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Definition (HEC over 𝐾):
 Curve with equation 𝑦2 + ℎ 𝑥 𝑦 = 𝑓 𝑥 with ℎ, 𝑓 ∈ 𝐾 𝑋

 Genus 𝑔 ⇒ deg ℎ(𝑥) ≤ 𝑔, deg 𝑓 𝑥 = 2𝑔 + 1

 𝑓 monic

 Nonsingular
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Nonsingularity
 Definition (Algebraically closed field 𝐾):

𝑃 ∈ 𝐾 𝑋 , 𝑃 𝑛𝑜𝑛 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ⇒ 𝑃 ℎ𝑎𝑠 𝑎 𝑟𝑜𝑜𝑡.

 Definition (Algebraic closure of 𝐾):

Smallest algebraically closed field containing 𝐾
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Nonsingularity (definition)
A hyperelliptic curve 𝑦2 + ℎ 𝑥 𝑦 = 𝑓 𝑥 with coefficients in field 𝐾

is said to be nonsingular if no point on the curve over the algebraic 

closure  𝐾 of 𝐾 satisfies both partial derivatives of the curve equation, ie

2𝑦 + ℎ 𝑥 = 0 and ℎ′ 𝑥 𝑦 = 𝑓′(𝑥). 

In particular, note that 𝑓′ 𝑥 = 0 ⇔ 𝑥 multiple root of 𝑓, and hence for 

odd characteristics 𝑦2 = 𝑓 𝑥 non singular ⇔ 𝑓 has no multiple roots.
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Group law
[1]

 More intersections in general 
than the EC case ⇒more than 3 
points if we intersect with a line

 We do not even have a group 
structure in general, so we need 
something else
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Divisors (definition)
 𝐷 is called a divisor of a HEC 𝐶 if 𝐷 =  𝑃∈𝐶( 𝐾)𝑛𝑃𝑃 with 

𝑛𝑃 ∈ ℤ and only finitely many 𝑛𝑝 ≠ 0

 The degree of 𝐷 is deg 𝐷 =  𝑃∈C  𝐾 𝑛𝑃

E.g. given 𝐷 = 𝑃1 + 2𝑃2, deg 𝐷 = 3

 𝐷𝑖𝑣𝐶
0( 𝐾) is the group of degree 0 divisors on 𝐶
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Divisors
 Let 𝑟 be a rational function in  𝐾(𝐶) (field of fractions in  𝐾 𝑥, 𝑦 /(𝑦2 + ℎ 𝑥 𝑦 − 𝑓(𝑥)). 
The order of 𝑟 at 𝑃 is given by

ord𝑃 𝑟 =  
𝑛 if 𝑃 zero of order 𝑛
−𝑛 if 𝑃 pole of order 𝑛

0 if neither

 The divisor of 𝑟 is given by

div 𝑟 =  𝑃∈𝐶(  𝐾) ord𝑃 𝑟 ∙ 𝑃

e.g. 𝑟 𝑥 =
𝑥−2 2

𝑥+1 𝑥3
: 𝑃1 = 2 is a zero of order 2, 𝑃2 = −1 a pole of order 1 and 𝑃3 = 0 a 

pole of order 3, so div 𝑟 = 2 𝑃1 − 𝑃2 − 3𝑃3

7HYPERELLIPTIC CURVE CRYPTOGRAPHY



Divisors
 A divisor 𝐷 is said to be principal if ∃𝑟 s.t. 𝐷 = div 𝑟 . The set of 
principal divisors on 𝐶 is Princ 𝐶 .

 It can be shown that ∀𝑟 ∈  𝐾 𝐶 , deg(div 𝑟 ) = 0 and hence 
Princ 𝐶 is a subgroup of Div𝐶

0( 𝐾).

 In practice, deg(div 𝑟 ) = 0 means we will need to throw in 𝑂, the 
point at infinity. For example consider the curve 𝐶: 𝑦2 = 𝑓(𝑥) of genus 
1 over ℂ. Then deg 𝑓 = 3. Given 𝑔 𝑥, 𝑦 =

𝑦

𝑥−2
, the zero of 𝑔 is 0, and 

as deg 𝑓 = 3 then there are 3 points on the curve with 𝑦 =
0; call them 𝑃1, 𝑃2, 𝑃3. Additionally 𝑔 has points with 𝑥 = 2 as poles. 
Assuming 𝑓 2 ≠ 0, then there are two such points on 𝐶, 𝑄1 & 𝑄2. Then 
div 𝑔 = 𝑃1 + 𝑃2 + 𝑃3 − 𝑄1 − 𝑄2 − 𝑂.
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Divisors
 We define the Picard (or divisor class) group of 𝐶 as 

Pic𝐶
0  𝐾 = Div𝐶

0  𝐾 / Princ 𝐶

 ∃𝐽(𝐶) abelian variety of dimension 𝑔 s.t. 𝐽 𝐶 ≅ Pic𝐶
0( 𝐾). 𝐽(𝐶) is 

called the Jacobian of 𝐶.

 What is important here is that the group we will be using is 𝐽(𝐶). The 
group law will operate on divisor classes. A divisor class would then be 
written uniquely as  𝑖=1

𝑟 𝑃𝑖 − 𝑟𝑂 , 𝑃𝑖∈ 𝐶\ 𝑂 , 𝑟 ≤ 𝑔, with 𝑃𝑖 ≠ −𝑃𝑗 =

𝑥𝑗 , −ℎ 𝑥𝑗 − 𝑦𝑗 for 𝑖 ≠ 𝑗.

