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What is SCA?

Any attack based on information gained from the physical
implementation of a cryptosystem, rather than brute force or
theoretical weaknesses

Examples: Timing, power consumption, electromagnetic leaks, sound
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Avoiding SPA

Algorithm 1 Double-and-Add Always

1: input P
2: Q[0]← P
3: for i from l − 2 to 0 do do
4: Q[0]← 2Q[0]
5: Q[1]← Q[0] + P
6: Q[0]← Q[di ]
7: end for
8: output Q[0]
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DPA on ECC

For computing Q = dP

Let d = (dm−1, ..., d0)2 be the binary expansion of multiplier d

Say the attacker knows the highest bits, dm−1, ..., dj+1, of d

Then he guesses that the next bit dj = 1

He randomly chooses several points P1, ...Pt and computes

Qr =
(∑m−1

i=j di

)
Pr for 1 ≤ r ≤ t

Using a boolean selection function g , he prepares two sets, Strue and
Sf alse

Strue contains the set Pr such that g(Qr ) = true and Sfalse contains
the set Pr such that g(Qr ) = false
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DPA on ECC

Let C (r) denote the side-channel information associated to the
computation of kPr by the device

〈C (r)〉Pr∈Strue − 〈C (r)〉Pr∈Sfalse
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Countermeasures Against DPA

Randomization of Private Exponent

Blinding the Point P

Randomized Projective Coordinates
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Randomization of the Private Exponent by Exponent
Splitting

Let k be a small random number generated for every run

Q = dP is calculated by first calculating R = kP, then calculating
Q = (d − k)R

This method requires knowledge of both k and d − k to recover the
value of d , if k is random each time, this protects against DPA
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Randomization of the Private Exponent

Let #E be the number of points in the curve. Q = dP is done by the
following algorithm:

1. Select a random number r of size n bits.

2. Compute d ′ = d + r ·#E .

3. Compute the point Q = d ′P. We have Q = dP since #EP = O

This makes the attack infeasible because d ′ changes at each new
execution of the algorithm.
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Blinding the Point P

Let R be a secret random point on the curve for which we know
S = dR

Use scalar multiplication to compute d(R + P)

Subtract S to get Q = dP

The points R and S = dR can be initially stored and refreshed at
each execution by computing R ← (−1)b2R and S ← (−1)b2S where
b is a random bit generated at each execution.

This makes the attack infeasible because the point P ′ = P + R to be
multiplied by d is not known to the attacker.
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Blinding P Using Isomorphisms

We say two elliptic curves E and E ′ are isomorphic over K
Because field isomorphisms induce group isomorphisms, we can
randomize the scalar multiplication as follows.

Let ψ be a random isomorphism from E/K to E ′/K, we can compute
Q = dP using,

Q = ψ−1(d(ψ(P)))
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Randomized Projective Coordinates

Using a system of projective coordinates where

(X ,Y ,Z ) = (λX , λY , λZ )

for every λ 6= 0 in the finite field.

We can use a random λ before each new execution of the scalar
multiplication algorithm of Q = dP.

The randomization can also be completed after each point addition
and doubling.

This make the attack infeasible because the attacker cannot predict
any specific bit of the binary representation of P in projective
coordinates.
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Conclusion

Unless protected, implementations of ECC are vulnerable to DPA

Countermeasures can be simple to implement and do not have to
impact efficiency in a significant way

It may be possible to exploit information leakage through side
channels in a different way
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Questions?
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