j with
1 ≤ j ≤ (p−1)/2, square j and reduce to get k mod p. Change the kth entry
in the vector to +1. Finally, change the 0th entry in the vector to 0. The
resulting vector will be a list of the values of the Legendre symbol.

Theorem 4.14, which is sometimes known as the Lang-Trotter method,
works quickly for small values of q, perhaps q < 100, but is slow for larger q,
and is impossible to use when q is around 10100 or larger.

4.3.3 Orders of Points

Let P ∈ E(Fq). The order of P is the smallest positive integer k such that
kP = ∞. A fundamental result from group theory (a corollary of Lagrange’s
theorem) is that the order of a point always divides the order of the group
E(Fq). Also, for an integer n, we have nP = ∞ if and only if the order of
P divides n. By Hasse’s theorem, #E(Fq) lies in an interval of length 4

√
q.

Therefore, if we can find a point of order greater than 4
√

q, there can be only
one multiple of this order in the correct interval, and it must be #E(Fq).
Even if the order of the point is smaller than 4

√
q, we obtain a small list

of possibilities for #E(Fq). Using a few more points often shortens the list
enough that there is a unique possibility for #E(Fq). For an addiitonal trick
that helps in this situation, see Proposition 4.18.

How do we find the order of a point? If we know the order of the full group
of points, then we can look at factors of this order. But, at present, the order
of the group is what we’re trying to find. In Section 4.3.4, we’ll discuss a
method (Baby Step, Giant Step) for finding the order of a point.
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Example 4.6
Let E be the curve y2 = x3 +7x+1 over F101. It is possible to show that the
point (0, 1) has order 116, so N101 = #E(F101) is a multiple of 116. Hasse’s
theorem says that

101 + 1 − 2
√

101 ≤ N101 ≤ 101 + 1 + 2
√

101,

which means that 82 ≤ N101 ≤ 122. The only multiple of 116 in this range is
116, so N101 = 116. As a corollary, we find that the group of points is cyclic
of order 116, generated by (0,1).

Example 4.7
Let E be the elliptic curve y2 = x3−10x+21 over F557. The point (2, 3) can
be shown to have order 189. Hasse’s theorem implies that 511 ≤ N557 ≤ 605.
The only multiple of 189 in this range is 3 · 189 = 567. Therefore N557 = 567.

Example 4.8
Let E be the elliptic curve y2 = x3 + 7x + 12 over F103. The point (−1, 2)

has order 13 and the point (19, 0) has order 2. Therefore the order N103 of
E(F103) is a multiple of 26. Hasse’s theorem implies that 84 ≤ N103 ≤ 124.
The only multiple of 26 in that range is 104, so N103 = 104.

Example 4.9
Let E be the elliptic curve y2 = x3 +2 over F7, as in Example 4.2. The group
of points E(F7) is isomorphic to Z3 ⊕ Z3. Every point, except ∞, has order
3, so the best we can conclude with the present method is that the order N7

of the group is a multiple of 3. Hasse’s theorem says that 3 ≤ N7 ≤ 13, so the
order is 3, 6, 9, or 12. Of course, if we find two independent points of order 3
(that is, one is not a multiple of the other), then they generate a subgroup of
order 9. This means that the order of the full group is a multiple of 9, hence
is 9.

The situation of the last example, where E(Fq) � Zn ⊕ Zn, makes it more
difficult to find the order of the group of points, but is fairly rare, as the next
result shows.

PROPOSITION 4.16
Let E be an elliptic curve over Fq and suppose

E(Fq) � Zn ⊕ Zn

for some integer n. Then either q = n2 + 1 or q = n2 ±n + 1 or q = (n± 1)2.
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PROOF By Hasse’s theorem, n2 = q + 1 − a, with |a| ≤ 2
√

q. To prove
the proposition, we use the following lemma, which puts a severe restriction
on a.

LEMMA 4.17

a ≡ 2 (mod n).

PROOF Let p be the characteristic of Fq. Then p � n; otherwise, there
would be p2 points in E[p], which is impossible in characteristic p by Theo-
rem 3.2.

Since E[n] ⊆ E(Fq), Corollary 3.11 implies that the nth roots of unity
are in Fq, so q − 1 must be a multiple of n (see Appendix C). Therefore,
a = q + 1 − n2 ≡ 2 (mod n).

Write a = 2 + kn for some integer k. Then

n2 = q + 1 − a = q − 1 − kn, so q = n2 + kn + 1.

By Hasse’s theorem,

|2 + kn| ≤ 2
√

q.

Squaring this last inequality yields

4 + 4kn + k2n2 ≤ 4q = 4(n2 + kn + 1).

Therefore, |k| ≤ 2. The possibilities k = 0,±1,±2 give the values of q listed
in the proposition. This completes the proof of Proposition 4.16.

Most values of q are not of the form given in the proposition, and even
for such q most elliptic curves do not have E(Fq) � Zn ⊕ Zn (only a small
fraction have order n2), so we can regard Zn ⊕ Zn as rare.

More generally, most q are such that all elliptic curves over Fq have points
of order greater than 4

√
q (Exercise 4.6). Therefore, with a little luck, we can

usually find points with orders that allow us to determine #E(Fq).
The following result of Mestre shows that for E defined over Fp, there is

a point of sufficiently high order on either E or its quadratic twist. The
quadratic twist of E is defined as follows. Let d ∈ F×

p be a quadratic non-
residue mod p. If E has equation y2 = x3 + Ax + B, then the quadratic twist
E′ has the equation y2 = x3 + Ad2x + Bd3 (see Exercise 2.23). By Exercise
4.10, if #E(Fp) = p + 1 − a then E′ has p + 1 + a points. Once we know the
order of one of these two groups, we know a and therefore know the order of
both groups.
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PROPOSITION 4.18
Let p > 229 be prime and let E be an elliptic curve over Fp. Either E or

its quadratic twist E′ has a point P whose order has only one multiple in the
interval

(
p + 1 − 2

√
p, p + 1 + 2

√
p
)
.

PROOF Let

E(Fp) � Zm ⊕ ZM , E′(Fp) � Zn ⊕ ZN ,

with m|M and n|N . If mM = #E(Fp) = p + 1 − a, then nN = #E′(Fp) =
p + 1 + a. Since m|M and n|N , we have m2|p + 1 − a and n2|p + 1 + a.
Therefore, gcd(m2, n2)|2a.

Since E[m] ⊆ E(Fp), then µm ⊆ F×
p by Corollary 3.11, so p ≡ 1 (mod m).

Therefore, 2 − a ≡ p + 1 − a ≡ 0 (mod m). Similarly, 2 + a ≡ 0 (mod n).
Therefore, gcd(m,n)|(2 − a) + (2 + a) = 4, and gcd(m2, n2)|16.

If 4|m and 4|n, then 16| gcd(m2, n2), which divides 2a. Then 8|a, which is
impossible since then 2−a ≡ 0 (mod m) implies 2−0 ≡ 0 (mod 4). Therefore,
gcd(m2, n2)|4. This implies that the least common multiple of m2 and n2 is
a multiple of m2n2/4.

Let φ be the pth power Frobenius endomorphism for E. Since E[n] ⊆
E(Fp), it follows that φ acts trivially on E[n]. Choose a basis for E[n2]. The
action of φ on E[n2] is given by a matrix of the form

(
1 + sn tn

un 1 + vn

)
.

By Proposition 4.11, we have a ≡ 2 + (s+ v)n (mod n2) and p ≡ 1 + (s+ v)n
(mod n2). Therefore, 4p−a2 ≡ 0 (mod n2). Similarly, 4p−a2 ≡ 0 (mod m2).

It follows that the least common multiple of m2 and n2 divides 4p − a2, so

m2n2

4
≤ 4p − a2.

Suppose that both M and N are less than 4
√

p. Then, since a2 < 4p,

(p − 1)2 < (p + 1)2 − a2 = (p + 1 − a)(p + 1 + a) = mMnN

<
(
4(4p − a2)

)1/2
(4
√

p)2 ≤ 64p3/2.

A straightforward calculation shows that this implies that p < 4100. We have
therefore shown that if p > 4100, then either M or N must be greater than
4
√

p. This means that either E or E′ has a point of order greater than 4
√

p.
Therefore, there can be at most one multiple of this order in the interval(
p + 1 − 2

√
p, p + 1 + 2

√
p
)
. This proves the theorem for p > 4100.

Suppose now that 457 < p < 4100. A straightforward computation shows
that there are no integers a,m, n with |a| < 2

√
p such that
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1. m2|p + 1 − a

2. n2|p + 1 + a

3. (p + 1 − a)/m < 4
√

p

4. (p + 1 + a)/n < 4
√

p.

Therefore, the theorem is true for p > 457.
For p = 457, we may take a = 10, m = 8, n = 6, which correspond

to the groups Z8 ⊕ Z56 and Z6 ⊕ Z78 (and can be realized by the curves
E : y2 = x3−125 and its quadratic twist E′ : y2 = x3−1). Note, however, that
the only multiple of 56 in the interval

(
457 + 1 − 2

√
457, 457 + 1 + 2

√
457

)
=

(415.2, 500.8) is 448, which is the order of E(F457). Similarly, the only mul-
tiple of 78 in this interval is 468, which is the order of E′(F457). Therefore,
the theorem still holds in this case.

In fact, the search for a,m, n can be extended in this way to 229 < p ≤ 457,
with conditions (3) and (4) replaced by

3’. there is more than one multiple of (p + 1 − a)/m in the interval(
p + 1 − 2

√
p, p + 1 + 2

√
p
)

4’. there is more than one multiple of (p + 1 + a)/m in the interval(
p + 1 − 2

√
p, p + 1 + 2

√
p
)
.

No values of a,m, n exist satisfying these conditions, so the theorem holds.

