
Implementing Complete Formulas on Weierstrass Curves in
Hardware

Pedro Maat C. Massolino, Joost Renes, Lejla Batina1

Radboud University, Nijmegen, The Netherlands
{p.massolino,j.renes,lejla}@cs.ru.nl

Abstract. This work revisits the recent complete addition formulas for prime order elliptic
curves of Renes, Costello and Batina in light of parallelization. We introduce the first hardware
implementation of the new formulas on an FPGA based on three arithmetic units performing
Montgomery multiplication. Our results are competitive with current literature and show the
potential of the new complete formulas in hardware design. Furthermore, we present algorithms
to compute the formulas using anywhere between two and six processors, using the minimum
number of parallel field multiplications.

Keywords. Elliptic curve cryptography, FPGA, Weierstrass curves, Complete Addition For-
mulas

1 Introduction

The main operation in many cryptographic protocols based on elliptic curves is scalar mul-
tiplication, which is performed via repeated point addition and doubling. In early works for-
mulas for the group operation used different sequences of instructions for addition and dou-
bling [24,30]. This resulted in more optimized implementations, since doublings can be faster
than general additions, but naïve implementations suffered from side-channel attacks [25].
Indeed, as all special cases have to be treated differently, it is not straightforward to come up
with an efficient and side-channel secure implementation.

A class of elliptic curves which can avoid these problems is the family of curves proposed
by Bernstein and Lange, the so-called Edwards curves [9]. Arguably, the primary reason for
their popularity is their “complete” addition law, that is, a single addition law which can be
used for all inputs. The benefit of having a complete addition law is obvious for both sim-
plicity and side-channel security. Namely, having only one set of formulas that works for all
inputs simplifies the task of implementers and helps to thwart some side-channel attacks, e. g.
safe-error attacks [41]. After the introduction of Edwards curves, more curves models have
been shown to possess complete addition laws [7,8]. Moreover, (twisted) Edwards curves are
being deployed in software, for example in the library NaCl [11]. In particular, software im-
plementations typically rely on specific curves, e. g. on the Montgomery curves Curve25519 [6]
by Bernstein or Curve448 [21] proposed by Hamburg.

Moving to a hardware scenario, using the nice properties of these specific curves is not
as straightforward anymore. Hardware development is costly, and industry prefers IP cores
as generic solutions for all possible clients. Moreover, backwards compatibility is a serious
concern, and curves defined over large prime fields in most standards (e. g. [13,16,31]) are
1 This work was supported in part by the Technology Foundation STW (project 13499 - TYPHOON &
ASPASIA), from the Dutch government.



2 Pedro Maat C. Massolino, Joost Renes, Lejla Batina1

prime order curves written in short Weierstrass form. This issue prohibits using (twisted)
Edwards, (twisted) Hessian and Montgomery models, since these impose that the group order
must be composite. The desire for complete addition formulas for prime order curves in short
Weierstrass form was recognized and Renes, Costello and Batina [33] proved this to be realistic.
They present complete addition formulas with an efficiency loss of 34%-44% (depending on
the size of the field) in software when compared to the widely used incomplete formulas based
on Jacobian coordinates.

As the authors mention, one can expect to have better performance in hardware, but
they do not present results. In particular, when using Montgomery multiplication one can
benefit from very efficient modular additions and subtractions (which appear a lot in their
formulas), which changes the performance ratio derived in the original paper. Therefore, it is of
interest to investigate the new complete formulas from a hardware point of view. In this paper
we show that the hardware performance is competitive with the literature, building scalar
multiplication on top of three parallel Montgomery multipliers. In more detail, we summarize
our contributions as follows:

– we present the first hardware implementation based on the work of [28], working for every
prime order curve over a prime field of up to 522 bits, and obtain competitive results;

– we present algorithms for various levels of parallelism for the new formulas. We show that
the number of parallel multiplications decreases for up to six Montgomery multipliers.

All algorithms and their respective Magma [12] verification code can be found in Appendix B
and C. The entire VHDL source code is provided on https://github.com/pmassolino/hw-triple-
weierstrass.

Related work. There are numerous works on curve-based hardware implementations. Mostly
on various FPGA platforms, making a meaningful comparison very difficult. Güneysu and
Paar [19] proposed a new speed-optimized architecture that makes intensive use of the DSP
blocks in an FPGA platform. Guillermin [20] introduced a prime field ECC hardware archi-
tecture and implemented it on several Altera FPGA boards. The design is based on Residue
Number System (RNS), facilitating carry-free arithmetic and parallelism. Yao et al. [40] fol-
lowed the idea of using RNS to design a high-speed ECC co-processor for pairings. Sakiyama
et al. [35] proposed a superscalar coprocessor that could deal with three different curve-based
cryptosystems, all in characteristic 2 fields. Varchola et al. [38] designed a processor-like archi-
tecture, with instruction set and decoder, on top of which they implemented ECC. This ap-
proach has the benefit of having a portion written in software, which can be easily maintained
and updated, while having special optimized instructions for the elliptic curve operations. The
downside of this approach is that the resource costs are higher than a fully optimized proces-
sor. As it was the case for Güneysu and Paar [19], their targets were standardized NIST prime
curves P–224 and P–256. Consequently, each of their synthesized circuit would only work for
one of the two primes. Pöpper et al. [32] follow the same approach as Varchola et al. [38], with
some side-channel related improvements. The paper focuses on analyze of countermeasures
and their effective cost. Roy et al. [34] followed the same path, but with more optimizations
with respect to resources and only for curve NIST P–256. However, the number of Block
RAMs necessary for the architecture is much larger than of Pöpper et al. [32] or Varchola
et al. [38]. Fan et al. [17] created an architecture for special primes and curves, namely the
standardized NIST P–192. The approach was to parallelize Montgomery multiplication and

https://github.com/pmassolino/hw-triple-weierstrass
https://github.com/pmassolino/hw-triple-weierstrass


Implementing Complete Formulas on Weierstrass Curves in Hardware 3

formulas for point addition and doubling on the curve. Vliegen et al. [39] attempted to reduce
the resources with a small core aimed at 256-bit primes.

Organization. We start with preliminaries in Section 2, and briefly discuss parallelism for
the complete formulas in Section 3. Finally we present our hardware implementation using
three Montgomery multipliers in Section 4.

2 Preliminaries for elliptic curve cryptography

We briefly review the basics of elliptic curves. For a more elaborate study see [18,37].
Let p 6= 2, 3 be prime, q = pn for a positive integer n, and Fq be the finite field of q

elements. Let E/Fq be an elliptic curve defined over Fq with specified point O, which we call
the point at infinity. Every such curve is isomorphic to a curve in short Weierstrass form

E : Y 2Z = X3 + aXZ2 + bZ3 ⊂ P2

such that a, b ∈ Fq and O = (0 : 1 : 0). Any point not equal to O is called an affine point. It
is easy to see that a point (X : Y : Z) is affine if and only if Z 6= 0, hence setting x = X/Z
and y = Y/Z it follows that the affine points correspond to (x, y) such that

y2 = x3 + ax+ b.

The points on E form a group, with O as its identity element. Denote by E(Fq) the subgroup
of Fq-rational points of E. Its order is its order as a group, and in this document we are only
concerned with the prime order case.

