## Pollard's Rho Algorithm for Elliptic Curves

Aaron Blumenfeld

November 30, 2015

Aaron Blumenfeld Pollard's Rho Algorithm for Elliptic Curves

ヘロト 人間 とくほとくほとう

### Pollard's Rho Algorithm

Consider the elliptic curve *E* over  $\mathbb{F}_{2^k}$ , where |E| = n.

Assume we want to solve the elliptic curve discrete logarithm problem: find *k* in Q = kP.

ヘロン 人間 とくほ とくほ とう

### Pollard's Rho Algorithm

- Partition E into S<sub>1</sub> ∪ S<sub>2</sub> ∪ S<sub>3</sub>, where the S<sub>i</sub> are similar in size.
- Choose  $A_i \in E$  as some scalar multiple of P.

► Let 
$$A_{i+1} = f(A_i) = \begin{cases} A_i + P, A_i \in S_1, \\ 2A_i, A_i \in S_2, \\ A_i + Q, A_i \in S_3. \end{cases}$$

イロト イポト イヨト イヨト

#### Pollard's Rho Algorithm



Image credit: Washington [1]

Aaron Blumenfeld Pollard's Rho Algorithm for Elliptic Curves

## Pollard's Rho Algorithm

The terms of the sequence then take the form  $A_i = a_j P + b_j Q$ .

Once we see an equality  $A_{i_1} = A_{i_2}$ , we have

$$a_{j_1}P+b_{j_1}Q=a_{j_2}P+b_{j_2}Q,$$

which means that

$$rac{a_{j_1}-a_{j_2}}{b_{j_2}-b_{j_1}}P=Q.$$

The ECDLP can thus be solved provided that  $gcd(b_{j_2} - b_{j_1}, n) = 1$ .

イロン 不得 とくほ とくほ とうほ

## Pollard's Rho Algorithm

► In fact, even if  $gcd(b_{j_2} - b_{j_1}, n) = d > 1$ , we can compute

$$rac{a_{j_1}-a_{j_2}}{b_{j_2}-b_{j_1}} \pmod{N/d}.$$

- There are then d possibilities for k, which is only intractable for large d.
- In practice, however, d is quite small, especially if E is chosen so that n is prime.

ヘロト ヘアト ヘビト ヘビト

### Pollard's Rho Algorithm

Unlike Baby-Step Giant-Step, only O(1) space complexity is required:

Start with the ordered pair ( $A_1, A_2$ ). Given ( $A_i, A_{2i}$ ), we can compute ( $A_{i+1}, A_{2i+2}$ ) = ( $f(A_i), f(f(A_{2i}))$ ).

ヘロン 人間 とくほ とくほ とう

э.

#### Pollard's Rho Algorithm

Why does this find a match?

- Suppose  $A_i = A_j$ . Then  $A_{i+k} = A_{j+k}$  for all  $k \ge 0$ .
- ► For  $k = j 2i (\ge 0)$ , we have  $A_{i+j-2i} = A_{j+j-2i}$ , or  $A_{j-i} = A_{2(j-i)}$ .
- Note that  $j i \ge i$  by construction since  $j \ge 2i$ .

ヘロン 人間 とくほ とくほ とう

### **Performance Issues**

- However, it turns out that this function f performs approximately 33% more slowly than the expectation.
- ► It can be shown that the tail and cycle length both have an expectation of  $\sqrt{\pi n/8}$ .
- Therefore, a cycle should be detected within  $2\sqrt{\pi n/8} = \sqrt{\pi n/2}$  iterations.

ヘロン 人間 とくほ とくほ とう

## **Increasing Number of Partition Elements**

- Research has indicated that using more than 3 partition elements improves the randomness of the function *f*.
- This improves the performance of the algorithm.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

# **Increasing Number of Partition Elements**

In order to do this, we can hash the points  $(x, y) \in E$  to the set  $\{1, \ldots, m\}$ .

- It turns out hashing based on the x-coordinate is just as effective as using the y-coordinate.
- Since the x-coordinate is a polynomial, we can represent it as a binary vector and view it as an integer for the purposes of hashing.
- We then partition evenly into *m* subsets of size  $\frac{2^k}{m}$ .

ヘロト ヘ戸ト ヘヨト ヘヨト

## **Increasing Number of Partition Elements**

- ► We define  $M_j = a_j P + b_j Q$ , where the  $a'_j s$  and  $b'_j s$  are randomly chosen modulo *n*.
- We then define  $f(A_i) = A_i + M_j$  when  $A_i \in S_j$ .

イロン 不同 とくほ とくほ とう

## **Increasing Number of Partition Elements**

- The best choice for *m* in simulating a random function *f* seems to be in the range [20, 30].
- However, there is evidence that for *m* around 60, the function *f* performs more efficiently than a random map by about 6%.

・ 同 ト ・ ヨ ト ・ ヨ ト



- Collect statistics for curves over larger binary fields (the data gathered was for curves over F<sub>2<sup>8</sup></sub>).
- Perform similar analysis for curves over  $\mathbb{F}_p$ .

ヘロト ヘアト ヘビト ヘビト

æ

#### References

- Washington, Lawrence C., *Elliptic Curves: Number Theory and Cryptography*, Chapman & Hall, Boca Raton, FL, 2nd. Ed., 2008.
- P. Flajolet and A. Odlyzko, Random Mapping Statistics. In Advanced in Cryptology—EUROCRYPT '89 (Houthalen, 1989), volume 434 of Lecture Notes in Comput. Sci., pages 329-354. Springer, Berlin, 1990.
- Lamb, Nicholas, An Investigation into Pollard's Rho Method for Attacking Elliptic Curve Cryptosystems. 2002.

く 同 と く ヨ と く ヨ と