Example 4.10
The theorem is false for p = 229. Consider the curve E : y2 = x3 − 1.
A calculation shows that E(F229) � Z6 ⊕ Z42. Therefore, 42P = ∞ for
all P ∈ E(F229). The Hasse bound says that 200 ≤ #E(F229) ≤ 260, so the
existence of a point of order 42 allows both the values 210 and 252. Since 2 is a
quadratic nonresidue mod 229, the curve E′ : y2 = x3−8 is the quadratic twist
of E. A calculation shows that E′(F229) � Z4 ⊕ Z52. Therefore, 52P = ∞
for all P ∈ E′(F229). The existence of a point of order 52 allows both the
values 208 and 260. Therefore, neither E nor its quadratic twist E′ has a
point whose order has only one multiple in the Hasse interval.

Suppose E(Fq) � Zn1 ⊕ Zn2 with n1|n2. Then the order of every element
divides n2. If we choose some random points and compute their orders, what
is the chance that the least common multiple of these orders is n2? Let P1, P2

be points of orders n1, n2 such that every P ∈ E(Fq) is uniquely expressible in
the form P = a1P1 + a2P2 with 0 ≤ ai < ni. Let p be a prime dividing n2. If
we take a random point P , then the probability is 1−1/p that p � a2. If p � a2,
then the order of P contains the highest power of p possible. If p is large,
then this means that it is very likely that the order of one randomly chosen
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point will contribute the correct power of p to the least common multiple of
the orders of the points. If p is small, say p = 2, then the probability is at
least 1/2. This means that if we choose several randomly chosen points, the
least common multiples of their orders should still have the correct power of
p. The conclusion is that if we choose several random points and compute the
least common multiple of their orders, it is very likely that we will obtain n2,
which is as large as possible.

The following result of Cremona and Harley shows that knowledge of n2

usually determines the group structure.

PROPOSITION 4.19
Let E be an elliptic curve over Fq. Write E(Fq) � Zn1 ⊕ Zn2 with n1|n2.
Suppose that q is not one of the following:

3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37,

43, 61, 73, 181, 331, 547.

Then n2 uniquely determines n1.

PROOF Fix q and suppose there exist n2, x, y (regard x, y as two possible
values of n1) with

1. x, y|n2

2.
(√

q − 1
)2 ≤ n2x < n2y ≤ (√

q + 1
)2

(so the groups of order n2x and n2y satisfy the bounds in Hasse’s theorem).
Our first goal is to show that if n2, x, y satisfying (1) and (2) exist then
q ≤ 4612.

Let d = gcd(x, y). Then n′
2 = dn2, x

′ = x/d, y′ = y/d also satisfy (1), (2).
So we may assume that gcd(x, y) = 1. Since n2y − n2x > 0,

n2 ≤ n2y − n2x ≤ (
√

q + 1)2 − (
√

q − 1)2 = 4
√

q.

Since x, y|n2, we have xy|n2, hence xy ≤ n2. Therefore,

x2 ≤ xy ≤ n2 ≤ 4
√

q,

which implies that

(
√

q − 1)2 ≤ n2x ≤ (4
√

q) (4
√

q)1/2
.

But
(√

q − 1
)2

> 8q3/4 when q ≥ 4613. Therefore, we must have q ≤ 4612.
The values of q ≤ 4612 can be checked on a computer to get a much smaller

list of possibilities for q. However, we can speed up the search with the
following observations.
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First,
(√

q − 1
)2 ≤ n2x ≤ 4

√
qx implies that x >

(√
q − 2

)
/4. Second,

y2 ≤ n2y ≤ (√
q + 1

)2. Third, xy2 = (xy)y ≤ n2y ≤ (√
q + 1

)2. Finally,
n1|q − 1 (by Corollary 3.11), so x, y|q − 1.

Therefore, we should look for values of q ≤ 4612 that are primes or prime
powers and such that q − 1 has divisors x, y with

1. gcd(x, y) = 1

2.
(√

q − 2
)
/4 < x < y ≤ √

q + 1

3. xy2 ≤ (√
q + 1

)2.

The values of q for which such x, y exist are those on the list in the statement
of the theorem, plus the five values q = 49, 81, 121, 169, 841. Therefore, for
all other q, a number n2 cannot have two possible values x, y for n1, so n1 is
uniquely determined.

We need to eliminate the remaining five values. For example, consider
q = 49. One solution is x = 2, y = 3, n2 = 18, which corresponds to #E(Fq) =
36 and 54. By Theorem 4.4, or by Exercise 4.14, if #E(Fq) =

(√
q − 1

)2,
then E(Fq) � Z√

q−1 ⊕ Z√
q−1. Therefore, if #E(F49) = 36, we must have

n1 = n2 = 6. This arises from x = 2 after multiplying by 3 (recall that
we removed d = gcd(x, y) from x, y in order to make them relatively prime).
Multiplying y = 3 by d = 3 yields n1 = 9, n2 = 6, which does not satisfy n1|n2.
Therefore, the solution x = 2, y = 3 for q = 49 is eliminated. Similarly, all
solutions for all of the five values q = 49, 81, 121, 169, 841 can be eliminated.
This completes the proof.

.

4.3.4 Baby Step, Giant Step

Let P ∈ E(Fq). We want to find the order of P . First, we want to find
an integer k such that kP = ∞. Let #E(Fq) = N . By Lagrange’s theorem,
NP = ∞. Of course, we might not know N yet, but we know that q+1−2

√
q ≤

N ≤ q + 1 + 2
√

q. We could try all values of N in this range and see which
ones satisfy NP = ∞. This takes around 4

√
q steps. However, it is possible

to speed this up to around 4q1/4 steps by the following algorithm.

1. Compute Q = (q + 1)P .

2. Choose an integer m with m > q1/4. Compute and store the points jP
for j = 0, 1, 2, . . . ,m.

3. Compute the points

Q + k(2mP ) for k = −m,−(m − 1), . . . , m
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until there is a match Q+k(2mP ) = ±jP with a point (or its negative)
on the stored list.

4. Conclude that (q + 1 + 2mk ∓ j)P = ∞. Let M = q + 1 + 2mk ∓ j.

5. Factor M . Let p1, . . . , pr be the distinct prime factors of M .

6. Compute (M/pi)P for i = 1, . . . , r. If (M/pi)P = ∞ for some i, replace
M with M/pi and go back to step (5). If (M/pi)P 
= ∞ for all i then
M is the order of the point P .

7. If we are looking for the #E(Fq), then repeat steps (1)-(6) with ran-
domly chosen points in E(Fq) until the least common multiple of the
orders divides only one integer N with q + 1− 2

√
q ≤ N ≤ q + 1 + 2

√
q.

Then N = #E(Fq).

There are two points that must be addressed.
I. Assuming that there is a match, this method clearly produces an integer

that annihilates P . But why is there a match?

LEMMA 4.20
Let a be an integer with |a| ≤ 2m2. There exist integers a0 and a1 with
−m < a0 ≤ m and −m ≤ a1 ≤ m such that

a = a0 + 2ma1.

PROOF Let a0 ≡ a (mod 2m), with −m < a0 ≤ m and a1 = (a−a0)/2m.
Then

|a1| ≤ (2m2 + m)/2m < m + 1.

Let a = a0 + 2ma1 be as in the lemma and let k = −a1. Then

Q + k(2mP ) = (q + 1 − 2ma1)P
= (q + 1 − a + a0)P = NP + a0P

= a0P = ±jP,

where j = |a0|. Therefore, there is a match.

II. Why does step (6) yield the order of P?

LEMMA 4.21
Let G be an additive group (with identity element 0) and let g ∈ G. Suppose

Mg = 0 for some positive integer M . Let p1, . . . , pr be the distinct primes
dividing M . If (M/pi)g 
= 0 for all i, then M is the order of g.
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PROOF Let k be the order of g. Then k|M . Suppose k 
= M . Let pi be
a prime dividing M/k. Then pik|M , so k|(M/pi). Therefore, (M/pi)g = 0,
contrary to assumption. Therefore k = M .

Therefore, step (6) finds the order of P .

REMARK 4.22 (1) To save storage space, it might be more efficient to
store only the x coordinates of the points jP (along with the corresponding
integer j), since looking for a match with ±jP only requires the x-coordinate
(assuming we are working with a Weierstrass equation). When a match is
found, the two possible y-coordinates can be recomputed.

(2) Computing Q + k(2mP ) can be done by computing Q and 2mP once
for all. To get from Q+k(2mP ) to Q+(k+1)(2mP ), simply add 2mP rather
than recomputing everything. Similarly, once jP has been computed, add P
to get (j + 1)P .

(3) We are assuming that we can factor M . If not, we can at least find all
the small prime factors pi and check that (M/pi)P 
= ∞ for these. Then M
will be a good candidate for the order of P .

(4) Why is the method called “Baby Step, Giant Step”? The baby steps
are from a point jP to (j + 1)P . The giant steps are from a point k(2mP )
to (k + 1)(2mP ), since we take the “bigger” step 2mP .

Example 4.11
Let E be the elliptic curve y2 = x3 − 10x + 21 over F557, as in Example 4.7.
Let P = (2, 3). We follow the procedure above.

1. Q = 558P = (418, 33).

2. Let m = 5, which is greater than 5571/4. The list of jP is

∞, (2, 3), (58, 164), (44, 294), (56, 339), (132, 364).

3. When k = 1, we have Q+ k(2mP ) = (2, 3), which matches the point on
our list for j = 1.

4. We have (q + 1 + 2mk − j)P = 567P = ∞.

5. Factor 567 = 34 ·7. Compute (567/3)P = 189P = ∞. We now have 189
as a candidate for the order of P .

6. Factor 189 = 337. Compute (189/3)P = (38, 535) 
= ∞ and (189/7)P =
(136, 360) 
= ∞. Therefore 189 is the order of P .

As pointed out in Example 4.7, this suffices to determine that #E(F557) =
567.
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4.4 A Family of Curves

In this section we give an explicit formula for the number of points in E(Fp),
where E is the elliptic curve

y2 = x3 − kx,

and k 
≡ 0 (mod p). Counting the points on this curve mod a prime p has a
long history, going back at least to Gauss.

THEOREM 4.23
Let p be an odd prime and let k 
≡ 0 (mod p). Let Np = #E(Fp), where E

is the elliptic curve
y2 = x3 − kx.