There are many ways to compute the group law on E, see [10]. These differ depending
on the representation of the curve and the points. As mentioned in the introduction, we put
emphasis on complete addition formulas for prime order elliptic curves. The work of Renes
et al. [33] presents addition formulas for curves in short Weierstrass form with homogeneous
coordinates. They compute the sum of two points P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2)
as P +Q = (X3 : Y3 : Z3), where

X3 = (X1Y2 +X2Y1)(Y1Y2 − a(X1Z2 +X2Z1)− 3bZ1Z2)

− (Y1Z2 + Y2Z1)(aX1X2 + 3b(X1Z2 +X2Z1)− a2Z1Z2),

Y3 = (3X1X2 + aZ1Z2)(aX1X2 + 3b(X1Z2 +X2Z1)− a2Z1Z2)

+ (Y1Y2 + a(X1Z2 +X2Z1) + 3bZ1Z2)(Y1Y2 − a(X1Z2 +X2Z1)− 3bZ1Z2),

Z3 = (Y1Z2 + Y2Z1)(Y1Y2 + a(X1Z2 +X2Z1) + 3bZ1Z2)

+ (X1Y2 +X2Y1)(3X1X2 + aZ1Z2).

This computes, without exception, P +Q for any two points P,Q ∈ E, and has been shown
to still be efficient (in software).

Elliptic-curve cryptography [24,30] commonly relies on the hard problem called the “elliptic
curve discrete logarithm problem”. This means that given two points P,Q on an elliptic curve,
it is hard to find a scalar k ∈ Z such that Q = kP , if it exists. Therefore the main component
of curve-based cryptosystems is the scalar multiplication operation (k, P ) 7→ kP . Since in
many cases k is a secret, this operation is very sensitive to attacks. In particular many side-
channel attacks [25,5] and correspondingly countermeasures [15] have been proposed. To ensure



4 Pedro Maat C. Massolino, Joost Renes, Lejla Batina1

protection against simple power analysis (SPA) attacks it is important to use regular scalar
multiplication algorithms, e. g. the Montgomery ladder [22] or Double-And-Add-Always [15],
executing both an addition and a doubling operation per scalar bit.

3 Parallelism

An important way to increase the efficiency of the implementation is to use multiple Mont-
gomery multipliers in parallel. In this section we give a brief explanation for our choice of
three multipliers.

The addition formulas on which our scalar multiplication is built are shown in Algorithm
1 of [33]. We choose to ignore additions and subtractions since we assume to be relying on
a Montgomery multiplier for which the cost of field multiplications is far higher than that
of field additions. The total (multiplicative) cost in the most general case is 12M + 2ma +
3m3b

1. Because our processors do not distinguish full multiplications and multiplications by
constants, we consider this cost simply as 17M. The authors of [33] introduce optimizations
for mixed addition and doubling, but in our case this only saves a single multiplication (and
some additions). Since this does not make up for the price we would have to pay for the
implementation of a second algorithm, we only examine the most general case. In Table 1 we
show the interdependencies of the multiplications.

Stage Result Multiplication Dependent on
0 `0 X1 ·X2 -
0 `1 Y1 · Y2 -
0 `2 Z1 · Z2 -
0 `3 (X1 + Y1) · (X2 + Y2) -
0 `4 (X1 + Z1) · (X2 + Z2) -
0 `5 (Y1 + Z1) · (Y2 + Z2) -
1 `6 b3 · `2 `2

1 `7 a · `2 `2

1 `8 a · (`4 − `0 − `2) `0, `2, `4

1 `9 b3 · (`4 − `0 − `2) `0, `2, `4

2 `10 a · (`0 − `7) `0, `7

2 `11 (`3 − `0 − `1) · (`1 − `8 − `6) `0, `1, `3, `6, `8

2 `13 (`1 + `8 + `6) · (`1 − `8 − `6) `1, `6, `8

2 `15 (`5 − `1 − `2) · (`1 + `8 + `6) `1, `2, `5, `6, `8

2 `16 (`3 − `0 − `1) · (3`0 + `7) `0, `1, `3, `7

3 `12 (`5 − `1 − `2) · (`10 + `9) `1, `2, `5, `9, `10

3 `14 (3`0 + `7) · (`10 + `9) `0, `7, `9, `10

Table 1. Dependencies of multiplications inside the complete addition formulas

This allows us to write down algorithms for implementations running n processors in paral-
lel. Denote by Mn resp. an the cost of doing n multiplications resp. additions (or subtractions)
in parallel. In Table 2 we present the costs for 1 ≤ n ≤ 6. We make the simple approximations
1 We denote by M, ma, m3b, a the cost of a general multiplication, a multiplication by curve constant a, a
multiplication by curve constant 3b, and an addition respectively.



Implementing Complete Formulas on Weierstrass Curves in Hardware 5

that Mn = M and an = a. We note that this ignores some practical aspects. For example a
larger number of Montgomery multipliers can result in scheduling overhead, which we do not
take into account. For our implementation we have chosen for n = 3, i. e. three Montgomery
multipliers. This number of multipliers achieves a good area-time trade-off, while obtaining
a favorable speed-up compared to n = 1. Moreover, the aforementioned practical issues (e. g.
scheduling) are not as complicated to deal with as for larger n.

n Cost Area × Time Algorithm
1 17M+ 23a 17M+ 23a 1 in [33]
2 9M2 + 12a2 18M+ 24a Alg. 2
3 6M3 + 8a3 18M+ 24a Alg. 3
4 5M4 + 7a4 20M+ 28a Alg. 4
5 4M5 + 6a5 20M+ 30a Alg. 5
6 3M6 + 6a6 18M+ 36a Alg. 6

Table 2. Efficiency approximation of the number of Montgomery multipliers against the area
used. All algorithms for 2 ≤ n ≤ 6 are from this work.

4 Implementation of the formulas with three processors

In this section we introduce a novel hardware implementation, parallelizing the new formulas
using three Montgomery processors. We make use of the Montgomery processors which have
been proposed by Massolino et al. [28] for MicrosemiR© IGLOO2R© FPGAs, for which the
architecture is shown in Figure 1. We give a short description of the processor in Section 4.1,
but for more details on its internals we refer to [28]. As a consequence of building on top of
this processor, we target the same FPGA. However, it is straightforward to port it to other
FPGAs, or even ASICs, which have a Montgomery multiplier with the same interface and
instructions.

MEM2
64x17

MEM1
64x17

X
17

44

+

+/-

44

>> 17

34

0

Math
Block
1

17

0

17

0
17

27

X
17

44 +

+/-

44

>> 17

34

0

Math
Block
2

17

27

17

44

Fig. 1. The Montgomery addition, subtraction and multiplication processor.

The elliptic curve scalar multiplication routine is constructed on top of the Montgomery
processors. As mentioned before, to protect against simple power analysis attacks, we im-



6 Pedro Maat C. Massolino, Joost Renes, Lejla Batina1

plement a regular scalar multiplication algorithm (i. e. Double-And-Add-Always [15]). The
algorithm relies on three registers R0, R1 and R2. The register R0 contains the operand which
is always doubled. The registers R1 resp. R2 contain the result of the addition when the ex-
ponent bit is zero resp. one. This algorithm should be applied carefully since it is prone to
fault attacks, see [4]. From a very high level point of view the architecture consists of the
three Montgomery multipliers and a single BRAM block, shown in Figure 2. We note that
this BRAM block is more than large enough to store the necessary temporary variables. So,
although Algorithm 3 tries to minimize the number of these, this is not necessary for our case.
In the rest of this section we elaborate on the details of the implementation.

BRAM
MM0

MM1

MM2

MT

MT

ext
MT

ctr

read_
add_0

write_
add_0

scalar_
shifter

read_
add_1_2

write_
add_1_2

read_
add_a

read_
add_b

ctr

ctr_
shifter

scalar_
word_add

MT
MTMT

a

b

==?

ctr3scalar

prime_size -3

Fig. 2. The entire architecture with three Montgomery processors from [28], where MM =
Montgomery processor, SHR = Shift register, REG = Register.

