Twisted Edwards Curves

Emilie Menard Barnard emilie@cs.ucsb.edu

Outline

- Edwards Curves Review
- Derivation of Twisted Edwards Curves
- Group Law Operations
- Montgomery Curves
- Projective Coordinate System
- Twisted Edwards Curves vs Edwards Curves
- EdDSA
- Latest Research

Edwards Curves Review

- Original Form of an Edwards Curve:

$$
x^{2}+y^{2}=c^{2}+c^{2} x^{2} y^{2}
$$

- Bernstein's and Lange's simpler form:

$$
x^{2}+y^{2}=1+d x^{2} y^{2}
$$

where d is a quadratic non-residue

Edwards Curves Review (slide credit to Professor Koç)

- The zero (neutral) element is $(0,1)$
- The inverse of (x, y) is $(-x, y)$
- The addition law is as follows:

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+x_{2} y_{1}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

Twisted Edwards Curves

- The Edwards Curves (ECs) we studied are a specific kind of Twisted Edwards Curves (TECs)
- Every TEC is a twist of a corresponding EC
- An elliptic curve E over field K has an associated quadratic twist when there is another elliptic curve which is isomorphic to E over an algebraic closure of K

Quadratic Twists

- Let E be an elliptic curve over a field $k(\operatorname{char}(k) \neq 2)$ of the form

$$
y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

- Then, if $d \neq 0$, the quadratic twist of E is the curve E^{d} defined as

$$
y^{2}=x^{3}+d a_{2} x^{2}+d^{2} a_{4} x+d^{3} a_{6}
$$

- The curves E and E^{d} are isomorphic over the field extension $k(\sqrt{d})$

Derivation of TECs

- In general, a Twisted Edwards Curve in field $k(\operatorname{char}(k) \neq 2)$ of the form

$$
a x^{2}+y^{2}=1+d x^{2} y^{2}
$$

(where $a \neq d$ are non-zero)
is a quadratic twist of the Edwards Curve

$$
\bar{x}^{2}+\bar{y}^{2}=1+(d / a) \bar{x}^{2} \bar{y}^{2}
$$

- The map $(\bar{x}, \bar{y}) \rightarrow(x, y)=(\bar{x} / \sqrt{a}, \bar{y})$ is an isomorphism over $k(\sqrt{a})$

Twisted Edwards Curves

- Note that a TEC is just an EC with $a=1$:

$$
\begin{aligned}
a x^{2}+y^{2} & =1+d x^{2} y^{2} & & (\text { TEC general form }) \\
1 \cdot x^{2}+y^{2} & =1+d x^{2} y^{2} & & (\text { let } a=1) \\
x^{2}+y^{2} & =1+d x^{2} y^{2} & & (\text { EC general form })
\end{aligned}
$$

Neutral Element, Inverse, Addition

- The zero (neutral) element is $(0,1)$
- The inverse of (x, y) is $(-x, y)$
- Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{1}\right)$ be two points on a TEC. Then

$$
P \oplus Q=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-a x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

Addition Example

- Given the TEC with $a=3$ and $d=2$:

$$
3 x^{2}+y^{2}=1+2 x^{2} y^{2}
$$

- We can find $(1, \sqrt{2}) \oplus(1,-\sqrt{2})$:

$$
\begin{aligned}
& x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}=\frac{1 \cdot(-\sqrt{2})+1 \cdot(\sqrt{2})}{1+2 \cdot 1 \cdot 1 \cdot \sqrt{2} \cdot(-\sqrt{2})}=\frac{0}{1+2 \cdot(-2)}=0 \\
& y_{3}=\frac{y_{1} y_{2}-a x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}=\frac{\sqrt{2} \cdot(-\sqrt{2})-3 \cdot 1 \cdot 1}{1-2 \cdot 1 \cdot 1 \cdot \sqrt{2} \cdot(-\sqrt{2})}=\frac{-2-3}{1-2 \cdot(-2)}=-1
\end{aligned}
$$

$$
\therefore(1, \sqrt{2}) \oplus(1,-\sqrt{2})=(0,-1)
$$

Doubling

- Can be derived from the addition formula
- Let $P=\left(x_{1}, y_{1}\right)$ be a point on a TEC. Then

$$
[2] P=\left(\frac{2 x_{1} y_{1}}{a x_{1}^{2}+y_{1}^{2}}, \frac{y_{1}^{2}-a x_{1}^{2}}{2-a x_{1}^{2}-y_{1}^{2}}\right)
$$

Doubling Example

- Given the TEC with $a=3$ and $d=2$:

$$
3 x^{2}+y^{2}=1+2 x^{2} y^{2}
$$

- We can find $[2](1, \sqrt{2})$:

$$
\begin{aligned}
& x_{3}=\frac{2 x_{1} y_{1}}{a x_{1}^{2}+y_{1}^{2}}=\frac{2 \cdot 1 \cdot \sqrt{2}}{3 \cdot 1^{2}+\sqrt{2}^{2}}=\frac{2 \sqrt{2}}{5} \\
& y_{2}=\frac{y_{1}^{2}-a x_{1}^{2}}{2-a x_{1}^{2}-y_{1}^{2}}=\frac{\sqrt{2}^{2}-3 \cdot 1^{2}}{2-3 \cdot 1^{2}-\sqrt{2}^{2}}=\frac{-1}{-3}=\frac{1}{3}
\end{aligned}
$$

$\therefore[2](1, \sqrt{2})=\left(\frac{2 \sqrt{2}}{5}, \frac{1}{3}\right)$

Montgomery Curves

- Fix a field k with $\operatorname{char}(k) \neq 2$, and certain $A, B \in k$. Then

$$
B y^{2}=x^{3}+A x^{2}+x
$$

is a Montgomery curve.