 Theorem (Hasse-Weil): if 𝐶 is a HEC of genus 𝑔 over Ϝ𝑞 ,

𝑞 − 1 2𝑔 ≤ #𝐽 𝐶 ≤ 𝑞 + 1 2𝑔

9HYPERELLIPTIC CURVE CRYPTOGRAPHY



Divisors (concretely)
 Step 1: if 𝑛 > 1 points, write a polynomial of degree 𝑛 − 1;
the number of other points of intersections with the curve 
is max(deg(𝑓), 2 𝑛 − 1 ) − 𝑛. 

 Step 2: Inflect (ie take the opposite of these points) to 
reduce the sum.

 Step 3: repeat until you reach a number of points ≤ 𝑔. This 
will allow one to form a divisor class / reduced divisor.
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Genus 1 example
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Genus 2 example
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Mumford representation
 Theorem: Given a HEC 𝐶 of genus 𝑔 over 𝐾, ∃! 𝑢, 𝑣 with 𝑢, 𝑣 ∈ 𝐾[𝑥] s.t.

• 𝑢 is monic

• 𝑢 | 𝑣2 + 𝑣ℎ − 𝑓

• deg 𝑣 < deg 𝑢 ≤ 𝑔

 In particular, if 𝑔 = 2, we can represent any divisor class by the coefficients 
𝑢1, 𝑢0, 𝑣1, 𝑣0 of 𝑢 and 𝑣.

 As 𝑢 is monic, we can write 𝑢 in  𝐾 𝑥 as 𝑢(𝑥) = Π𝑖=1
deg 𝑢

(𝑥 − 𝑥𝑖). The 
middle condition in the theorem tells us that 𝑥𝑖, 𝑣 𝑥𝑖 ∈ 𝐶. In general if 
𝑥𝑖 , 𝑦𝑖 has multiplicity 𝑛, then for 0 ≤ 𝑗 ≤ 𝑛 − 1,

𝑑

𝑑𝑥

𝑗

𝑣 𝑥 2 + 𝑣 𝑥 ℎ 𝑥 − 𝑓 𝑥 |𝑥=𝑥𝑖
= 0
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Mumford representation
For example, consider 𝐶: 𝑦2 = 𝑥5 + 3𝑥3 + 2𝑥2 + 3 over F5.

 Consider 𝑃1 = 1,2 , 𝑃2 = 3,0 , 𝑃3 = 1,3 , 𝑃4 = (4,1)

 We want to reduce the divisors 𝐷1 = 𝑃1 + 𝑃2 − 2𝑂 and

𝐷2 = 𝑃3 + 𝑃4 − 2𝑂 ie find 𝑎, 𝑏, 𝑐, 𝑑 s.t. 𝐷1 = 𝑎, 𝑏 , 𝐷2 = [𝑐, 𝑑]

 𝐶 has genus 2 so deg(b) < deg 𝑎 ≤ 2 . We know that at the 𝑥
coordinates of 𝑃1, 𝑃2 ,𝑎 vanishes so 𝑎 = 𝑥 − 1 𝑥 − 3 = 𝑥2 + 𝑥 + 3
and 𝑏 𝑥𝑖 = 𝑦𝑖, 𝑏1 + 𝑏0 = 2 and 3𝑏1 + 𝑏0 = 0 so 𝑏 = 4𝑥 + 3. 

 Similarly we have 𝑐 = 𝑥 − 1 𝑥 − 4 = 𝑥2 + 4 and 𝑑1 + 𝑑0 = 3 and 
4𝑑1 + 𝑑0 = 1 so 𝑑 = 𝑥 + 2.

 𝐷1 = 𝑥2 + 𝑥 + 3,4𝑥 + 3 , 𝐷2 = [𝑥2 + 4, 𝑥 + 2]
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Cantor’s algorithm[1]
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Cantor algorithm
 ∃ better algorithms for fixed 𝑔 and ℎ. Notably, for binary fields, we can 
reduce the operations to 𝐼 + 5𝑆 + 22𝑀 (Lange,2004).[2]

 Additionally if deg ℎ = 1 we can get down to 𝐼 + 5𝑆 + 9𝑀.[2][3]

 As with the EC case we can change coordinate systems to get even 
better results and avoid inversions altogether (e.g. if ℎ 𝑥 = 𝑥, doubling 
in affine coordinates is 𝐼 + 5𝑀 + 6𝑆 but in projective coord, 22𝑀 +
6𝑆)[3]
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In practice
 HECC can be used to implement the same algorithms as HEC

 𝑔 ≥ 3 turns out to be vulnerable to index-calculus [4][5]

 To achieve a security level of 2128, the base fields in ECC will have 
about 2256 elements as compared to 2128 for HECC with 𝑔 = 2, leading 
to a speed-up factor of 3 [6]

 In a certain class of HECs (Kummer surfaces), HECC with 𝑔 = 2 will 
have only twice as many operations as EC[7]

 Interestingly enough, Gaudry, Hess and Smart showed in 2000 that the 
ECDLP over Ϝ2𝑘 can be reduced to the DLP of a Jacobian over a subfield 
of Ϝ2𝑘 leading to subexponential times unless 𝑘 large enough[8]
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Future of HECC
 Focused on 𝑔 = 2

Recently, Bernstein and al. showed how HECC could take advantage of 
modern CPU architecture (using vectorization) to break DH speed 
records. [9]

 HECC being faster than ECC for certain operations and slower for others 
(e.g. ephemeral DH where 𝑔 = 1 is faster for fixed-based multiplications    
such as the ones involved in the key generation and slower for variable-
based multiplications, such as the ones needed for the shared-secret 
computation), Bernstein and Lange proposed a new approach to 
(H)ECC, “hyper-and-elliptic curve cryptography” in which a single 
appropriate group is used to compute both kinds of operations.[10]
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