4.1 The Montgomery processor

Massolino et al. [28] proposed two different Montgomery processors. Our scalar multiplication
builds on top of “version 2”, which has support for two internal multipliers and two memory
blocks. It can perform three operations: Montgomery multiplication, addition without reduc-
tion and subtraction without reduction. To perform Montgomery multiplication, the processor
employs the FIOS algorithm proposed by Koç et al. [23]. In short, FIOS computes the partial
product and partial reduction inside the same iterative loop. This can be translated into a
hardware architecture, see Figure 1, with a unit for the partial product and another partial
modular reduction. The circuit behaves like a three-stage pipeline: in the first stage operands
are fed into the circuit, in the second they are computed and in the third they are stored
into memory. The pipeline system is reused for the addition and subtraction operation in the
multiplier, and values are added or subtracted directly. In case of subtraction the computation
also adds a multiple of the prime modulus. Those operations can be done without applying
reduction, because reduction will be applied later during a multiplication operation. However,
there is a limit to the number of consecutive additions/subtractions with no reduction, on
which we elaborate in Section 4.4.



Implementing Complete Formulas on Weierstrass Curves in Hardware 7

4.2 Memory

The main RAM memory in Figure 2 is subdivided in order to lower control logic resources
and to facilitate the interface. The main memory operates as a true dual port memory of 1024
words of 17 bits. We create a separation in the memory, composing a big word of 32 words
(i. e. 544 bits). This way we construct the memory as 32 × 32 big words. A big word can
accommodate any temporary variable, input or output of our architecture. An exception is
possibly the scalar of the point scalar multiplication. Although a single word would be large
enough to contain 523-bit scalars (in the largest case of a 523-bit field), the scalar blinding
technique can double the size of the scalar [15]. Therefore, we use two words to store the
scalar. By doing this, it will in the future be possible to execute scalar multiplication with a
blinded scalar [14]. Lastly, there is a 17-bit shift register into which the scalar is loaded word
by word.

4.3 Control logic

The formulas and control system are done through two state machines: a main one which
controls everything, and one related to memory transfer.

The memory-transfer state machine was created with the purpose to reduce the number
of states in the main machine. This was done by providing the operation of transfer between
the main memory and the Montgomery processor’s memory. Therefore, the main machine can
transfer values with just one state, and can reuse most of the transfer logic. This memory-
transfer machine becomes responsible for various parts of the bus between main memories,
processors and other counters. However, the main state machine still has to be able to control
everything. Hence, the main state machine shares some components with the memory transfer
machine, increasing control circuit costs.

The main state machine controls all the circuits that compose the entire cryptographic core.
Given that it controls the entire circuit, the machine also has the entire Table 2 scheduling
implemented as states. The advantage of doing this through states is the possible optimization
of the design and the entire control. However, the cost of maintenance is a lot higher than
a small instruction set or microcode that can also implement the addition formulas or scalar
multiplication. Because the addition formulas are complete, it is possible to reduce the costs of
performing both addition and doubling through only the addition formulas. This decreases the
amount of states and therefore makes the final implementation a lot more compact. Hence, the
implementation only iterates over the addition formulas, until the end of the computations.

4.4 Consecutive additions

For the Montgomery processor to work in our architecture, part of the original design was
changed. The authors of [28] did not need to reduce after each addition or subtraction, as
they assumed that these operations would always be followed by Montgomery multiplications
(and its corresponding reduction). However, they were not able to do multiple consecutive
additions and subtractions, as the Montgomery division value r was chosen to be only 4 bits
larger than the prime. On the other hand, it is readily seen that in Algorithm 3 there are
several consecutive additions and subtractions. To be able to execute these without having
to reduce, we need a Montgomery division value at least 5 bits larger than the prime. As a
consequence, the processor only works for primes up to 522 bits (as opposed to 523), which is
still one bit more than the largest standardized prime curve [31].



8 Pedro Maat C. Massolino, Joost Renes, Lejla Batina1

4.5 Scheduling

The architecture presented in Figure 2 has one dual port memory, whereas it has three pro-
cessors. This means that we can only load values to two processors at the same time. As a
consequence the three processors do not run completely in parallel, but one of the three is
unsynchronized. Table 3 showcases how operations are split into different processors. They
are distributed with the goal of minimizing the number of loads and stores for each processor
and to minimize MM2 being idle. The process begins by loading the necessary values into MM0
and MM1 and executing their respective operations. As soon as the operations in MM0 and MM1
are initialized, it loads the corresponding value into MM2 and executes the operation. As soon
as MM0 and MM1 finish their operations, this process restarts. Since the operations executed in
MM2 are not synchronized with those in MM0 and MM1, both of the operations in MM0 and MM1
should be independent of the output of MM2, and vice versa. Furthermore, since multiplica-
tions are at least ten times slower than additions for our processor choice [28], the additions
and subtractions from lines seven and eight in Algorithm 3 can be done by the otherwise idle
processor MM2 in stage six. This makes them basically free of cost.

Line # Alg. 3 MM0 MM1 MM2
1 t0 ← X1 ·X2 t1 ← Y1 · Y2

t2 ← Z1 · Z2

2 t3 ← X1 + Y1 t4 ← X2 + Y2

t5 ← Y1 + Z1

3 t7 ← X1 + Z1 t8 ← X2 + Z2

t6 ← Y2 + Z2

4 t9 ← t3 · t4 t11 ← t7 · t8
t10 ← t5 · t6

5 t4 ← t1 + t2 t5 ← t0 + t2
t3 ← t0 + t1

6,7,8 t6 ← b3 · t2 t8 ← a · t2
t2 ← t9 − t3
t3 ← t10 − t4
t4 ← t11 − t5
t9 ← t0 + t0
t10 ← t9 + t0

9 t5 ← b3 · t4 t11 ← a · t4
t7 ← t0 − t8
t9 ← a · t7

10 t0 ← t8 + t10 t4 ← t11 + t6
t7 ← t5 + t9

11 t5 ← t1 − t4 t6 ← t1 + t4
12 t4 ← t0 · t7 t1 ← t5 · t6

t8 ← t3 · t7
13 t11 ← t0 · t2 t9 ← t2 · t5

t10 ← t3 · t6
14 Y1 ← t1 + t4 X1 ← t9 − t8

Z1 ← t10 + t11

Table 3. Scheduling for point addition P ← P +Q, where P = (X1 : Y1 : Z1) and Q = (X2 :
Y2 : Z2). For doubling simply put P = Q.

4.6 Pre- and post-processing

For completeness, we include cycle counts for the necessary pre-processing and post-processing
computations. To initialize the scalar multiplication on a point P = (X : Y : Z) we perform
three multiplications XR = X · R, YR = Y · R and ZR = Z · R to put the values in the
Montgomery domain. After the scalar multiplication is complete, we obtain a point kP =
(X ′R : Y ′R : Z ′R). Now we apply Algorithm 1 to Z ′R to obtain Z ′−1. Finally we compute



Implementing Complete Formulas on Weierstrass Curves in Hardware 9

x = (X ′R ·Z ′−1)/R and y = (Y ′R ·Z ′−1)/R, so that kP = (x : y : 1). Note that all multiplications
are Montgomery multiplications, and we avoid the need for an explicit division by R to exit
the Montgomery domain. Table 4 presents cycle counts for pre-processing, post-processing and
point addition for different field sizes.

Algorithm 1 Inversion using Fermat’s little theorem
Require: Z′R

Ensure: Z′−1, where Z′R = Z′ ·R.
1. M0 ← 1

2. M1 ← Z′R

3. for 0 ≤ i ≤ log (p− 2) do
4. if (p− 2)i = 1 then
5. M0 ← (M1 ·M0)/R

6. else
7. M1 ← (M1 ·M1)/R

8. end if
9. end for
10. return M0

Field size Pre-processing Post-processing Point addition
192 570 51021 1895
224 712 75247 2311
256 870 106145 2774
320 1234 191221 3902
384 1549 278611 4874
512 2565 632915 7994
521 2565 632915 7994

Table 4. Cycle count for pre-processing, post-processing and point addition. Point doubling
has the same cycle count as point addition.

