Performance and Security of ECDSA

Sharon Levy

Abstract—Digital signatures are used world wide to verify the
authenticity of messages and confirm that they have not been
altered in transmission. The Digital Signature Algorithm (DSA)
is a Digital Signature Standard for the Federal Information
Processing Standard and uses public key cryptography. The
Elliptic Curve Digital Signature Algorithm (ECDSA) is a version
of DSA using elliptic curves.

In this paper, I will introduce ECDSA and discuss its key gen-
eration, signing, and verifying procedures. Then, I will compare
this algorithm to the RSA digital signature algorithm and discuss
its various advantages and drawbacks. Finally, I will discuss the
security of ECDSA and attacks that can break it.

I. INTRODUCTION

Public key cryptography is a form of cryptography in which
there exists a public and private key. In terms of digital
signatures, the private key is used for creating signatures and
the public key is copied and handed out to validate signatures.
This has a huge advantage over secret or symmetric key
cryptography since there is no need to find a secure way to
swap keys[3].

The application of digital signatures can be executed across
many different fields. It can be used within legal documents or
to sign email messages. Digital signatures are used as a way
to provide data authenticity, integrity and non-repudiation[7].
Essentially, when a digital signature is accepted, it ensures the
receiver that the message was indeed sent by the source and
was not altered in transmission. The Elliptic Curve Digital
Signature Algorithm is a public key algorithm and was pro-
posed by Scott Vanstone in 1992 as an alternative to the Digital
Signature Algorithm[2]. This uses points on an elliptic curve
as opposed to numbers in Z,;[6]. ECDSA has been proven
to be more effective than using DSA as it provides the same
security with a smaller key size[9].

II. ALGORITHMS

ECDSA consists of three algorithms: key generation, sign-
ing, and verification. The key generation algorithm computes
a public and private key to use in the signing and verification
processes. To create the actual digital signature, the signing
procedure is executed. Finally, the verification method per-
forms to prove the authenticity of the signature. The hash func-
tion used in the signing and verification algorithms is typically
SHA-1[5]. The hardness of ECDSA comes from solving the
Elliptic Curve Discrete Logarithm Problem (ECDLP). Below,
I describe the three algorithms:

ECDSA Key Generation

Input: G and n where G is a base point on E(F,) with ¢
being equal to odd prime p or a power of 2 and n is the order
of point G

Output: Public key () and private key d

1: Randomly compute an integer d in the interval [1,n - 1]
2: Calculate @ = dG
3: The public key computed is) and the private key is d

ECDSA Signature Generation
Input: d, G, n, hash function H, and message m
Qutput: Signature (r, s)

Compute a random integer k, within 1 <k <n - 1
Compute kG = (x1,y1) and convert z; to an integer &
Compute 7 = £; mod n. If » = 0 then go to step 1
Compute £~ mod n

Compute H(m) and convert this bit string to an integer e
Compute s = k= (e + dr) mod n. If s =0 go

to step 1

7: The signature for the message m is (r, s)

SAAN S e

ECDSA Signature Verification
Input: (r, s), m, n, e, G, @, and hash function H
Output: Accept or reject signature (r, s)

Verify that r and s are integers in the interval [1, n - 1]
Compute H(m) and convert this bit string to an integer e
Compute w = s~! mod n

Compute u; = ew mod n and us = rw mod n

Compute X = u1G + us@Q

If X = O(the point at infinity), reject the signature.
Otherwise, convert x; of X to an integer @7 and
compute v = 1 mod n

7: Accept the signature if and only if v = r

SAAN S ey

III. ECDSA vs RSA

RSA is another public key cryptography algorithm. It was
invented by Ron Rivest, Adi Shamir, and Leonard Adleman
in 1977[1]. Unlike ECDSA, RSA can be used to encrypt
and decrypt data in addition to verifying digital signatures.
However, its encryption and signature algorithms include a
hash function, similarly to ECDSA, where SHA-1 is also
commonly used. The key generation algorithm of RSA is set
up to produce a public and private key from the order of the
product of two large prime integers. Therefore, the hardness of
RSA, and the main method of breaking it, comes from solving
the prime factorization problem[4]. Below, I describe the three
algorithms:

RSA Key Generation
Input: None
Output: Public key (n, e) and private key d

1: Select two random prime numbers p and ¢ with similar

bit lengths

2: Compute n = pq

3: Compute ®(n) = (p-1)(g-1)

4: Compute d where ed = 1 mod ®(n) and e is a random
integer such that e <®(n) and gcd(e, P(n)) = 1

5: (n, e) is the public key and d is the private key

RSA Signature Generation
Input: d, n, hash function H, and message m
Output: Signature s

1: Compute s = H(m)%(mod n)
2: s is the signature generated

RSA Signature Verification
Input: s, e, n, m, and hash function H
Output: Accept or reject signature s

1: Compute h = s¢(mod n)
2: If h = H(m), accept the signature

When comparing ECDSA to RSA, a major factor to discuss
is key size. The following table shows the key lengths for RSA
and ECDSA with the same level of security[10].

verifying more signatures than the number that are produced.