1. If p ≡ 3 (mod 4), then Np = p + 1.

2. If p ≡ 1 (mod 4), write p = a2 + b2, where a, b are integers with b even
and a + b ≡ 1 (mod 4). Then

Np =

⎧⎨
⎩

p + 1 − 2a if k is a fourth power mod p
p + 1 + 2a if k is a square mod p but not a 4th power mod p
p + 1 ± 2b if k is not a square mod p.

The proof of the theorem will take the rest of this section.
The integer a is uniquely determined by the conditions in the theorem, and

b is uniquely determined up to sign. When k is not a square mod p, the proof
below does not determine the sign of b. This is a much more delicate problem
and we omit it.

Example 4.12
Let p = 61 = (−5)2 + 62, where we chose the negative sign on 5 so that
−5 + 6 ≡ 1 (mod 4). Since k = 1 is a fourth power, the number of points on
y2 = x3 − x is p + 1 − 2(−5) = 72.

It is well known that every prime p ≡ 1 (mod 4) is a sum of two squares
(this follows from Proposition 4.27 below). The next lemma shows that a and
b are uniquely determined up to order and sign.

LEMMA 4.24
Suppose p is prime and a, b, c, d are integers such that a2 + b2 = p = c2 + d2.
Then a = ±c and b = ±d, or a = ±d and b = ±c.
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PROOF We have (a/b)2+1 ≡ 0 ≡ (c/d)2+1 (mod p), so a/b ≡ ±(c/d). By
changing the sign of c if necessary, we may assume that a/b ≡ c/d (mod p),
hence ad − bc ≡ 0 (mod p). A quick calculation shows that

p2 = (ac + bd)2 + (bc − ad)2. (4.2)

Suppose ad = bc. Then (4.2) implies that ac + bd = ±p, so

±ap = a2c + abd = a2c + b2c = pc.

Hence, ±a = c. It follows that b = ±d.
Now suppose ad 
= bc. Since ad− bc ≡ 0 (mod p), we have (ad− bc)2 ≥ p2.

Since (ac + bd)2 ≥ 0, it follows from (4.2) that ad− bc = ±p and ac + bd = 0.
Therefore,

±cp = acd − bc2 = −bd2 − bc2 = −bp,

so c = ±b. This implies that d = ±a.

If we require that a is odd and b is even, then a and b are uniquely deter-
mined up to sign. Suppose b ≡ 2 (mod 4). Then a + b ≡ 1 (mod 4) for a
unique choice of the sign of a. Similarly, if b ≡ 0 (mod 4), there is a unique
choice of the sign of a that makes a + b ≡ 1 (mod 4). Therefore, the integer
a in the lemma is uniquely determined by p if we require that a is odd and
a + b ≡ 1 (mod 4).

The main part of the proof of Theorem 4.23 involves the case p ≡ 1 (mod 4),
so let’s treat the case p ≡ 3 (mod 4) first. The main point is that −1 is
not a square mod p (Proof: if x2 ≡ −1, then 1 ≡ xp−1 ≡ (x2)(p−1)/2 ≡
(−1)(p−1)/2 ≡ (−1)odd = −1, contradiction). Moreover, a nonsquare times
a nonsquare is a square mod p. Therefore x3 − kx is a nonzero square mod
p if and only if (−x)3 − k(−x) = −(x3 − kx) is not a square mod p. Let’s
count points on E. Whenever x3 − kx = 0, we obtain one point (x, 0). For
the remaining values of x, we pair up x and −x. One of these gives two
points (the one that makes x3 − kx a square) and the other gives no points.
Therefore, each pair x,−x gives two points. Therefore, we obtain a total of p
points. The point ∞ gives one more, so we have p + 1 points.

Now assume p ≡ 1 (mod 4). The proof, which takes the rest of this sec-
tion, involves several steps and counts the points in terms of Jacobi sums.
Rather than count the points on E directly, we make the transformation (see
Theorem 2.17)

x =
2(v + 1)

u2
, y =

4(v + 1)
u3

,

which changes E into the curve C given by

v2 = (k/4)u4 + 1.

The inverse transformation is

u =
2x

y
, v = −1 +

2x3

y2
.
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We’ll count the points on C mod p.
First, there are a few special points for the transformation from E to C. The

point ∞ on E corresponds to (0, 1) on C. The point (0, 0) on E corresponds
to (0,−1) on C (see Theorem 2.17). If k is a square mod p, then the two
2-torsion points (±√

k, 0) correspond to the point at infinity on C. Therefore,

#E(Fp) = #{(u, v) ∈ Fp × Fp | v2 = (k/4)u4 + 1} + δ,

where

δ =
{

2 if k is a square mod p
0 if not.

Let g be a primitive root mod p, which means that

F×
p = {gj | 0 ≤ j < p − 1}.

Let i =
√−1 ∈ C. Define

χ2(gj) = (−1)j and χ4(gj) = ij .

Then χ2 and χ4 can be regarded as homomorphisms from F×
p to {±1,±i}.

Note that χ2
4 = χ2. The following lemma gets us started.

LEMMA 4.25
Let p ≡ 1 (mod 4) be prime and let x ∈ F×

p . Then

#{u ∈ F×
p |u2 = x} =

1∑
�=0

χ2(x)�,

and

#{u ∈ F×
p |u4 = x} =

3∑
�=0

χ4(x)�.

PROOF Since p ≡ 1 (mod 4), there are 4 fourth roots of 1 in F×
p . There-

fore, if there is a solution to u4 ≡ x, there are 4 solutions. Write x ≡ gj

(mod p). Then x is a fourth power mod p if and only if j ≡ 0 (mod 4). We
have

3∑
�=0

χ4(x)� =
3∑

�=0

ij� =
{

4 if j ≡ 0 (mod 4)
0 if j 
≡ 0 (mod 4),

which is exactly the number of u with u4 ≡ x. This proves the second half of
the lemma. The proof of the first half is similar.

If, instead, we sum over the elements of F×
p , we have the following result.
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LEMMA 4.26
Let p ≡ 1 (mod 4) be prime. Then

∑
b∈F×

p

χ4(b)� =
{

p − 1 if � ≡ 0 (mod 4)
0 if � 
≡ 0 (mod 4).

PROOF If � ≡ 0 (mod 4), all the terms in the sum are 1, so the sum is
p − 1. If � 
≡ 0 (mod 4), then χ4(g)� 
= 1. Multiplying by g permutes the
elements of F×

p , so

χ4(g)�
∑

b∈F×
p

χ4(b)� =
∑

b∈F×
p

χ4(gb)� =
∑

c∈F×
p

χ4(c)�,

which is the original sum. Since χ4(g)� 
= 1, the sum must be 0.

Define the Jacobi sums by

J(χj
2, χ

�
4) =

∑
a∈F

×
p

a �=1

χ2(a)jχ4(1 − a)�.

PROPOSITION 4.27
J(χ2, χ

2
4) = −1 and |J(χ2, χ4)|2 = p.

PROOF The first equality is proved as follows.

J(χ2, χ
2
4) =

∑
a∈F

×
p

a �=1

χ2(a)χ4(1 − a)2 =
∑

a�=0,1

χ2(a)χ2(1 − a),

since χ2
4 = χ2. Since χ2(a) = ±1, we have χ2(a) = χ2(a)−1 so the sum equals

∑
a�=0,1

χ2(a)−1χ2(1 − a) =
∑

a�=0,1

χ2

(
1 − a

a

)
.

The map x �→ 1 − 1
x gives a permutation of the set of x ∈ Fp, x 
= 0, 1.

Therefore, letting c = 1 − 1/a, we obtain

∑
a�=0,1

χ2

(
1
a
− 1

)
=

∑
c�=0,1

χ2(−c) = −χ2(−1),

by Lemma 4.26. Since g(p−1)/2 ≡ −1 (mod p) (both have order 2 in the cyclic
group F×

p ), we have

1 = (±1)2 = χ2(g(p−1)/4)2 = χ2(g(p−1)/2) = χ2(−1).
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This yields the first equality of the proposition.
To prove the second equality, multiply the Jacobi sum by its complex con-

jugate to obtain

|J(χ2, χ4)|2 =
∑

a�=0,1

χ2(a)χ4(1 − a)
∑

b�=0,1

χ2(b)χ4(1 − b)

=
∑

a�=0,1

∑
b�=0,1

χ2

(a

b

)
χ4

(
1 − a

1 − b

)
.

We have used the fact that χ4(x) = χ4(x)−1. We now need the following.

LEMMA 4.28
Let S = {(x, y) |x, y ∈ F×

p ; x, y 
= 1; x 
= y}. The map

σ : (x, y) �→
(

x

y
,

1 − x

1 − y

)

is a permutation of S.

PROOF Let c = x/y and d = (1 − x)/(1 − y). Then x 
= 0 yields c 
= 0
and x 
= 1 yields d 
= 0. The assumption that x 
= y yields c, d 
= 1 and c 
= d.
Therefore, (c, d) ∈ S.

To show that σ is surjective, let c, d ∈ S. Let

x = c
d − 1
d − c

, y =
d − 1
d − c

.

It is easily verified that (c, d) ∈ S implies (x, y) ∈ S and that σ(x, y) = (c, d).

Returning to the proof of the proposition, we find that

|J(χ2, χ4)|2 =
∑
a=b

χ2

(a

b

)
χ4

(
1 − a

1 − b

)
+

∑
(a,b)∈S

χ2

(a

b

)
χ4

(
1 − a

1 − b

)

= (p − 2) +
∑

(c,d)∈S

χ2(c)χ4(d)

= (p − 2) +
∑

d�=0,1

χ4(d)

⎛
⎝ ∑

c∈F×
p

χ2(c) − χ2(1) − χ2(d)

⎞
⎠

= (p − 2) +
∑

d�=0,1

χ4(d)(0 − 1 − χ4(d)2)

= (p − 2) −
∑

d�=0,1

χ4(d) −
∑

d�=0,1

χ4(d)3

= (p − 2) + χ4(1) + χ4(1)3 = p.
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This completes the proof of the second equality of Proposition 4.27.