4.7 Comparison

As our architecture supports primes from 116 to 522 bits, we can run benchmarks and do
comparisons for multiple field sizes. The results for common prime sizes are shown in Table 6
in Appendix A. In this section we consider only the currently widely adopted 128-bit security
level, presented in Table 5. Integer addition, subtraction and Montgomery modular multiplica-
tion results are the same as in Massolino et al. [28], while the cycle counts for pre-processing,
post-processing and point addition are in Table 4. This is the first work implementing the new



10 Pedro Maat C. Massolino, Joost Renes, Lejla Batina1

complete formulas for elliptic curves in short Weierstrass form [33] in hardware, and leads to
a scalar multiplication routine which takes about 8.61ms for a 256-bit prime.

To understand our results better, we not only provide area results for IGLOO2 FPGA,
but also for other technologies. This was done by describing the components architecture
with behavioral VHDL. Both the behavioral VHDL and the components instantiation behave
the same as in our architecture, guaranteeing correct execution. However, since they are not
optimized for other FPGAs inner components, the results are only an approximation, and can
likely be further improved. Nevertheless, in some cases we achieve faster scalar multiplication
than in our original platform due to better and more expensive technology, e. g. in the Zynq,
Virtex 5 and Virtex 6.

Even with a lot of different results, it is not straightforward to do a well-founded comparison
among works in the literature. Table 5 contains different implementations of elliptic-curve
scalar multiplications, but they have different optimization goals. For example we top [39] in
terms of milliseconds per scalar multiplication when compared with the same FPGA and field
arithmetic. On the other hand [34,26] have a trade-off between area and time, even though their
proposal was aimed and optimized for a different FPGA than ours. In [38] these optimizations
become more clear with a lower area and better time results on the Virtex II-Pro platform.

Other works [1,19,36,20,29,27] outperform our architecture in terms of speed, but use a
much larger number of embedded multipliers. Also, implementations only focusing on NIST
curves are able to use the special prime shape, yielding a significant speed-up. Depending on
the needs of a specific hardware designer, this specialization of curves might not always be
desirable. As mentioned before, many parties in industry might prefer generic cores. Despite
these remarks, we argue that the implementation is competitive with the literature, making
a similar trade-off between size and speed. Thus the new formulas can be implemented with
little to no penalties, while having the benefit of not having to deal with exceptions.

5 Conclusions

In this work we provide addition formulas that can be used from one to six processors and
a proof of concept architecture for three processors. The formulas can be applied not only in
hardware architectures with a great array of processors, but also in software implementations
that are using vector instructions. As shown in our proof of concept implementation, the
formulas have competitive results with other implementations in the literature. Since our
implementation is still a proof of concept, several further optimizations could be made to
achieve even better results.

References

1. H. Alrimeih and D. Rakhmatov. Fast and Flexible Hardware Support for ECC Over Multiple Standard
Prime Fields. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 22(12):2661–2674,
Dec 2014. 10, 11, 14

2. B. Baldwin, R. R. Goundar, M. Hamilton, and W. P. Marnane. Co-Z ECC scalar multiplications for
hardware, software and hardware–software co-design on embedded systems. Journal of Cryptographic
Engineering, 2(4):221–240, 2012. 11, 14

3. B. Baldwin, R. Moloney, A. Byrne, G. McGuire, and W. P. Marnane. A Hardware Analysis of Twisted
Edwards Curves for an Elliptic Curve Cryptosystem. In Reconfigurable Computing: Architectures, Tools
and Applications, volume 5453 of Lecture Notes in Computer Science, pages 355–361. Springer Berlin
Heidelberg, 2009. 14



Implementing Complete Formulas on Weierstrass Curves in Hardware 11

Work FPGA Slice/ LUT FF Emb. BRAM BRAM Freq. Scalar Mult.
ALM Mult. 64×18 1k×18 (MHz) Cycles (ms)

For all prime fields and prime order short Weierstrass curves
Our IGLOO 24 – 2967 1159 6 6 1 165 1421392 8.61
Our SmartFusion 24 – 2775 1086 6 6 1 139 1421392 10.23
Our Zynq6♣ 805 1911 1249 12 0 1 178 1421392 7.99
Our Spartan 3E4 2059 3632 1469 6 0 7 84 1421392 16.92
Our Spartan 66 758 1605 1246 12 0 1 103 1421392 13.80
Our Virtex 44 1414 2333 1171 6 0 1 147 1421392 9.67
Our Virtex 56♣ 941 2231 1362 12 0 1 175 1421392 8.12
Our Virtex 66♣ 775 1910 1250 12 0 1 152 1421392 9.35
Our Virtex II Pro4 1541 2562 1365 6 0 13 126 1421392 11.28

For NIST curves [31] only
[38] SmartFusion4 – 3690 3690 0 0 12 109 2103941 19.3
[38] Virtex II Pro4 773 ?1546 ?1546 1 0 3 210 2103941 10.02
[38] Virtex II Pro4 1158 ?2316 ?2316 4 0 3 210 949951 4.52
[32] Virtex 56♣ 1914 ?7656 ?7656 4 0 12 210 830000 3.95
[34] Spartan 66 72 193 35 8 0 24 156.25 †1906250 12.20
[26] Virtex 44 7020 12435 3545 8 0 4 182 †993174 5.46
[1] Virtex 66♣ 11.2k 32.9k ?89.6k 289 0 256 100 39922 0.40
[19] Virtex 44 1715 2589 2028 32 0 11 490 303450 0.62

For only Edwards or Twisted Edwards curves
[36] Zynq6♣ 1029 2783 3592 20 0 4 200 64770 0.32

For only specific field size, but works with any prime
[39] Virtex II Pro4 1832 ?3664 ?3664 2 0 9 108.2 3227993 29.83
[39] Virtex II Pro4 2085 ?4170 ?4170 7 0 9 68.17 1074625 15.76
[20] Stratix II4 9177 ?18354 ?18354 96 0 0 157.2 †106896 0.68
[29] Virtex II Pro4 15755 ?31510 ?31510 256 0 0 39.46 151360 3.86
[27] Virtex 44 4655 5740 4876 37 0 11 250 109297 0.44
[2] Virtex 56♣ 2284 7822 5780 0 0 0 81.71 †331200 4.04

? Maximum possible value assumed from the number of slices. Virtex II Pro and Spartan 3E slice is 2 LUTs and FFs,
Virtex 5 is 4 LUTs and FFs, finally Virtex 6 is 4 LUTs and 8 FFs. Stratix II ALM can be configured into 2 LUTs and

FFs.
† Values estimated by multiplying time by frequency.

4 6 indicates LUT size.
♣ BRAMs of Virtex 5, 6 and Zynq are 1k×36, so they account as 2 independent 1k×18.

Table 5. Comparison of our results to the literature on hardware implementations for ECC
for 256 bits field. The speed results are for one scalar multiplication.