- Every TEC over k is birationally equivalent (rational function fields are isomorphic) over k to a Montgomery curve
- Every Montgomery curve over k is birationally equivalent over k to a TEC
- \therefore The set of Montgomery curves over k is equivalent to the set of TECs over k

Projective Coordinate System

- In the projective coordinate system, a point (x, y) on $a x^{2}+y^{2}=1+d x^{2} y^{2}$ is represented by X, Y, Z satisfying

$$
\begin{aligned}
& x=X / Z \\
& y=Y / Z
\end{aligned}
$$

- The corresponding projective TEC is of the form

$$
\left(a X^{2}+Y^{2}\right) Z^{2}=Z^{4}+d X^{2} Y^{2}
$$

- We avoid inversion costs using this system
- Over fields F_{p} where $p \equiv 1(\bmod 4)$, TECs cover more elliptic curves than ECs
- Even when a curve can be expressed in EC form, expressing it in TEC form often saves arithmetic time
- If you are free to choose the curve, you can use this to your advantage
- Edwards-curve Digital Signature Algorithm (EdDSA) is based on TECs
- Designed for high performance while avoiding common security problems
- Ed25519 is a specific implementation using the TEC

$$
-x^{2}+y^{2}=1-\frac{121665}{121666} x^{2} y^{2}
$$

over the field defined by $2^{255}-19$

Latest Research

- (Jan.) The number of rational points on a TEC can be calculated using the Gaussian hypergeometric series
- (June) Microsoft's research group presented a new deterministic algorithm for generating TECs
- (Aug.) Bernstein et al. presented new speed records (8.77M per bit, on variables of size 256 bits) for arithmetic on curves with cofactor 3
- (Nov.) A special family of TECs named Optimal mixed Montgomery-Edwards (OME) curves were introduced

References (1/4)

Bernstein, Daniel J., Chitchanok Chuengsatiansup, David Kohel, and Tana Lange. "Twisted Hessian Curves." Springer Link. Progress in Cryptology - LATINCRYPT 2015, 15 Aug. 2015. Web. http:// link.springer.com/chapter/10.1007/978-3-319-22174-8_15.
Bernstein, Daniel J., Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters. "Twisted Edwards Curves." Cryptology EPrint Archive (2008): Web. http://eprint.iacr.org/2008/013.pdf. Bernstein, Daniel J., and Tanja Lange. "Twisted Edwards Curves." Explicit-Formulas Database. Hyperelliptic.org. Web. http://hyperelliptic.org/EFD/g1p/auto-twisted.html. Costello, Craig, Patrick Longa, and Michael Naehrig. "A Brief Discussion on Selecting New Elliptic Curves." Microsoft Research. Microsoft, 8 June 2015. Web.
http://research.microsoft.com/pubs/246915/NIST.pdf.

References (2/4)

"EdDSA." Wikipedia. Wikimedia Foundation, 15 Oct. 2015.
Web.https://en.wikipedia.org/wiki/EdDSA.
"Edward-curves" by Georg-Johann - Own work coordinates from this vector image includes elements that have been taken or adapted from this: Lemniscate-of-Gerono.svg. Licensed under CC BY-SA 3.0 via
Commons-https://commons.wikimedia.org/wiki/File:
Edward-curves.svg\#/media/File:Edward-curves.svg.
Edwards, Harold M. "A Normal Form for Elliptic Curves." American
Mathematical Society 44.3 (2007): 393-422. Web.
http://www.ams.org/journals/bull/2007-44-03/ S0273-0979-07-01153-6/S0273-0979-07-01153-6.pdf.
Hisil, Huseyin, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson.
"Twisted Edwards Curves Revisited." Advances in Cryptology ASIACRYPT 2008 Lecture Notes in Computer Science (2008): 326-43. Web. http://eprint.iacr.org/2008/522.pdf.

References (3/4)

Koç, Çetin Kaya. "Edwards Curves." ECC Fundamentals. University of California, Santa Barbara: CS290G, 9 Nov. 2015. Web. http://cs.ucsb.edu/~koc/ecc/docx/10edwards.pdf.
Liu, Zhe, Zhi Hu, and Wei Hu. "Elliptic Curve with Optimal Mixed Montgomery-Edwards Model for Low-end." Springer Link. Science China Information Sciences, Nov. 2015. Web. http: //link.springer.com/article/10.1007/s11432-015-5410-y.
"Montgomery Curve." Wikipedia. Wikimedia Foundation, 30 Oct. 2015.
Web. https://en.wikipedia.org/wiki/Montgomery_curve\# Equivalence_with_twisted_Edwards_curves.
Sadek, Mohammad, and Nermine El-Sissi. "Edwards Curves and Gaussian Hypergeometric Series." Number Theory. Cornell University Library, 14 Jan. 2015. Web. http://arxiv.org/abs/1501. 03526.

References (4/4)

"Twisted Edwards curve" by Krishnavedala - Own work. Licensed under CC BY-SA 3.0 via Commons https://commons.wikimedia.org/wiki/File:Twisted_Edwards_ curve.svg\#/media/File:Twisted_Edwards_curve.svg.
"Twists of Curves." Wikipedia. Wikimedia Foundation, 26 May 2015.
Web. https://en.wikipedia.org/wiki/Twists_of_curves.
Weisstein, Eric W. "Quadratic Nonresidue." From MathWorld-A Wolfram Web Resource.
http://mathworld.wolfram.com/QuadraticNonresidue.html