We now show that the number of points on v2 = (k/4)u4 + 1 can be ex-
pressed in terms of Jacobi sums. By separating out the terms with u = 0 and
the terms with v = 0, we obtain that the number of points is

#{v | v2 = 1} + #{u |u4 = −4/k}

+
∑

a+b=1
a,b �=0

#{v | v2 = a}#{u |u4 = −4b/k}

=
1∑

j=0

χ2(1)j +
3∑

�=0

χ4(−4/k)� +
∑

a+b=1
a,b �=0

1∑
j=0

χ2(a)j
3∑

�=0

χ4(−4b/k)�

=
1∑

j=0

χ2(1)j +
3∑

�=0

χ4(−4/k)� +
∑

b�=0,1

3∑
�=0

χ4(−4b/k)�

+
∑

a�=0,1

1∑
j=0

χ2(a)j − (p − 2)

+χ4(−4/k)2J(χ2, χ
2
4) + χ4(−4/k)J(χ2, χ4) + χ4(−4/k)3J(χ2, χ

3
4)

(Separate out the terms with j = 0 and � = 0. These yield the sums over �
and over j, respectively. The terms with j = � = 0, which sum to p − 2, are
counted twice, so subtract p − 2. The terms with j, � 
= 0 contribute to the
Jacobi sums.)

=
1∑

j=0

∑
a�=0

χ2(a)j +
3∑

�=0

∑
b�=0

χ4(−4b/k)� − (p − 2)

−χ2(−4/k) + χ4(−4/k)J(χ2, χ4) + χ4(−4/k)3J(χ2, χ
3
4)

= (p − 1) + (p − 1) − (p − 2)
−χ2(−4/k) + χ4(−4/k)J(χ2, χ4) + χ4(−4/k)3J(χ2, χ

3
4)

(by Lemma 4.26)

= p + 1 − δ + χ4(−4/k)J(χ2, χ4) + χ4(−4/k)3J(χ2, χ
3
4).

For the last equality, we used the fact that

1 + χ2(−4/k) = 1 + χ2(1/k) =
{

0 if k is not a square
2 if k is a square mod p,
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hence 1 + χ2(−4/k) = δ. Therefore,

#E(Fp) = #{(u, v) ∈ Fp × Fp | v2 = (k/4)u4 + 1} + δ

= p + 1 − α − α,

where
α = −χ4(−4/k)J(χ2, χ4) ∈ Z[i].

If we write α = a + bi, then α + α = 2a. Proposition 4.27 implies that
a2 + b2 = p, so we have almost proved Theorem 4.23. It remains to evaluate
a mod 4.

Let x1 + y1i, x2 + y2i ∈ Z[i]. We say that

x1 + y1i ≡ x2 + y2i (mod 2 + 2i)

if
(x1 − x2) + (y1 − y2)i = (x3 + y3i)(2 + 2i)

for some x3+y3i ∈ Z[i]. Clearly −2i ≡ 2 (mod 2+2i). Since 2i−2 = i(2+2i)
and −2 = 2 + (−1 + i)(2 + 2i), we have

2i ≡ 2 ≡ −2 ≡ −2i (mod 2 + 2i).

It follows easily that

2χ4(a) ≡ 2 (mod 2 + 2i) (4.3)

for all a. Since p − 1 is a multiple of 4 = (1 − i)(2 + 2i), we have p ≡ 1
(mod 2 + 2i).

LEMMA 4.29
Let p ≡ 1 (mod 4) be prime. Then

J(χ2, χ4) ≡ −1 (mod 2 + 2i).

PROOF Let S = {x ∈ F×
p |x 
= 1}. Let

τ : S → S, x �→ x

x − 1
.

It is easy to check that τ(τ(x)) = x for all x ∈ S and that x = 2 is the only
value of x such that τ(x) = x. Put the elements of S, other than 2, into
pairs (x, τ(x)). Note that if x is paired with y = τ(x), then y is paired with
τ(y) = τ(τ(x)) = x. This divides S into (p − 3)/2 pairs plus the element 2,
which is not in a pair. We have

J(χ2, χ4) =
∑

a�=0,1

χ2(a)χ4(1 − a) =

χ2(2)χ4(1 − 2) +
∑

(a,τ(a))

(
χ2(a)χ4(1 − a) + χ2

(
a

a − 1

)
χ4

(
1 − a

a − 1

))
,
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where the sum is over pairs (a, τ(a)). Note that since χ2χ4 = χ−1
4 , we have

χ2

(
a

a − 1

)
χ4

(
1 − a

a − 1

)
=

χ2(a)
χ2(a − 1)

χ4(−1)
χ4(a − 1)

= χ2(a)χ4(−1)χ4(a − 1) = χ2(a)χ4(1 − a).

Therefore, since χ2(2) = χ4(2)2 = χ4(4),

J(χ2, χ4) = χ4(−4) + 2
∑

(a,τ(a))

χ2(a)χ4(1 − a)

≡ χ4(−4) +
∑

(a,τ(a))

2 (by (4.3))

≡ χ4(−4) + (p − 3) ≡ χ4(−4) − 2 (mod 2 + 2i).

Suppose p ≡ 1 (mod 8). Since g(p−1)/2 ≡ −1 (mod p), we have that −1 is a
fourth power. It is well known that 2 is a square mod p if and only if p ≡ ±1
(mod 8) (this is one of the supplementary laws for quadratic reciprocity and
is covered in most elementary number theory texts). Therefore 4 is a fourth
power when p ≡ 1 (mod 8). It follows that χ4(−4) = 1.

Now suppose p ≡ 5 (mod 8). Then 2 is not a square mod p, so 2 ≡ gj

(mod p) with j odd. Therefore

−4 ≡ g2j+(p−1)/2 (mod p).

Since 2j ≡ 2 (mod 4) and (p − 1)/2 ≡ 2 (mod 4), it follows that −4 is a
fourth power mod p. Therefore, χ4(−4) = 1.

In both cases, we obtain J(χ2, χ4) ≡ χ4(−4) − 2 ≡ −1 (mod 2 + 2i).

Since we just proved that χ4(−4) = 1, the lemma implies that

α = −χ4(−4/k)J(χ2, χ4) = −χ4(1/k)J(χ2, χ4) ≡ χ4(k)3 (mod 2 + 2i).

LEMMA 4.30
Let α = x + yi ∈ Z[i].

1. If α ≡ 1 (mod 2 + 2i), then x is odd and x + y ≡ 1 (mod 4).

2. If α ≡ −1 (mod 2 + 2i), then x is odd and x + y ≡ 3 (mod 4).

3. If α ≡ ±i (mod 2 + 2i), then x is even.

PROOF Suppose α ≡ 1 (mod 2 + 2i), so α− 1 = (u + iv)(2 + 2i) for some
u, v. Since (1 − i)(2 + 2i) = 4, we have

(x + y − 1) + (y + 1 − x)i = (1 − i)(α − 1) = 4u + 4vi.
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Therefore, x + y ≡ 1 (mod 4) and x − y ≡ 1 (mod 4). It follows that y is
even. This proves (1). The proofs of (2) and (3) are similar.

If k is a fourth power mod p, then χ4(k) = 1, so α ≡ 1 (mod 2 + 2i). The
lemma yields α = a + bi with b even and a + b ≡ 1 (mod 4). This proves
part of part (2) of Theorem 4.23. The other parts are proved similarly. This
completes the proof of Theorem 4.23.

4.5 Schoof’s Algorithm

In 1985, Schoof [97] published an algorithm for computing the number
of points on elliptic curves over finite fields Fq that runs much faster than
existing algorithms, at least for very large q. In particular, it requires at
most a constant times log8 q bit operations, in contrast to the q1/4 used in
Baby Step, Giant Step, for example. Subsequently, Atkin and Elkies refined
and improved Schoof’s method (see Section 12.4). It has now been used
successfully when q has several hundred decimal digits. In the following, we’ll
give Schoof’s method. For details of the method of Atkins and Elkies, see [12]
and [99]. For other methods for counting points, see [60] and [94].

Suppose E is an elliptic curve given by y2 = x3 + Ax + B over Fq. We
know, by Hasse’s theorem, that

#E(Fq) = q + 1 − a, with |a| ≤ 2
√

q.

Let S = {2, 3, 5, 7, . . . , L} be a set of primes such that
∏
�∈S

� > 4
√

q.

If we can determine a mod � for each prime � ∈ S, then we know a mod
∏

�,
and therefore a is uniquely determined.

Let � be prime. For simplicity, we assume � 
= p, where p is the characteristic
of Fq. We also assume that q is odd. We want to compute a (mod �).

If � = 2, this is easy. If x3 + Ax + B has a root e ∈ Fq, then (e, 0) ∈ E[2]
and (e, 0) ∈ E(Fq), so E(Fq) has even order. In this case, q + 1 − a ≡ 0
(mod 2), so a is even. If x3 + Ax + B has no roots in Fq, then E(Fq) has no
points of order 2, and a is odd. To determine whether x3 +Ax+B has a root
in Fq, we could try all the elements in Fq, but there is a faster way. Recall
(see Appendix C) that the roots of xq − x are exactly the elements of Fq.
Therefore, x3 +Ax+B has a root in Fq if and only if it has a root in common
with xq − x. The Euclidean algorithm, applied to polynomials, yields the gcd
of the two polynomials.
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If q is very large, the polynomial xq has very large degree. Therefore, it is
more efficient to compute xq ≡ xq (mod x3 + Ax + B) by successive squaring
(cf. Section 2.2), and then use the result to compute

gcd(xq − x, x3 + Ax + B) = gcd(xq − x, x3 + Ax + B).

If the gcd is 1, then there is no common root and a is odd. If the gcd is not
1, then a is even. This finishes the case � = 2.

In the following, various expressions such as xq and xq2
will be used. They

will always be computed mod a polynomial in a manner similar to that just
done in the case � = 2

In Section 3.2, we defined the division polynomials ψn. When n is odd, ψn

is a polynomial in x and, for (x, y) ∈ E(Fq), we have

(x, y) ∈ E[n] ⇐⇒ ψn(x) = 0.

These polynomials play a crucial role in Schoof’s algorithm.
Let φq be the Frobenius endomorphism (not to be confused with the poly-

nomials φn from Section 3.2, which are not used in this section), so

φq(x, y) = (xq, yq).