Key Generation

Key Length (bits) Time (secs)
ECC RSA ECC RSA
163 1024 0.08 0.16
233 2240 0.18 7.47
283 3072 0.27 9.80
409 7680 0.64 133.90
571 15360 1.44 679.06

TABLE 1II

Signature Generation

Key Length (bits) Time (secs)
ECC RSA ECC RSA
163 1024 0.15 0.01
233 2240 0.34 0.15
283 3072 0.59 0.21
409 7680 1.18 1.53
571 15360 3.07 9.20

TABLE III

RSA Key Lengths (bits) | ECDSA Key Lengths (bits) Signature Verification
1024 192 Key Length (bits) Time (secs)
2048 256 ECC RSA ECC RSA
TABLE I 163 1024 0.23 0.01
233 2240 0.51 0.01
It is evident that ECDSA requires a much smaller key length 283 3072 0.86 0.01
in order to provide the same security as RSA. A major advan- 409 7680 1.80 0.01
tage of having this smaller key size is that computations can | 371 15360 4.53 0.03

be executed faster. In addition, this helps reduce storage space, TABLE IV

power consumption, processing power, and bandwidth[2].

In another study[1], the times for key generation, signature,
and verification algorithms were computed with comparable
key sizes for ECDSA and RSA. The results of the report (See
tables 2, 3, and 4) showed that ECDSA outperformed RSA in
both key and signature generations. However, RSA was able
to verify messages much faster than ECDSA. The key sizes
for ECDSA ranged from 163 to 571 bits and 1024 to 15360
bits for RSA algorithms. The times for ECDSA in the key
generation were consistently faster than those of RSA. By the
last comparison, RSA took a total of 679.06 seconds while
ECDSA lasted 1.44 seconds, significantly faster. Meanwhile,
the signature generation had slightly different results. RSA
started out by executing faster than ECDSA. However, as the
bit sizes for each increased, RSA was shown to slow down as
ECDSA sped up and surpassed its counterpart on the final
execution. Finally, with signature verification, RSAs times
were considerably quicker than ECDSAs times and barely
increased as the size of key lengths grew.

Thus, it appears that ECDSA has more advantages over
RSA. Its small key sizes are beneficial in environments where
resources such as storage space are limited. In addition, it runs
its key and signature generation algorithms much faster than
RSA. A scenario in which one would want to use RSA is when

IV. SEcuURrITY OF ECDSA

There are two attacks against digital signatures: a key-
only attack in which the adversary only knows the public
key and a message attack where the adversary has access to
some signatures before cracking the function. There are several
interpretations of what it means to break a digital signature:
retrieving the secret key, creating another signing algorithm
with an equivalent secret key, forging a signature for a chosen
message, and forging a signature for at least one message[12].

In order for ECDSA to be useful, it must have a high
security (i.e. it is not easy to break). There are a few security
conditions for ECDSA that are essential[5]:

e The discrete logarithm in the subgroup spanned by G is
hard. This ensures that you cannot easily solve the discrete
logarithm problem and therefore obtain the secret key.

e The hash function used is a one-way collision-resistant hash
function. Being one-way means that you cannot determine
m from H(m) = y. A collision-resistant function has a low
probability of mapping two messages to the same thing (i.e.
H(m,) = H(my)).

e The generator for k is unpredictable. Without this, the secret
key can be obtained using k, r, and s.

In the case of ECDSA, the two principal attacks on it are
either against the hash function used within the signature
generation or versus ECDLP[2]. Should the algorithm not
incorporate the second bullet point from above, an adversary
can find a collision within the hash function with two separate
messages and sign one but declare his signature on the other.
ECDLP is defined as solving for d in @ = dG within the key
generation algorithm. There are many known attacks against
ECDLP including the exhaustive search, Pohlig-Hellman, and
Baby-Step Giant-Step algorithms. One of these attacks is
the Pollard’s Rho algorithm, which has a running time of
(v/nm)/2, where n is the order of point G. However, this
algorithm can be parallelized and run on r different processors,
so that the new running time is (y/nm)/2r.

Public-key system Best known methods for solving mathematical Running
problem times
Integer factorization Number field sieve: exp(1.923 (log n)1/3{log log Sub-
n)2/3) exponential
Discrete logarithm Number field sieve: exp(1.923 (log n)1/3{log log Sub-
nj2/3) exponential
Elliptic curve discrete Pollard-rho algorithm: square root of n Fully

logarithm exponential

TABLE V

In table 5, a comparison is shown between the integer
factorization, discrete logarithm, and elliptic curve discrete
logarithm problems[11]. Each relates to RSA, DSA, and
ECDSA, respectively. The best known algorithms for solving
these problems are shown with their running times. For DSA
and RSA the method given is number field sieve which is used
for factorization. The process given for ECDSA is Pollard’s
Rho, though the parallelized version is actually faster. It is
evident that ECDSA is more secure than DSA and RSA due
to the fact that the running time to break it is fully exponential
versus breaking DSA and RSA, which is only sub-exponential
and therefore a lot faster.