12 Pedro Maat C. Massolino, Joost Renes, Lejla Batina1

4. A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache. Fault Injection Attacks on Cryptographic Devices:
Theory, Practice, and Countermeasures. Proceedings of the IEEE, 100(11):3056–3076, Nov 2012. 6

5. L. Batina, Ł. Chmielewski, L. Papachristodoulou, P. Schwabe, and M. Tunstall. Online Template Attacks.
In Progress in Cryptology – INDOCRYPT 2014: 15th International Conference on Cryptology in India,
New Delhi, India, December 14-17, 2014, Proceedings, pages 21–36. Springer International Publishing,
2014. 3

6. D. J. Bernstein. Curve25519: new Diffie-Hellman speed records. In Public key cryptography—PKC 2006,
9th international conference on theory and practice in public-key cryptography, New York, NY, USA, 2006.
Springer. 1

7. D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards Curves. In Progress in
Cryptology - AFRICACRYPT 2008, First International Conference on Cryptology in Africa, Casablanca,
Morocco, June 11-14, 2008. Proceedings, pages 389–405, 2008. 1

8. D. J. Bernstein, C. Chuengsatiansup, D. Kohel, and T. Lange. Twisted Hessian Curves. In Progress in
Cryptology - LATINCRYPT 2015 - 4th International Conference on Cryptology and Information Security
in Latin America, Guadalajara, Mexico, August 23-26, 2015, Proceedings, pages 269–294, 2015. 1

9. D. J. Bernstein and T. Lange. Faster Addition and Doubling on Elliptic Curves. In Advances in Cryptology
– ASIACRYPT 2007: 13th International Conference on the Theory and Application of Cryptology and In-
formation Security, Kuching, Malaysia, December 2-6, 2007. Proceedings, pages 29–50, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg. 1

10. D. J. Bernstein and T. Lange. Explicit-Formulas Database. http://hyperelliptic.org/EFD/index.html,
Date accessed: February 21, 2015. 3

11. D. J. Bernstein, T. Lange, and P. Schwabe. The security impact of a new cryptographic library. In
A. Hevia and G. Neven, editors, Progress in Cryptology – LATINCRYPT 2012, volume 7533 of Lec-
ture Notes in Computer Science, pages 159–176. Springer-Verlag Berlin Heidelberg, 2012. Document ID:
5f6fc69cc5a319aecba43760c56fab04, http://cryptojedi.org/papers/#coolnacl. 1

12. W. Bosma, J. J. Cannon, and C. Playoust. The Magma algebra system I: the user language. J. Symb.
Comput., 24(3/4):235–265, 1997. 2

13. Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters, Version 2.0. Technical
report, Certicom Research, 2010. 1

14. C. Clavier and M. Joye. Universal Exponentiation Algorithm - A First Step towards Provable SPA-
Resistance. In Cryptographic Hardware and Embedded Systems - CHES 2001, volume 2162 of Lecture
Notes in Computer Science, pages 300–308. Springer-Verlag, 2001. 7

15. J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In Crypto-
graphic Hardware and Embedded Systems, First International Workshop, CHES’99, Worcester, MA, USA,
August 12-13, 1999, Proceedings, pages 292–302, 1999. 3, 4, 6, 7

16. ECC Brainpool. ECC Brainpool standard curves and curve generation. Technical report, Brainpool, 2005.
1

17. J. Fan, K. Sakiyama, and I. Verbauwhede. Elliptic curve cryptography on embedded multicore systems.
Design Automation for Embedded Systems, 12(3):231–242, 2008. 2, 14

18. S. D. Galbraith. Mathematics of Public Key Cryptography. Cambridge University Press, 2012. 3
19. T. Güneysu and C. Paar. Ultra High Performance ECC over NIST Primes on Commercial FPGAs. In

Cryptographic Hardware and Embedded Systems – CHES 2008, volume 5154 of Lecture Notes in Computer
Science, pages 62–78. Springer Berlin Heidelberg, 2008. 2, 10, 11, 14

20. N. Guillermin. A high speed coprocessor for elliptic curve scalar multiplications over Fp. In Cryptographic
Hardware and Embedded Systems, CHES 2010: 12th International Workshop, Santa Barbara, USA, August
17-20, 2010. Proceedings, volume 6225 of Lecture Notes in Computer Science, pages 48–64. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010. 2, 10, 11, 14

21. M. Hamburg. Ed448-Goldilocks, a new elliptic curve, 2015. http://eprint.iacr.org/2015/625.pdf. 1
22. M. Joye and S. Yen. The Montgomery Powering Ladder. In Cryptographic Hardware and Embedded

Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002,
Revised Papers, pages 291–302, 2002. 4

23. Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing Montgomery multiplication algorithms.
Micro, IEEE, 16(3):26–33, Jun 1996. 6

24. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203–209, 1987. 1, 3
25. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in Cryptology – CRYPTO’ 99,

volume 1666 of Lecture Notes in Computer Science, pages 388–397. Springer Berlin Heidelberg, 1999. 1, 3
26. K. C. C. Loi and S. B. Ko. Scalable Elliptic Curve Cryptosystem FPGA Processor for NIST Prime Curves.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(11):2753–2756, Nov 2015. 10, 11,
14

http://hyperelliptic.org/EFD/index.html
http://cryptojedi.org/papers/#coolnacl
http://eprint.iacr.org/2015/625.pdf


Implementing Complete Formulas on Weierstrass Curves in Hardware 13

27. Y. Ma, Z. Liu, W. Pan, and J. Jing. A High-Speed Elliptic Curve Cryptographic Processor for Generic
Curves over GF(p). In Selected Areas in Cryptography – SAC 2013: 20th International Conference, Burn-
aby, BC, Canada, August 14-16, 2013, Revised Selected Papers, pages 421–437, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg. 10, 11, 14

28. P. M. C. Massolino, L. Batina, R. Chaves, and N. Mentens. Low Power Montgomery Modular Mul-
tiplication on Reconfigurable Systems. Cryptology ePrint Archive, Report 2016/280, 2016. http:
//eprint.iacr.org/2016/280. 2, 5, 6, 7, 8, 9

29. C. McIvor, M. McLoone, and J. V. McCanny. Hardware Elliptic Curve Cryptographic Processor Over
GF(p). IEEE Transactions on Circuits and Systems I: Regular Papers, 53(9):1946–1957, Sept 2006. 10,
11, 14

30. V. Miller. Use of Elliptic Curves in Cryptography. In Advances in Cryptology - CRYPTO 85 Proceedings,
volume 218 of Lecture Notes in Computer Science, pages 417–426. Springer Berlin / Heidelberg, Berlin,
Germany, 1986. 1, 3

31. National Institute for Standards and Technology. Federal information processing standards publication
186-4. digital signature standard. Technical report, NIST, 2013. 1, 7, 11, 14

32. C. Pöpper, O. Mischke, and T. Güneysu. MicroACP - A Fast and Secure Reconfigurable Asymmetric
Crypto-Processor. In Reconfigurable Computing: Architectures, Tools, and Applications, volume 8405 of
Lecture Notes in Computer Science, pages 240–247. Springer International Publishing, 2014. 2, 11, 14

33. J. Renes, C. Costello, and L. Batina. Complete addition formulas for prime order elliptic curves. In
Advances in Cryptology – EUROCRYPT 2016: 35th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, pages
403–428, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. 2, 3, 4, 5, 10

34. D. B. Roy, P. Das, and D. Mukhopadhyay. ECC on Your Fingertips: A Single Instruction Approach for
Lightweight ECC Design in GF (p). In Selected Areas in Cryptography - 22nd International Conference,
Sackville, NB, Canada, August 12-14, 2015, Revised Selected Papers. Springer International Publishing,
2015. 2, 10, 11, 14

35. K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede. Superscalar Coprocessor for High-speed Curve-
based Cryptography. In Proceedings of the 8th International Conference on Cryptographic Hardware and
Embedded Systems, CHES’06, pages 415–429, Berlin, Heidelberg, 2006. Springer-Verlag. 2

36. P. Sasdrich and T. Güneysu. Efficient Elliptic-Curve Cryptography Using Curve25519 on Reconfigurable
Devices. In Reconfigurable Computing: Architectures, Tools, and Applications, volume 8405 of Lecture
Notes in Computer Science, pages 25–36. Springer International Publishing, 2014. 10, 11, 14