By Theorem 4.10,
φ2

q − aφq + q = 0.

Let (x, y) be a point of order �. Then
(
xq2

, yq2
)

+ q(x, y) = a (xq, yq) .

Let
q� ≡ q (mod �), |q�| < �/2.

Then q(x, y) = q�(x, y), so
(
xq2

, yq2
)

+ q�(x, y) = a (xq, yq) .

Since (xq, yq) is also a point of order �, this relation determines a mod �. The
idea is to compute all the terms except a in this relation, then determine a
value of a that makes the relation hold. Note that if the relation holds for
one point (x, y) ∈ E[�], then we have determined a (mod �); hence, it holds
for all (x, y) ∈ E[�].

Assume first that
(
xq2

, yq2
)

= ±q�(x, y) for some (x, y) ∈ E[�]. Then

(x′, y′) def=
(
xq2

, yq2
)

+ q�(x, y) 
= ∞,
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so a 
≡ 0 (mod �). In this case, the x-coordinates of
(
xq2

, yq2
)

and q�(x, y) are
distinct, so the sum of the two points is found by the formula using the line
through the two points, rather than a tangent line or a vertical line. Write

j(x, y) = (xj , yj)

for integers j. We may compute xj and yj using division polynomials, as in
Section 3.2. Moreover, xj = r1,j(x) and yj = r2,j(x)y, as on page 47. We
have

x′ =

(
yq2 − yq�

xq2 − xq�

)2

− xq2 − xq�
.

Writing
(
yq2 − yq�

)2

= y2
(
yq2−1 − r2,q�

(x)
)2

= (x3 + Ax + B)
(
(x3 + Ax + B)(q

2−1)/2 − r2,q�
(x)

)2

,

and noting that xq�
is a function of x, we change x′ into a rational function

of x. We want to find j such that

(x′, y′) = (xq
j , y

q
j ).

First, we look at the x-coordinates. Starting with (x, y) ∈ E[�], we have
(x′, y′) = ±(xq

j , y
q
j ) if and only if x′ = xq

j . As pointed out above, if this
happens for one point in E[�], it happens for all (finite) points in E[�]. Since
the roots of ψ� are the x-coordinates of the points in E[�], this implies that

x′ − xq
j ≡ 0 (mod ψ�) (4.4)

(this means that the numerator of x′ − xq
j is a multiple of ψ�). We are using

here the fact that the roots of ψ� are simple (otherwise, we would obtain only
that ψ� divides some power of x′−xq

j). This is proved by noting that there are
�2−1 distinct points of order �, since � is assumed not to be the characteristic
of Fq. There are (�2 − 1)/2 distinct x-coordinates of these points, and all of
them are roots of ψ�, which has degree (�2 − 1)/2. Therefore, the roots of ψ�

must be simple.
Assume now that we have found j such that (4.4) holds. Then

(x′, y′) = ±(xq
j , yq

j ) = (xq
j , ±yq

j ).

To determine the sign, we need to look at the y-coordinates. Both y′/y and
yq

j /y can be written as functions of x. If

(y′ − yq
j )/y ≡ 0 (mod ψ�),

then a ≡ j (mod �). Otherwise, a ≡ −j (mod �). Therefore, we have found
a (mod �).
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It remains to consider the case where
(
xq2

, yq2
)

= ±q(x, y) for all (x, y) ∈
E[�]. If

φ2
q(x, y) =

(
xq2

, yq2
)

= q(x, y),

then
aφq(x, y) = φ2

q(x, y) + q(x, y) = 2q(x, y),

hence
a2q(x, y) = a2φ2

q(x, y) = (2q)2(x, y).

Therefore, a2q ≡ 4q2 (mod �), so q is a square mod �. If q is not a square
mod �, then we cannot be in this case. If q is a square mod �, let w2 ≡ q
(mod �). We have

(φq + w)(φq − w)(x, y) = (φ2
q − q)(x, y) = ∞

for all (x, y) ∈ E[�]. Let P be any point in E[�]. Then either (φq −w)P = ∞,
so φqP = wP , or P ′ = (φq − w)P is a finite point with (φq + w)P ′ = ∞.
Therefore, in either case, there exists a point P ∈ E[�] with φqP = ±wP .

Suppose there exists a point P ∈ E[�] such that φqP = wP . Then

∞ = (φ2
q − aφq + q)P = (q − aw + q)P,

so aw ≡ 2q ≡ 2w2 (mod �). Therefore, a ≡ 2w (mod �). Similarly, if there
exists P such that φqP = −wP , then a ≡ −2w (mod �). We can check
whether we are in this case as follows. We need to know whether or not

(xq, yq) = ±w(x, y) = ±(xw, yw) = (xw,±yw)

for some (x, y) ∈ E[�]. Therefore, we compute xq − xw, which is a rational
function of x. If

gcd(numerator(xq − xw), ψ�) 
= 1,

then there is some (x, y) ∈ E[�] such that φq(x, y) = ±w(x, y). If this happens,
then use the y-coordinates to determine the sign.

Why do we use the gcd rather than simply checking whether we have 0 mod
ψ�? The gcd checks for the existence of one point. Looking for 0 (mod ψ�)
checks if the relation holds for all points simultaneously. The problem is that
we are not guaranteed that φqP = ±wP for all P ∈ E[�]. For example,
the matrix representing φq on E[�] might not be diagonalizable. It might

be
(

w 1
0 w

)
. In this case, the eigenvectors for φq form a one-dimensional

subspace.
If we have gcd(numerator(xq −xw), ψ�) = 1, then we cannot be in the case(

xq2
, yq2

)
= q(x, y), so the only remaining case is

(
xq2

, yq2
)

= −q(x, y). In

this case, aP = (φ2
q + q)P = ∞ for all P ∈ E[�]. Therefore, a ≡ 0 (mod �).

We summarize Schoof’s algorithm as follows. We start with an elliptic curve
E over Fq given by y2 = x3+Ax+B. We want to compute #E(Fq) = q+1−a.
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1. Choose a set of primes S = {2, 3, 5, . . . , L} (with p 
∈ S) such that∏
�∈S � > 4

√
q.

2. If � = 2, we have a ≡ 0 (mod 2) if and only if gcd(x3+Ax+B, xq−x) 
=
1.

3. For each odd prime � ∈ S, do the following.

(a) Let q� ≡ q (mod �) with |q�| < �/2.

(b) Compute the x-coordinate x′ of

(x′, y′) =
(
xq2

, yq2
)

+ q�(x, y) mod ψ�.

(c) For j = 1, 2, . . . , (� − 1)/2, do the following.

i. Compute the x-coordinate xj of (xj , yj) = j(x, y).
ii. If x′ − xq

j ≡ 0 (mod ψ�), go to step (iii). If not, try the next
value of j (in step (c)). If all values 1 ≤ j ≤ (� − 1)/2 have
been tried, go to step (d).

iii. Compute y′ and yj . If (y′ − yq
j )/y ≡ 0 (mod ψ�), then a ≡ j

(mod �). If not, then a ≡ −j (mod �).

(d) If all values 1 ≤ j ≤ (� − 1)/2 have been tried without success, let
w2 ≡ q (mod �). If w does not exist, then a ≡ 0 (mod �).

(e) If gcd(numerator(xq − xw), ψ�) = 1, then a ≡ 0 (mod �). Other-
wise, compute

gcd(numerator((yq − yw)/y), ψ�).

If this gcd is not 1, then a ≡ 2w (mod �). Otherwise, a ≡ −2w
(mod �).

4. Use the knowledge of a (mod �) for each � ∈ S to compute a (mod
∏

�).
Choose the value of a that satisfies this congruence and such that |a| ≤
2
√

q. The number of points in E(Fq) is q + 1 − a.

Example 4.13
Let E be the elliptic curve y2 = x3 + 2x + 1 mod 19. Then

#E(F19) = 19 + 1 − a.

We want to determine a. We’ll show that

a ≡
⎧⎨
⎩

1 (mod 2)
2 (mod 3)
3 (mod 5).
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Putting these together yields

a ≡ 23 (mod 30).

Since |a| < 2
√

19 < 9, we must have a = −7.
We start with � = 2. We compute

x19 ≡ x2 + 13x + 14 (mod x3 + 2x + 1)

by successive squaring (cf. Section 2.2) and then use the result to compute

gcd(x19 − x, x3 + 2x + 1) = gcd(x2 + 12x + 14, x3 + 2x + 1) = 1.

It follows that x3 +2x+1 has no roots in F19. Therefore, there is no 2-torsion
in E(F19), so a ≡ 1 (mod 2).

For � = 3, we proceed as in Schoof’s algorithm and eventually get to j = 1.
We have q2 = 361 and we have q ≡ 1 (mod 3). Therefore, q� = 1 and we need
to check whether

(x361, y361) + (x, y) = ±(x19, y19)

for (x, y) ∈ E[3]. The third division polynomial is

ψ3 = 3x4 + 12x2 + 12x − 4.

We compute the x-coordinate of (x361, y361) + (x, y):
(

y361 − y

x361 − x

)2

− x361 − x = (x3 + 2x + 1)
(

(x3 + 2x + 1)180 − 1
x361 − x

)2

− x361 − x,

where we have used the relation y2 = x3 + 2x + 1. We need to reduce this
mod ψ3. The natural way to start is to use the extended Euclidean algorithm
to find the inverse of x361 − x (mod ψ3). However,

gcd(x361 − x, ψ3) = x − 8 
= 1,

so the multiplicative inverse does not exist. We could remove x − 8 from the
numerator and denominator of

(x3 + 2x + 1)180 − 1
x361 − x

,

but this is unnecessary. Instead, we realize that since x = 8 is a root of ψ3,
the point (8, 4) ∈ E(F19) has order 3. Therefore,

#E(F19) = 19 + 1 − a ≡ 0 (mod 3),

so a ≡ 2 (mod 3).
For � = 5, we follow Schoof’s algorithm, eventually arriving at j = 2. Note

that
19 ≡ 4 ≡ −1 (mod 5),
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so q� = −1 and

19(x, y) = −(x, y) = (x,−y) for all (x, y) ∈ E[5].