The table below explains different methods in diverting
various attacks against ECDLP, where the elliptic curve E
is defined over IF,. Variable n in this case is the order of
point G and is assumed to be prime. The Multiple Logarithms
approach is used to speed up attacks on ECDLP with the same
elliptic curve parameters by using the solutions to previous
ECDLP attacks[8].

Aftack Countermeasure

Pohlig-Hellman (Section 4.2) Select n to be prime.

Pollard-rho (Section 4.3) Select n so that \/n represents an infeasible amount of

computation. At a minimum, z should be at least 2'90,

Select n so that /n represents an infeasible amount of
computation. At a minimum, # should be at least 2!,

Multiple logarithms (Section 4.6)

TABLE VI

One flaw that has been pointed out in ECDSA is within the
verification scheme. When 7 is checked against #7 mod n, it
is evident that y; is not used at all in this comparison. Thus,
there are now two signatures that will be valid for a given
message: (r, s) and (r, —s mod n)[5].

Other attacks that can be used against ECDSA relate to the
security of k within the signature generation algorithm. After

each message is signed, k£ must be destroyed since an adver-
sary can compute the secret key d using d = r~*(ks —e) mod
n. Similarly, k¥ must be regenerated for different messages. If
the attacker knows that two messages have the same k, he can
recover the secret key d from the two signatures (r,s;) and
(r, s2). This is done by seeing that ks; = e; + dr(mod n)
and kse = es 4 dr (mod n). Using this information, you can
subtract kss from ks; and get ks; —kso = e; —eo (mod n). Di-
viding both sides by s; — s gives us k = (e; —ez) (51 —52) 7!
(mod n). With this knowledge of k, an adversary can recover
the secret key using the attack described above[2].

V. CONCLUSION

ECDSA has been shown to be a better alternative to both
RSA and DSA for producing digital signatures. I compared
the three ECDSA algorithms of key generation, signing, and
verification to those of RSA. The results produced showed that
ECDSA excelled with its running time in both key generation
and signing but failed in verification against RSA.

The main benefits of ECDSA include the smaller key
sizes that achieve the same security, making it useful when
being implemented in hardware, and the hardness of breaking
ECDLP, which is incorporated into the algorithm. Though
there are attacks against ECDSA, like the Pollard’s Rho and
Pohlig-Hellman algorithms, they have running times that are
much slower than those against RSA and DSA. The given
requirements for ECDSA relating to the hash function, discrete
logarithm, and number generator ensure that the statements
above are true.

REFERENCES

[11 Arrendondo, Brandon and Jansma, Nicholas. "Performance Comparison
of Elliptic Curve and RSA Digital Signatures”, 2004. Web.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.7139&
rep=rep | &type=pdf

[2] Johnson, Don and Menezes, Alfred. ”"The Elliptic Curve Digital
Signature Algorithm (ECDSA)”, 1999. Web. http://cacr.uwaterloo.ca/
techreports/1999/corr99-34.pdf

[3] Blumenthal, Matt. “Encryption: Strengths and Weaknesses of Public-
key Cryptography”, Web. http://www.csc.villanova.edu/~tway/courses/
¢s¢3990/£2007/csrs2007/01-pp1-7-MattBlumenthal.pdf

[4] Goyal, Vikas and Kaur, Amanpreet. "A Comparative Analysis of
ECDSA v/s RSA Algorithm”, 2013. Web. http://www.interscience.in/
1JCSI_Vol3Iss1/23-25.pdf

[5] Vaudenay, Serge. "The Security of DSA and ECDSA”, 2002. Web. https:
/Iwww.iacr.org/archive/pkc2003/25670309/25670309.pdf

[6] Stern, Jacques. “Evaluation Report on the ECDSA signature
scheme”, Web. https://www.ipa.go.jp/security/enc/CRYPTREC/fy15/
doc/1004_R3_ECDSA.pdf

[7]1 Hankerson, D., Menezes, A., Scott, A. Guide to Elliptic Curve Cryp-
tography. New York: Springer 2003. Print.

[8] Menezes, Alfred. Evaluation of Security Level of Cryptography: The
Elliptic Curve Discrete Logarithm Problem (ECDLP)”, 2001. Web. https:
/Iwww.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1028_ecdlp.pdf

[9]1 Khalique, A., Singh, K., Sood, S.”Implementation of Elliptic Curve

Digital Signature Algorithm”, May 2010. Web. http://www.ijcaonline.

org/volume2/number2/pxc387876.pdf

Ali, Al Imem. “Comparison and Evaluation of Digital Signature

Schemes Employed in NDN Network”, June 2015. Web. http://arxiv.

org/pdf/1508.00184.pdf

Vanstone, S.A. ”Next Generation Security for Wireless: Ellip-

tic Curve Cryptography”, 2003. Web. http://www.sciencedirect.com/

science/article/pii/S0167404803005078

[10]

(11]

[12] Goldwasser, S., Micali, S., Rivest, R. ”A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks”, 1988. Web.
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/
Digital %20Signatures/A_Digital_Signature_Scheme_Secure_Against_
Adaptive_Chosen-Message_Attack.pdf