37. J. H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics. Springer-Verlag New
York, 2009. 3

38. M. Varchola, T. Güneysu, and O. Mischke. MicroECC: A Lightweight Reconfigurable Elliptic Curve
Crypto-processor. In Reconfigurable Computing and FPGAs (ReConFig), 2011 International Conference
on, pages 204–210, Nov 2011. 2, 10, 11, 14

39. J. Vliegen, N. Mentens, J. Genoe, A. Braeken, S. Kubera, A. Touhafi, and I. Verbauwhede. A compact
FPGA-based architecture for elliptic curve cryptography over prime fields. In Application-specific Systems
Architectures and Processors (ASAP), 2010 21st IEEE International Conference on, pages 313–316, July
2010. 3, 10, 11, 14

40. G. X. Yao, J. Fan, R. C. C. Cheung, and I. Verbauwhede. Faster Pairing Coprocessor Architecture. In
Pairing-Based Cryptography – Pairing 2012: 5th International Conference, Cologne, Germany, May 16-18,
2012, Revised Selected Papers, pages 160–176, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. 2

41. S. Yen and M. Joye. Checking before output may not be enough against fault-based cryptanalysis. IEEE
Transactions on Computers, 49(9):967–970, Sep 2000. 1

http://eprint.iacr.org/2016/280
http://eprint.iacr.org/2016/280


14 Pedro Maat C. Massolino, Joost Renes, Lejla Batina1

A More complete results comparison

Work Field FPGA Slice/ LUT FF Emb. BRAM BRAM Freq. Scalar Mult.
ALM Mult. 64×18 1k×18 (MHz) Cycles (ms)

For all prime fields and prime order short Weierstrass curves
Our 192 IGLOO 24 – 2828 1048 6 6 1 165 728508 4.42
Our 224 IGLOO 24 – 2828 1048 6 6 1 165 1036294 6.28
Our 256 IGLOO 24 – 2828 1048 6 6 1 165 1421392 8.61
Our 320 IGLOO 24 – 2828 1048 6 6 1 165 2498655 15.14
Our 384 IGLOO 24 – 2828 1048 6 6 1 165 3744883 22.70
Our 512 IGLOO 24 – 2828 1048 6 6 1 165 8188059 49.62
Our 521 IGLOO 24 – 2828 1048 6 6 1 165 8331987 50.50

For NIST curves [31] only
[38] 224 SmartFusion4 – 3690 3690 0 0 12 109 1722088 15.8
[38] 256 SmartFusion4 – 3690 3690 0 0 12 109 2103941 19.3
[38] 224 Virtex II Pro4 773 ?1546 ?1546 1 0 3 210 1722088 8.2
[38] 256 Virtex II Pro4 773 ?1546 ?1546 1 0 3 210 2103941 10.02
[38] 224 Virtex II Pro4 1158 ?2316 ?2316 4 0 3 210 765072 3.64
[38] 256 Virtex II Pro4 1158 ?2316 ?2316 4 0 3 210 949951 4.52
[32] 256 Virtex 56♣ 1914 ?7656 ?7656 4 0 12 210 830000 3.95
[17] 192 Virtex II Pro4 3173 ?6346 ?6346 16 0 6 93 †920700 9.90
[34] 256 Spartan 66 72 193 35 8 0 24 156.25 †1906250 12.2
[26] 192 Virtex 44 7020 12435 3545 8 0 4 182 †429702 2.361
[26] 224 Virtex 44 7020 12435 3545 8 0 4 182 †666666 3.663
[26] 256 Virtex 44 7020 12435 3545 8 0 4 182 †993174 5.457
[26] 384 Virtex 44 7020 12435 3545 8 0 4 182 †2968420 16.31
[26] 521 Virtex 44 7020 12435 3545 8 0 4 182 †7048860 38.73
[1] 192 Virtex 66♣ 11.2k 32.9k ?89.6k 289 0 256 100 29948 0.30
[1] 224 Virtex 66♣ 11.2k 32.9k ?89.6k 289 0 256 100 34999 0.35
[1] 256 Virtex 66♣ 11.2k 32.9k ?89.6k 289 0 256 100 39922 0.40
[1] 384 Virtex 66♣ 11.2k 32.9k ?89.6k 289 0 256 100 11722 1.18
[1] 521 Virtex 66♣ 11.2k 32.9k ?89.6k 289 0 256 100 159959 1.60
[19] 224 Virtex 44 1580 1825 1892 26 0 11 487 219878 0.451
[19] 256 Virtex 44 1715 2589 2028 32 0 11 490 303450 0.619

For only Edwards or Twisted Edwards curves
[3] 192 Spartan 3E 4 4654 ?9308 ?9308 0 0 0 10 125430† 12.543
[36] 256 Zynq6♣ 1029 2783 3592 20 0 4 200 64770 0.324

For only specific field size, but works with any prime
[39] 256 Virtex II Pro4 1832 ?3664 ?3664 2 0 9 108.2 3227993 29.83
[39] 256 Virtex II Pro4 2085 ?4170 ?4170 7 0 9 68.17 1074625 15.76
[20] 192 Stratix II4 6203 ?12406 ?12406 92 0 0 160.5 †70620 0.44
[20] 256 Stratix II4 9177 ?18354 ?18354 96 0 0 157.2 †106896 0.68
[20] 384 Stratix II4 12958 ?25916 ?25916 177 0 0 150.9 †203715 1.35
[20] 512 Stratix II4 17017 ?34034 ?34034 244 0 0 144.97 †323283 2.23
[29] 256 Virtex II Pro4 15755 ?31510 ?31510 256 0 0 39.46 †151360 3.86
[27] 256 Virtex 44 4655 5740 4876 37 0 11 250 109297 0.44
[2] 192 Virtex 56♣ 1769 6096 4370 0 0 0 96.57 198854 2.05
[2] 256 Virtex 56♣ 2284 7822 5780 0 0 0 81.71 †331200 4.04

Table 6. Complete comparison and results from Table 5. This table does not have the results
for other FPGAs, since they are are the same as in Table 5, the difference is the cycle count
for each field.



Implementing Complete Formulas on Weierstrass Curves in Hardware 15

B Algorithms

Algorithm 2 Parallelized complete addition formulas for a prime order elliptic curve in
Weierstrass form, using two processors
Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3 and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P +Q.

1. t0 ← X1 + Y1;

2. t2 ← Y1 + Z1;

3. t0 ← t0 · t1; (`3)
4. t4 ← X1 ·X2; (`0)

5. t2 ← X1 + Z1;

6. t0 ← t0 − t4;

7. t5 ← Y1 · Y2; (`1)

8. t7 ← a · t6; (`7)
9. t9 ← t4 − t7;

10. t11 ← t4 + t7;

11. t0 ← t0 − t5;

12. t2 ← t2 − t6;

13. t9 ← a · t9; (`10)
14. t2 ← a · t2; (`8)
15. t9 ← t9 + t11;

16. t6 ← t5 − t8;

17. t3 ← t1 · t9; (`12)
18. t10 ← t0 · t10; (`16)
19. t6 ← t5 · t6; (`13)
20. X3 ← t0 − t3;

21. Z3 ← t1 + t10;

t1 ← X2 + Y2;

t3 ← Y2 + Z2;

t1 ← t2 · t3; (`5)
t6 ← Z1 · Z2; (`2)

t3 ← X2 + Z2;

t1 ← t1 − t6;

t2 ← t2 · t3; (`4)
t8 ← b3 · t6; (`8)
t10 ← t4 + t4;

t2 ← t2 − t4;

t1 ← t1 − t5;

t10 ← t10 + t11;

t11 ← b3 · t2; (`9)

t8 ← t2 + t8;

t5 ← t5 + t8;

t9 ← t9 · t10; (`14)
t0 ← t0 · t6; (`11)
t1 ← t1 · t5; (`15)
Y9 ← t6 + t9;



16 Pedro Maat C. Massolino, Joost Renes, Lejla Batina1

Algorithm 3 Parallelized complete addition formulas for a prime order elliptic curve in
Weierstrass form, using three processors
Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3 and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P +Q.