We need to check whether

(x′, y′) def= (x361, y361) + (x,−y) ?= ±2(x19, y19) def= ±(x′′, y′′)

for all (x, y) ∈ E[5]. The recurrence of Section 3.2 shows that the fifth division
polynomial is

ψ5 = 32(x3 + 2x + 1)2(x6 + 10x4 + 20x3 − 20x2 − 8x − 8 − 8) − ψ3
3

= 5x12 + 10x10 + 17x8 + 5x7 + x6 + 9x5 + 12x4 + 2x3 + 5x2 + 8x + 8.

The equation for the x-coordinates yields

x′ =
(

y361 + y

x361 − x

)2

− x361 − x
?≡

(
3x38 + 2

2y19

)2

− 2x19 = x′′ (mod ψ5).

When y2 is changed to x3 + 2x + 1, this reduces to a polynomial relation in
x, which is then verified. Therefore,

a ≡ ±2 (mod 5).

To determine the sign, we look at the y-coordinates. The y-coordinate of
(x′, y′) = (x361, y361) + (x,−y) is computed to be

y(9x11 +13x10 +15x9 +15x7 +18x6 +17x5 +8x4 +12x3 +8x+6) (mod ψ5).

The y-coordinate of (x′′, y′′) = 2(x, y) is

y(13x10 +15x9 +16x8 +13x7 +8x6 +6x5 +17x4 +18x3 +8x+18) (mod ψ5).

A computation yields

(y′ + y′′19)/y ≡ 0 (mod ψ5).

This means that

(x′, y′) ≡ (x′′19,−y′′19) = −2(xq, yq) (mod ψ5).

It follows that a ≡ −2 (mod 5).
As we showed above, the information from � = 2, 3, 5 is sufficient to yield

a = −7. Therefore, #E(F19) = 27.
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4.6 Supersingular Curves

An elliptic curve E in characteristic p is called supersingular if E[p] =
{∞}. In other words, there are no points of order p, even with coordinates
in an algebraically closed field. Supersingular curves have many interesting
properties, some of which we’ll discuss in the present section.

Note: Supersingular curves are not singular curves in the sense of Sec-
tion 2.4. The term “singular” was used classically to describe the j-invariants
of elliptic curves with endomorphism rings larger than Z. These rings usually
are subrings of quadratic extensions of the rationals. The term “supersingu-
lar” refers to j-invariants of curves with even larger rings of endomorphisms,
namely, subrings of quaternion algebras. These ideas will be discussed in
Chapter 10.

The following result is useful because it gives a simple way of determining
whether or not an elliptic curve over a finite field is supersingular.

PROPOSITION 4.31
Let E be an elliptic curve over Fq, where q is a power of the prime number

p. Let a = q + 1 − #E(Fq). Then E is supersingular if and only if a ≡ 0
(mod p), which is if and only if #E(Fq) ≡ 1 (mod p).

PROOF Write X2−aX + q = (X −α)(X −β). Theorem 4.12 implies that

#E(Fqn) = qn + 1 − (αn + βn).

Lemma 4.13 says that sn = αn + βn satisfies the recurrence relation

s0 = 2, s1 = a, sn+1 = asn − qsn−1.

Suppose a ≡ 0 (mod p). Then s1 = a ≡ 0 (mod p), and sn+1 ≡ 0 (mod p)
for all n ≥ 1 by the recurrence. Therefore,

#E(Fqn) = qn + 1 − sn ≡ 1 (mod p),

so there are no points of order p in E(Fqn) for any n ≥ 1. Since Fq = ∪n≥1Fqn ,
there are no points of order p in E(Fq). Therefore, E is supersingular.

Now suppose a 
≡ 0 (mod p). The recurrence implies that sn+1 ≡ asn

(mod p) for n ≥ 1. Since s1 = a, we have sn ≡ an (mod p) for all n ≥ 1.
Therefore

#E(Fqn) = qn + 1 − sn ≡ 1 − an (mod p).

By Fermat’s little theorem, ap−1 ≡ 1 (mod p). Therefore, E(Fqp−1) has order
divisible by p, hence contains a point of order p. This means that E is not
supersingular.
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For the last part of the proposition, note that

#E(Fq) ≡ q + 1 − a ≡ 1 − a (mod p),

so #E(Fq) ≡ 1 (mod p) if and only if a ≡ 0 (mod p).

COROLLARY 4.32
Suppose p ≥ 5 is a prime and E is defined over Fp. Then E is supersingular
if and only if a = 0, which is the case if and only if #E(Fp) = p + 1.

PROOF If a = 0, then E is supersingular, by the proposition. Conversely,
suppose E is supersingular but a 
= 0. Then a ≡ 0 (mod p) implies that
|a| ≥ p. By Hasse’s theorem, |a| ≤ 2

√
p, so we have p ≤ 2

√
p. This means

that p ≤ 4.

When p = 2 or p = 3, there are examples of supersingular curves with
a 
= 0. See Exercise 4.7.

For general finite fields Fq, it can be shown that if E defined over Fq is
supersingular, then a2 is one of 0, q, 2q, 3q, 4q. See [98], [80], or Theorem 4.3.

In Section 3.1, we saw that the elliptic curve y2 + a3y = x3 + a4x + a6

in characteristic 2 is supersingular. Also, in characteristic 3, the curve y2 =
x3 + a2x

2 + a4x + a6 is supersingular if and only if a2 = 0. Here is a way to
construct supersingular curves in many other characteristics.

PROPOSITION 4.33
Suppose q is odd and q ≡ 2 (mod 3). Let B ∈ F×

q . Then the elliptic curve E
given by y2 = x3 + B is supersingular.

PROOF Let ψ : F×
q → F×

q be the homomorphism defined by ψ(x) = x3.
Since q − 1 is not a multiple of 3, there are no elements of order 3 in F×

q , so
the kernel of ψ is trivial. Therefore, ψ is injective, hence must be surjective
since it is a map from a finite group to itself. In particular, every element of
Fq has a unique cube root in Fq.

For each y ∈ Fq, there is exactly one x ∈ Fq such that (x, y) lies on the
curve, namely, x is the unique cube root of y2 − B. Since there are q values
of y, we obtain q points. Including the point ∞ yields

#E(Fq) = q + 1.

Therefore, E is supersingular.

Later (Theorem 4.34), we’ll see how to obtain all supersingular elliptic
curves over an algebraically closed field.
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An attractive feature of supersingular curves is that computations involving
an integer times a point can sometimes be done faster than might be expected.
Suppose E is a supersingular elliptic curve defined over Fq and let P = (x, y)
be a point in E(Fqn) for some n ≥ 1. Usually n is large. Let k be a positive
integer. We want to compute kP . This can be done quickly by successive
doubling, but it is possible to do even better. Let’s assume that a = 0. Then

φ2
q + q = 0

by Theorem 4.10. Therefore

q(x, y) = −φ2
q(x, y) =

(
xq2

,−yq2
)

.

The calculations of xq2
and yq2

involve finite field arithmetic, which is gener-
ally faster than elliptic curve calculations. Moreover, if x and y are expressed
in terms of a normal basis of Fqn over Fq, then xq2

and yq2
are computed by

shift operations (see Appendix C). The procedure is now as follows:

1. Expand k in base q:

k = k0 + k1q + k2q
2 + · · · + krq

r,

with 0 ≤ ki < q.

2. Compute kiP = (xi, yi) for each i.

3. Compute qikiP = (xq2i

i , (−1)iyq2i

i ).

4. Sum the points qikiP for 0 ≤ i ≤ r.

The main savings is in step (3), where elliptic curve calculations are replaced
by finite field computations.

We now show how to obtain all supersingular curves over Fq. Note that
supersingularity means that there are no points of order p with coordinates
in the algebraic closure; hence, it is really a property of an elliptic curve over
an algebraically closed field. If we have two elliptic curves E1 and E2 defined
over a field such that E1 can be transformed into E2 by a change of variables
defined over some extension field, then E1 is supersingular if and only if E2

is supersingular.
For example, in Proposition 4.33, the curve y2

1 = x3
1 + B can be changed

into y2
2 = x3

2 + 1 via x2 = x1/B1/3, y2 = y1/B1/2. Therefore, it would have
sufficed to prove the proposition for the curve y2 = x3 + 1.

Recall (Section 2.5.1) that an elliptic curve E over an algebraically closed
field of characteristic not 2 can be put into the Legendre form y2 = x(x −
1)(x − λ) with λ 
= 0, 1.
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THEOREM 4.34
Let p be an odd prime. Define the polynomial

Hp(T ) =
(p−1)/2∑

i=0

(
(p − 1)/2

i

)2

T i.

The elliptic curve E given by y2 = x(x−1)(x−λ) with λ ∈ Fp is supersingular
if and only if Hp(λ) = 0.

PROOF Since Fp = ∪n≥1Fpn , we have λ ∈ Fq = Fpn for some n. So E is
defined over Fq. To determine supersingularity, it suffices to count points in
E(Fq), by Proposition 4.31. We know (Exercise 4.4) that(

x

Fq

)
= x(q−1)/2

in Fq. Therefore, by Theorem 4.14,

#E(Fq) = q + 1 +
∑

x∈Fq

(x(x − 1)(x − λ))(q−1)/2
,

where this is now an equality in Fq. The integers in this formula are regarded
as elements of Fp ⊆ Fq. The following lemma allows us to simplify the sum.

LEMMA 4.35
Let i > 0 be an integer. Then

∑
x∈Fq

xi =
{

0 if q − 1 � i
−1 if q − 1|i.

PROOF If q − 1|i then xi = 1 for all nonzero x, so the sum equals q − 1,
which equals −1 in Fq. The group F×

q is cyclic of order q − 1. Let g be a
generator. Then every nonzero element of Fq can be written in the form gj

with 0 ≤ j ≤ q − 2. Therefore, if q − 1 � i,

∑
x∈Fq

xi = 0 +
∑

x∈F×
q

xi =
q−2∑
j=0

(gj)i =
q−2∑
j=0

(gi)j =
(gi)q−1 − 1

gi − 1
= 0,

since gq−1 = 1.

Expand (x(x − 1)(x − λ))(q−1)/2 into a polynomial of degree 3(q − 1)/2.
There is no constant term, so the only term xi with q − 1|i is xq−1. Let Aq

be the coefficient of xq−1. By the lemma,∑
x∈Fq

(x(x − 1)(x − λ))(q−1)/2 = −Aq,
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since all the powers of x except for xq−1 sum to 0. Therefore,

#E(Fq) = 1 − Aq in Fq.

By Proposition 4.31, E is supersingular if and only if Aq = 0 in Fq. The
following lemma allows us to relate Aq to Ap.

LEMMA 4.36
Let f(x) = x3 + c2x

2 + c1x + c0 be a cubic polynomial with coefficients in a
field of characteristic p. For each r ≥ 1, let Apr be the coefficient of xpr−1 in
f(x)(p

r−1)/2. Then
Apr = A1+p+p2+···+pr−1

p .

PROOF We have

(f(x)(p−1)/2)pr

= (x3(p−1)/2 + · · · + Apx
p−1 + · · · )pr

= x3(p−1)pr/2 + · · · + Apr

p xpr(p−1) + · · · .

Therefore,

f(x)(p
r+1−1)/2 = f(x)(p

r−1)/2
(
f(x)(p−1)/2

)pr

= (x3(pr−1)/2 + · · · + Aprxpr−1 + · · · )
·(x3(p−1)pr/2 + · · · + Apr

p xpr(p−1) + · · · ).

To obtain the coefficient of xpr+1−1, choose indices i and j with i + j =
pr+1 − 1, multiply the corresponding coefficients from the first and second
factors in the above product, and sum over all such pairs i, j. A term with
0 ≤ i ≤ 3(pr − 1)/2 from the first factor requires a term with

pr+1 − 1 ≥ j ≥ (pr+1 − 1) − 3
2
(pr − 1) > (p − 2)pr

from the second factor. Since all of the exponents in the second factor are
multiples of pr, the only index j in this range that has a nonzero exponent
is j = (p − 1)pr. The corresponding index i is pr − 1. The product of the
coefficients yields

Apr+1 = AprApr

p .

The formula of the lemma is trivially true for r = 1. It now follows by an
easy induction for all r.

From the lemma, we now see that E is supersingular if and only if Ap = 0.
This is significant progress, since Ap depends on p but not on which power of
p is used to get q.
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It remains to express Ap as a polynomial in λ. The coefficient Ap of xp−1

in (x(x − 1)(x − λ))(p−1)/2 is the coefficient of x(p−1)/2 in

((x − 1)(x − λ))(p−1)/2.

By the binomial theorem,

(x − 1)(p−1)/2 =
∑

i

(
(p − 1)/2

i

)
xi(−1)(p−1)/2−i

(x − λ)(p−1)/2 =
∑

j

(
(p − 1)/2

j

)
x(p−1)/2−j(−λ)j .

The coefficient Ap of x(p−1)/2 in (x − 1)(p−1)/2(x − λ)(p−1)/2 is

(−1)(p−1)/2

(p−1)/2∑
k=0

(
(p − 1)/2

k

)2

λk = (−1)(p−1)/2Hp(λ).

Therefore, E is supersingular if and only if Hp(λ) = 0. This completes the
proof of Theorem 4.34.

It is possible to use the method of the preceding proof to determine when
certain curves are supersingular.

PROPOSITION 4.37
Let p ≥ 5 be prime. Then the elliptic curve y2 = x3 + 1 over Fp is supersin-
gular if and only if p ≡ 2 (mod 3), and the elliptic curve y2 = x3 +x over Fp

is supersingular if and only if p ≡ 3 (mod 4).

PROOF The coefficient of xp−1 in (x3 + 1)(p−1)/2 is 0 if p ≡ 2 (mod 3)
(since we only get exponents that are multiples of 3), and is

(
(p−1)/2
(p−1)/3

) 
≡
0 (mod p) when p ≡ 1 (mod 3) (since the binomial coefficient contains no
factors of p). Since the coefficient of xp−1 is zero mod p if and only if the
curve is supersingular, this proves the first part.

The coefficient of xp−1 in (x3 + x)(p−1)/2 is the coefficient of x(p−1)/2 in
(x2 + 1)(p−1)/2. All exponents appearing in this last expression are even,
so x(p−1)/2 doesn’t appear when p ≡ 3 (mod 4). When p ≡ 1 (mod 4),
the coefficient is

(
(p−1)/2
(p−1)/4

) 
≡ 0 (mod p). This proves the second part of the

proposition.

If E is an elliptic curve defined over Z with complex multiplication (see
Chapter 10) by a subring of Q(

√−d), and p is an odd prime number not
dividing d for which E (mod p) is an elliptic curve, then E (mod p) is super-
singular if and only if −d is not a square mod p. Therefore, for such an E,
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the curve E (mod p) is supersingular for approximately half of the primes.
In the proposition, the curve y2 = x3 + 1 has complex multiplication by
Z[(1 +

√−3)/2], and −3 is a square mod p if and only if p ≡ 1 (mod 3). The
curve y2 = x3 + x has complex multiplication by Z[

√−1], and −1 is a square
mod p if and only if p ≡ 1 (mod 4).

If E does not have complex multiplication, the set of primes for which E
(mod p) is supersingular is much more sparse. Elkies [37] proved in 1986
that, for each E, the set of such primes is infinite. Wan [126], improving
on an argument of Serre, showed that, for each ε > 0, the number of such
p < x for which E (mod p) is supersingular is less than Cεx/ ln2−ε(x) for
some constant Cε depending on ε. Since the number of primes less than x
is approximately x/ ln x, this shows that substantially less than half of the
primes are supersingular for E. It has been conjectured by Lang and Trotter
that the number of supersingular p is asymptotic to C ′√x/ ln x (as x → ∞)
for some constant C ′ depending on E. This has been shown to be true “on
the average” by Fouvry and Murty [39].

We now change our viewpoint and fix p and count supersingular E over
Fp. This essentially amounts to counting distinct zeros of Hp(T ). The values
λ = 0, 1 are not allowed in the Legendre form of an elliptic curve. Moreover,
they also don’t appear as zeros of Hp(T ). It is easy to see that Hp(0) = 1.
For Hp(1), observe that the coefficient of x(p−1)/2 in

(x + 1)p−1 = (x + 1)(p−1)/2(x + 1)(p−1)/2

is (
p − 1

(p − 1)/2

)
=

∑
k

(
(p − 1)/2

k

)(
(p − 1)/2

(p − 1)/2 − k

)
= Hp(1),

(use the identity
(
n
k

)
=

(
n

n−k

)
). Since

(
p−1

(p−1)/2

)
contains no factors p, it is

nonzero mod p. Therefore, Hp(1) 
= 0.

PROPOSITION 4.38

Hp(T ) has (p − 1)/2 distinct roots in Fp.

PROOF We claim that

4T (1 − T )H ′′
p (T ) + 4(1 − 2T )H ′

p(T ) − Hp(T ) ≡ 0 (mod p). (4.5)

Write Hp(T ) =
∑

k bkT k. The coefficient of T k on the left side of (4.5) is

4(k + 1)kbk+1 − 4k(k − 1)bk + 4(k + 1)bk+1 − 8kbk − bk

= 4(k + 1)2bk+1 − (2k + 1)2bk.
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Using the fact that

bk+1 =
(

(p − 1)/2
k + 1

)2

=
(

((p − 1)/2)!
(k + 1)!(((p − 1)/2) − k − 1)!

)2

=
(

((p − 1)/2) − k

k + 1

)2

bk,

we find that the coefficient of T k is(
4 (((p − 1)/2) − k)2 − (2k + 1)2

)
bk = p(p − 2 − 4k)bk ≡ 0 (mod p).

This proves the claim.
Suppose now that Hp(λ) = 0 with λ ∈ Fp. Since Hp(0) 
= 0 and Hp(1) 
= 0,

we have λ 
= 0, 1. Write Hp(T ) = (T−λ)rG(T ) for some polynomial G(T ) with
G(λ) 
= 0. Suppose r ≥ 2. In (4.5), we have (T −λ)r−1 dividing the last term
and the middle term, but only (T − λ)r−2 divides the term 4T (1− T )H ′′

p (T ).
Since the sum of the three terms is 0, this is impossible, so we must have
r = 1. Therefore, λ is a simple root. (Technical point: Since the degree of
Hp(T ) is less than p, we have r < p, so the first term of the derivative

H ′′
p (T ) = r(r − 1)(T − λ)r−2G(T ) + 2r(T − λ)r−1G′(T ) + (T − λ)rG′′(T )

does not disappear in characteristic p. Hence (T − λ)r−1 does not divide the
first term of (4.5).)

REMARK 4.39 The differential equation 4.5 is called a Picard-Fuchs
differential equation. For a discussion of this equation in the study of
families of elliptic curves in characteristic 0, see [24]. Once we know that
Hp(T ) satisfies this differential equation, the simplicity of the roots follows
from a characteristic p version of the uniqueness theorem for second order
differential equations. If λ is a multiple root of Hp(T ), then Hp(λ) = H ′

p(λ) =
0. Such a uniqueness theorem would say that Hp(T ) must be identically 0,
which is a contradiction. Note that we must avoid λ = 0, 1 because of the
coefficient T (1 − T ) for H ′′

p (T ).

COROLLARY 4.40
Let p ≥ 5 be prime. The number of j ∈ Fp that occur as j-invariants of

supersingular elliptic curves is
[ p

12

]
+ εp,

where εp = 0, 1, 1, 2 if p ≡ 1, 5, 7, 11 (mod 12), respectively.
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PROOF The j-invariant of y2 = x(x − 1)(x − λ) is

28 (λ2 − λ + 1)3

λ2(λ − 1)2

(see Exercise 2.13), so the values of λ yielding a given j are roots of the
polynomial

Pj(λ) = 28(λ2 − λ + 1)3 − jλ2(λ − 1)2.