1. t0 ← X1 ·X2; (`0)

2. t3 ← X1 + Y1;

3. t6 ← Y2 + Z2;

4. t9 ← t3 · t4; (`3)
5. t3 ← t0 + t1;

6. t6 ← b3 · t2; (`6)
7. t2 ← t9 − t3;

8. t10 ← t9 + t0;

9. t0 ← a · t4; (`8)
10. t4 ← t0 + t6;

11. t5 ← t1 − t4;

12. t1 ← t5 · t6; (`13)
13. t9 ← t2 · t5; (`11)
14. X3 ← t9 − t8;

t1 ← Y1 · Y2; (`1)

t4 ← X2 + Y2;

t7 ← X1 + Z1;

t10 ← t5 · t6; (`5)
t4 ← t1 + t2;

t8 ← a · t2; (`7)
t9 ← t0 + t0;

t4 ← t11 − t5;

t5 ← b3 · t4; (`9)
t7 ← t5 + t9;

t6 ← t1 + t4;

t4 ← t0 · t7; (`14)
t10 ← t3 · t6; (`15)
Y3 ← t1 + t4;

t2 ← Z1 · Z2; (`2)

t5 ← Y1 + Z1;

t8 ← X2 + Z2;

t11 ← t7 · t8; (`4)
t5 ← t0 + t2;

t3 ← t10 − t4;

t7 ← t0 − t8;

t9 ← a · t7; (`10)
t0 ← t8 + t10;

t8 ← t3 · t7; (`12)
t11 ← t0 · t2; (`16)
Z3 ← t10 + t11;

Algorithm 4 Parallelized complete addition formulas for a prime order elliptic curve in
Weierstrass form, using four processors
Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3 and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P +Q.

1. t0 ← X1 + Y1;

2. t0 ← t0 · t1; (`3)
3. t2 ← X1 + Z1;

4. t5 ← Y1 · Y2; (`1)

5. t9 ← t4 − t7;

6. t0 ← t0 − t5;

7. t9 ← a · t9; (`10)
8. t9 ← t9 + t11;

9. t3 ← t1 · t9; (`12)
10. t6 ← t5 − t8;

11. t0 ← t0 · t6; (`11)
12. X3 ← t0 − t3;

t1 ← X2 + Y2;

t1 ← t2 · t3; (`5)
t3 ← X2 + Z2;

t2 ← t2 · t3; (`4)
t10 ← t4 + t4;

t1 ← t1 − t5;

t11 ← b3 · t2; (`9)

t9 ← t9 · t10; (`14)
t5 ← t5 + t8;

t6 ← t5 · t6; (`13)
Y3 ← t6 + t9;

t2 ← Y1 + Z1;

t4 ← X1 ·X2; (`0)

t0 ← t0 − t4;

t7 ← a · t6; (`7)
t11 ← t4 + t7;

t2 ← t2 − t6;

t2 ← a · t2; (`8)

t10 ← t0 · t10; (`16)

t1 ← t1 · t5; (`15)
Z3 ← t1 + t10;

t3 ← Y2 + Z2;

t6 ← Z1 · Z2; (`2)

t1 ← t1 − t6;

t8 ← b3 · t6; (`6)
t2 ← t2 − t4;

t10 ← t10 + t11;

t8 ← t2 + t8;



Implementing Complete Formulas on Weierstrass Curves in Hardware 17

Algorithm 5 Parallelized complete addition formulas for a prime order elliptic curve in
Weierstrass form, using five processors
Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3 and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P +Q.

1. t5 ← X1 + Y1;

t8 ← X2 + Z2;

2. t0 ← X1 ·X2; (`0)

t3 ← t5 · t6; (`3)
3. t10 ← Y2 + Z2;

t11 ← t0 + t0;

4. t3 ← t3 − t1;

5. t5 ← t9 · t10; (`5)
t8 ← a · t4; (`8)

6. t5 ← t5 − t1;

t10 ← t6 + t8;

7. t0 ← a · t4; (`10)
8. t0 ← t0 + t9;

t5 ← t5 − t2;

9. t1 ← t3 · t7; (`11)
t8 ← t11 · t0; (`14)

10. X3 ← t1 − t2;

t6 ← X2 + Y2;

t9 ← Y1 + Z1;

t1 ← Y1 · Y2; (`1)

t4 ← t7 · t8; (`4)
t3 ← t3 − t0;

t4 ← t4 − t2;

t6 ← b3 · t2; (`6)
t9 ← b3 · t4; (`9)
t11 ← t11 + t7;

t6 ← t3 · t11; (`16)
t7 ← t1 − t10;

t2 ← t5 · t0; (`12)
t9 ← t5 · t10; (`15)
Y3 ← t4 + t8;

t7 ← X1 + Z1;

t2 ← Z1 · Z2; (`2)

t4 ← t4 − t0;

t11 ← t11 + t0;

t7 ← a · t2; (`7)

t4 ← t0 − t7;

t10 ← t1 + t10;

t4 ← t10 · t7; (`13)

Z3 ← t9 + t6;



18 Pedro Maat C. Massolino, Joost Renes, Lejla Batina1

Algorithm 6 Parallelized complete addition formulas for a prime order elliptic curve in
Weierstrass form, using six processors
Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3, b3 = 3 · b and a2 = a2.

Ensure: (X3 : Y3 : Z3) = P +Q.

1. t0 ← X1 + Y1;

t3 ← Y2 + Z2;

2. t0 ← t0 · t1; (n3)

t3 ← X1 ·X2; (n0)

3. t0 ← t0 − t3;

4. t0 ← t0 − t4;

5. t6 ← b3 · t5; (n6)

t9 ← b3 · t2; (n9)

6. t6 ← t6 + t8;

t9 ← t9 + t10;

7. t9 ← t9 − t11;

t6 ← t4 + t6;

8. t3 ← t0 · t7; (n12)

t8 ← t8 · t9; (n15)

9. X3 ← t3 − t5;

t1 ← X2 + Y2;

t4 ← X1 + Z1;

t1 ← t2 · t3; (n5)

t4 ← Y1 · Y2; (n1)

t1 ← t1 − t4;

t1 ← t1 − t5;

t7 ← a · t5; (n7)

t10 ← a · t3; (n10)

t7 ← t3 + t7

t8 ← t8 + t7

t4 ← t0 · t8; (n17)

t7 ← t6 · t7; (n14)

Y3 ← t7 + t8;

t2 ← Y1 + Z1;

t5 ← X2 + Z2;

t2 ← t4 · t5; (n4)

t5 ← Z1 · Z2; (n2)

t2 ← t2 − t5;

t2 ← t2 − t3;

t8 ← a · t2; (n8)

t11 ← a2 · t5; (n11)

t8 ← t3 + t3;

t7 ← t4 − t6;

t5 ← t1 · t9; (n13)

t6 ← t1 · t6; (n16)

Z3 ← t6 + t4;