The discriminant of this polynomial is 230(j−1728)3j4, which is nonzero unless
j = 0 or 1728. Therefore, there are 6 distinct values of λ ∈ Fp corresponding
to each value of j 
= 0, 1728. If one of these λ’s is a root of Hp(T ), then all
six must be roots, since the corresponding elliptic curves are all the same (up
to changes of variables), and therefore all or none are supersingular.

Since the degree of Hp(T ) is (p− 1)/2, we expect approximately (p− 1)/12
supersingular j-invariants, with corrections needed for the cases when at least
one of j = 0 or j = 1728 is supersingular.

When j = 0, the polynomial Pj(λ) becomes 28(λ2 − λ + 1)3, so there are
two values of λ that give j = 0. When j = 1728, the polynomial becomes
28(λ − 2)2(λ − 1

2 )2(λ + 1)2, so there are three values of λ yielding j = 1728.
A curve with j-invariant 0 can be put into the form y2 = x3 + 1 over an

algebraically closed field. Theorem 4.34 therefore tells us that when p ≡ 2
(mod 3), the two λ’s yielding j = 0 are roots of Hp(T ). Similarly, when p ≡ 3
(mod 4), the three λ yielding j = 1728 are roots of Hp(T ).

Putting everything together, the total count of roots of Hp(T ) is

6 · #{supersingular j 
= 0, 1728} + 2δ2(3) + 3δ3(4)

= deg Hp(T ) = (p − 1)/2,

where δi(j) = 1 if p ≡ i (mod j) and = 0 otherwise.
Suppose that p ≡ 5 (mod 12). Then δ2(3) = 1 and δ3(4) = 0, so the number

of supersingular j 
= 0, 1728 is

p − 1
12

− 1
3

=
[ p

12

]
.

Adding 1 for the case j = 0 yields the number given in the proposition. The
other cases of p (mod 12) are similar.

Example 4.14
When p = 23, we have

H23(T ) = (T − 3)(T − 8)(T − 21)(T − 11)(T − 13)(T − 16)
·(T − 2)(T − 12)(T + 1)(T 2 − T + 1)

(this is a factorization over F23). The first 6 factors correspond to

{λ,
1
λ

, 1 − λ,
1

1 − λ
,

λ

λ − 1
,
λ − 1

λ
},
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with λ = 3, hence to the curve y2 = x(x − 1)(x − 3). The next three factors
correspond to j = 1728, hence to the curve y2 = x3 + x. The last factor
corresponds to j = 0, hence to y2 = x3 + 1. Therefore, we have found the
three supersingular curves over F23. Of course, over F23, there are different
forms of these curves. For example, y2 = x3 + 1 and y2 = x3 + 2 are different
curves over F23, but are the same over F23.

Example 4.15

When p = 13,

H13(T ) ≡ (T 2 + 4T + 9)(T 2 + 12T + 3)(T 2 + 7T + 1).

The six roots correspond to one value of j. Since λ = −2 +
√

8 is a root of
the first factor, the corresponding elliptic curve is

y2 = x(x − 1)(x + 2 −
√

8).

The appearance of a square root such as
√

8 is fairly common. It is possible
to show that a supersingular curve over a perfect field of characteristic p
must have its j-invariant in Fp2 (see [109, Theorem V.3.1]). Therefore, a
supersingular elliptic curve over Fq can always be transformed via a change
of variables (over Fq) into a curve defined over Fp2 .

Exercises

4.1 Let E be the elliptic curve y2 = x3 + x + 1 (mod 5).

(a) Show that 3(0, 1) = (2, 1) on E.

(b) Show that (0, 1) generates E(F5). (Use the fact that E(F5) has
order 9 (see Example 4.1), plus the fact that the order of any
element of a group divides the order of the group.)

4.2 Let E be the elliptic curve y2 + y = x3 over F2. Show that

#E(F2n) =
{

2n + 1 if n is odd
2n + 1 − 2(−2)n/2 if n is even.

4.3 Let Fq be a finite field with q odd. Since F×
q is cyclic of even order q−1,

half of the elements of F×
q are squares and half are nonsquares.
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(a) Let u ∈ Fq. Show that

∑
x∈Fq

(
x + u

Fq

)
= 0.

(b) Let f(x) = (x− r)2(x− s), where r, s ∈ Fq with q odd. Show that

∑
x∈Fq

(
f(x)
Fq

)
= −

(
r − s

Fq

)
.

(Hint: If x 
= r, then (x− r)2(x− s) is a square exactly when x− s
is a square.)

4.4 Let x ∈ Fq with q odd. Show that
(

x

Fq

)
= x(q−1)/2

as elements of Fq. (Remark: Since the exponentiation on the right
can be done quickly, for example, by successive squaring (this is the
multiplicative version of the successive doubling in Section 2.2), this
shows that the generalized Legendre symbol can be calculated quickly.
Of course, the classical Legendre symbol can also be calculated quickly
using quadratic reciprocity.)

4.5 Let p ≡ 1 (mod 4) be prime and let E be given by y2 = x3 − kx, where
k 
≡ 0 (mod p).

(a) Use Theorem 4.23 to show that #E(Fp) is a multiple of 4 when k
is a square mod p.

(b) Show that when k is a square mod p, then E(Fp) contains 4 points
P satisfying 2P = ∞. Conclude again that #E(Fp) is a multiple
of 4.

(c) Show that when k is not a square mod p, then E(Fp) contains no
points of order 4.

(d) Let k be a square but not a fourth power mod p. Show that exactly
one of the curves y2 = x3−x and y2 = x3−kx has a point of order
4 defined over Fp.

4.6 Let E be an elliptic curve over Fq and suppose

E(Fq) � Zn ⊕ Zmn.

(a) Use the techniques of the proof of Proposition 4.16 to show that
q = mn2 + kn + 1 for some integer k.
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(b) Use Hasse’s theorem in the form a2 ≤ 4q to show that |k| ≤ 2
√

m.
Therefore, if m is fixed, q occurs as the value of one of finitely many
quadratic polynomials.

(c) The prime number theorem implies that the number of prime pow-
ers less than x is approximately x/ ln x. Use this to show that most
prime powers do not occur as values of the finite list of polynomials
in (b).

(d) Use Hasse’s theorem to show that mn ≥ √
m(

√
q − 1).

(e) Show that if m ≥ 17 and q is sufficiently large (q ≥ 1122 suffices),
then E(Fq) has a point of order greater than 4

√
q.

(f) Show that for most values of q, an elliptic curve over Fq has a point
of order greater than 4

√
q.

4.7 (a) Let E be defined by y2 +y = x3 +x over F2. Show that #E(F2) =
5.

(b) Let E be defined by y2 = x3−x+2 over F3. Show that #E(F3) = 1.

(c) Show that the curves in (a) and (b) are supersingular, but that, in
each case, a = p+1−#E(Fp) 
= 0. This shows that the restriction
to p ≥ 5 is needed in Corollary 4.32.

4.8 Let p ≥ 5 be prime. Use Theorem 4.23 to prove Hasse’s theorem for the
elliptic curve given by y2 = x3 − kx over Fp.

4.9 Let E be an elliptic curve over Fq with q = p2m. Suppose that #E(Fq) =
q + 1 − 2

√
q.

(a) Let φq be the Frobenius endomorphism. Show that (φq−pm)2 = 0.

(b) Show that φq − pm = 0 (Hint: Theorem 2.22).

(c) Show that φq acts as the identity on E[pm − 1], and therefore that
E[pm − 1] ⊆ E(Fq).

(d) Show that E(Fq) � Zpm−1 ⊕ Zpm−1.

4.10 Let E be an elliptic curve over Fq with q odd. Write #E(Fq) = q+1−a.
Let d ∈ F×

q and let E(d) be the twist of E, as in Exercise 2.23. Show
that

#E(d)(Fq) = q + 1 −
(

d

Fq

)
a.

(Hint: Use Exercise 2.23(c) and Theorem 4.14.)

4.11 Let Fq be a finite field of odd characteristic and let a, b ∈ Fq with
a 
= ±2b and b 
= 0. Define the elliptic curve E by

y2 = x3 + ax2 + b2x.
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(a) Show that the points (b, b
√

a + 2b) and (−b, −b
√

a − 2b) have or-
der 4.

(b) Show that at least one of a + 2b, a− 2b, a2 − 4b2 is a square in Fq.

(c) Show that if a2 − 4b2 is a square in Fq, then E[2] ⊆ E(Fq).

(d) (Suyama) Show that #E(Fq) is a multiple of 4.

(e) Let E′ be defined by y′2 = x′3 − 2ax′2 + (a2 − 4b2)x′. Show that
E′[2] ⊆ E′(Fq). Conclude that #E′(Fq) is a multiple of 4.

The curve E′ is isogenous to E via

(x′, y′) = (y2/x2, y(b2 − x2)/x2)

(see the end of Section 8.6 and also Chapter 12). It can be shown that
this implies that #E(Fq) = #E′(Fq). This gives another proof of the
result of part (d). The curve E has been used in certain elliptic curve
factorization implementations (see [19]).

4.12 Let p be a prime and let E be a supersingular elliptic curve over the
finite field Fp. Let φp be the Frobenius endomorphism. Show that some
power of φp is an integer. (Note: This is easy when p ≥ 5. The cases
p = 2, 3 can be done by a case-by-case calculation.)

4.13 Let E be an elliptic curve over Fq. Show that Hasse’s theorem can be
restated as ∣∣∣∣

√
#E(Fq) −√

q

∣∣∣∣ ≤ 1.

4.14 Let E be an elliptic curve over Fq. Assume that q = r2 for some integer
r. Suppose that #E(Fq) = (r − 1)2. Let φ = φq be the qth power
Frobenius endomorphism.

(a) Show that (φ − r)2 = 0.

(b) Show that φ−r = 0. (Hint: A nonzero endomorphism is surjective
on E(Fq) by Theorem 2.22.)

(c) Show that (r − 1)E(Fq) = 0.

(d) Show that E(Fq) � Zr−1 ⊕ Zr−1.

(e) Now suppose E′ is an elliptic curve over Fq with #E′(Fq) = (r+1)2

(where q = r2). Show that E′(Fq) � Zr+1 ⊕ Zr+1.
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