Implementing Complete Formulas on Weierstrass Curves in Hardware 19

C Verification code

ADD_two := function(X1 ,Y1,Z1,X2,Y2,Z2 ,E,a,b3)
t0 := X1+Y1; t1 := X2+Y2;
t2 := Y1+Z1; t3 := Y2+Z2;
t0 := t0*t1; t1 := t2*t3;
t4 := X1*X2; t6 := Z1*Z2;
t2 := X1+Z1; t3 := X2+Z2;
t0 := t0 -t4; t1 := t1 -t6;
t5 := Y1*Y2; t2 := t2*t3;
t7 := a*t6; t8 := b3*t6;
t9 := t4 -t7; t10 := t4+t4;
t11 := t4+t7; t2 := t2-t4;
t0 := t0 -t5; t1 := t1 -t5;
t2 := t2 -t6; t10 := t10+t11;
t9 := a*t9; t11 := b3*t2;
t2 := a*t2;
t9 := t9+t11; t8 := t2+t8;
t6 := t5 -t8; t5 := t5+t8;
t3 := t1*t9; t9 := t9*t10;
t10 := t0*t10; t0 := t0*t6;
t6 := t5*t6; t1 := t1*t5;
X3 := t0 -t3; Y3 := t6+t9;
Z3 := t1+t10;
return E![X3 ,Y3 ,Z3];

end function;

ADD_three := function(X1,Y1 ,Z1 ,X2 ,Y2,Z2,E,a,b3);
t0 := X1*X2; t1 := Y1*Y2; t2 := Z1*Z2;
t3 := X1+Y1; t4 := X2+Y2; t5 := Y1+Z1;
t6 := Y2+Z2; t7 := X1+Z1; t8 := X2+Z2;
t9 := t3*t4; t10 := t5*t6; t11 := t7*t8;
t3 := t0+t1; t4 := t1+t2; t5 := t0+t2;
t6 := b3*t2; t8 := a*t2;
t2 := t9 -t3; t9 := t0+t0; t3 := t10 -t4;
t10 := t9+t0; t4 := t11 -t5; t7 := t0 -t8;
t0 := a*t4; t5 := b3*t4; t9 := a*t7;
t4 := t0+t6; t7 := t5+t9; t0 := t8+t10;
t5 := t1 -t4; t6 := t1+t4;
t1 := t5*t6; t4 := t0*t7; t8 := t3*t7;
t9 := t2*t5; t10 := t3*t6; t11 := t0*t2;
X3 := t9 -t8; Y3 := t1+t4; Z3 := t10+t11;
return E![X3 ,Y3 ,Z3];

end function;

ADD_four := function(X1,Y1,Z1 ,X2 ,Y2 ,Z2,E,a,b3);
t0 := X1+Y1; t1 := X2+Y2; t2 := Y1+Z1; t3 := Y2+Z2;
t0 := t0*t1; t1 := t2*t3; t4 := X1*X2; t6 := Z1*Z2;
t2 := X1+Z1; t3 := X2+Z2; t0 := t0 -t4; t1 := t1 -t6;
t5 := Y1*Y2; t2 := t2*t3; t7 := a*t6;; t8 := b3*t6;
t9 := t4 -t7; t10 := t4+t4; t11 := t4+t7; t2 := t2 -t4;
t0 := t0 -t5; t1 := t1 -t5; t2 := t2 -t6; t10 := t10+t11;
t9 := a*t9; t11 := b3*t2; t2 := a*t2;
t9 := t9+t11;
t3 := t1*t9; t9 := t9*t10; t10 := t0*t10; t8 := t2+t8;
t6 := t5 -t8; t5 := t5+t8;
t0 := t0*t6; t6 := t5*t6; t1 := t1*t5;
X3 := t0 -t3; Y3 := t6+t9; Z3 := t1+t10;



20 Pedro Maat C. Massolino, Joost Renes, Lejla Batina1

return E![X3 ,Y3 ,Z3];
end function;

ADD_five := function(X1,Y1,Z1 ,X2 ,Y2 ,Z2,E,a,b3);
t5 := X1+Y1; t6 := X2+Y2; t7 := X1+Z1;
t8 := X2+Z2; t9 := Y1+Z1; // 1
t0 := X1*X2; t1 := Y1*Y2; t2 := Z1*Z2;
t3 := t5*t6; t4 := t7*t8; // 2
t10 := Y2+Z2; t3 := t3-t0; t4 := t4 -t0;
t11 := t0+t0; // 3
t3 := t3-t1; t4 := t4 -t2; t11 := t11+t0; // 4
t5 := t9*t10; t6 := b3*t2; t7 := a*t2;
t8 := a*t4; t9 := b3*t4; // 5
t5 := t5-t1; t11 := t11+t7; t4 := t0 -t7;
t10 := t6+t8; // 6
t0 := a*t4; t6 := t3*t11; // 7
t0 := t0+t9; t7 := t1 -t10; t10 := t1+t10;
t5 := t5-t2; // 8
t1 := t3*t7; t2 := t5*t0; t4 := t10*t7;
t8 := t11*t0; t9 := t5*t10; // 9
X3 := t1-t2; Y3 := t4+t8; Z3 := t9+t6; // 10
return E![X3 ,Y3 ,Z3];

end function;

ADD_six := function(X1 ,Y1,Z1,X2,Y2,Z2 ,E,a,b3)
t0 := X1+Y1; t1 := X2+Y2; t2 := Y1+Z1;
t3 := Y2+Z2; t4 := X1+Z1; t5 := X2+Z2; // 1
t0 := t0*t1; t1 := t2*t3; t2 := t4*t5;
t3 := X1*X2; t4 := Y1*Y2; t5 := Z1*Z2; // 2
t0 := t0 -t3; t1 := t1 -t4; t2 := t2-t5; // 3
t0 := t0 -t4; t1 := t1 -t5; t2 := t2-t3; // 4
t6 := b3*t5; t7 := a*t5; t8 := a*t2;
t9 := b3*t2; t10 := a*t3; t11 := a^2*t5; // 5
t6 := t6+t8; t7 := t3+t7; t8 := t3+t3;
t9 := t9+t10; // 6
t9 := t9 -t11; t8 := t8+t7; t7 := t4 -t6;
t6 := t4+t6; // 7
t3 := t0*t7; t4 := t0*t8; t5 := t1*t9;
t8 := t8*t9; t7 := t6*t7; t6 := t1*t6; // 8
X3 := t3 -t5; Y3 := t7+t8; Z3 := t6+t4; // 9
return E![X3 ,Y3 ,Z3];

end function;

while(true) do
repeat q:= RandomPrime (8); until q gt 3;
Fq:=GF(q);
repeat repeat a:= Random(Fq); b:= Random(Fq); until not (4*a^3+27*b^2 eq 0);

E:= EllipticCurve ([Fq|a,b]);
b3 := 3*b;

until IsOdd (#E);

for P in Set(E) do
for Q in Set(E) do

repeat Z1 := Random(Fq); until Z1 ne 0;
repeat Z2 := Random(Fq); until Z2 ne 0;
X1 := P[1]*Z1; Y1 := P[2]*Z1; Z1 := P[3]*Z1;
X2 := Q[1]*Z2; Y2 := Q[2]*Z2; Z2 := Q[3]*Z2;



Implementing Complete Formulas on Weierstrass Curves in Hardware 21

assert P+Q eq ADD_two(X1,Y1 ,Z1 ,X2 ,Y2,Z2,E,a,b3);
assert P+Q eq ADD_three(X1,Y1 ,Z1 ,X2 ,Y2,Z2,E,a,b3);
assert P+Q eq ADD_four(X1,Y1 ,Z1 ,X2 ,Y2,Z2,E,a,b3);
assert P+Q eq ADD_five(X1,Y1 ,Z1 ,X2 ,Y2,Z2,E,a,b3);
assert P+Q eq ADD_six(X1,Y1 ,Z1 ,X2 ,Y2,Z2,E,a,b3);

end for;
end for;
print "Correct:", E;

end while;


	Implementing Complete Formulas on Weierstrass Curves in Hardware
	Pedro Maat C. Massolino, Joost Renes, Lejla Batinafnote

