
Scalability of the Parallel Pollard-Rho Algorithm

Faisal Nawab
nawab@cs.ucsb.edu

Faisal Nawab (UC Santa Barbara) Project presentation 1 / 17

nawab@cs.ucsb.edu

The discrete logarithm problem

The Pollard-Rho algorithm [1] is one of the best generic algorithms
for the discrete logarithm problem

Variants of the algorithm apply to the integer factorization problem

Various cryptography techniques rely on the difficulty of the discrete
logarithm and factorization problems

Studying the efficiency of algorithms to solve them is important to
establish the integrity of these cryptography techniques

Faisal Nawab (UC Santa Barbara) Project presentation 2 / 17

The Pollard-Rho method

The discrete logarithm problem is the problem of finding the value x
that satisfies the equation

y = g x(mod p)

where y , g , and p are given

The Pollard-Rho method has
√

π.p
2 computational complexity [1]

The algorithm searches for a cycle in a sequence in the group (search
factor)

The cycle is deterministic: each step in the sequence depends on its
predecessor (determinism factor)

Faisal Nawab (UC Santa Barbara) Project presentation 3 / 17

Challenges of the Pollard-Rho method

The search factor means that we need to search for occurrences of
elements to find repetitions

The search might imply the need for storing elements and
continuously searching in the stored elements

With large group sizes this might lead to degraded performance as
the number of stored elements becomes high

The determinism factor means that we cannot compute multiple
elements of the same sequence in parallel

This makes the algorithm serial in nature, which makes taking
advantage of parallelism challenging

This project studies variants of the Pollard-Rho method and compares
their space efficience and scalability

Faisal Nawab (UC Santa Barbara) Project presentation 4 / 17

Pollard-Rho algorithm background

A sequence is defined, where an element ai+a is equal to:

y . ai for ai ∈ S0

a2i for ai ∈ S1

g . ai for ai ∈ S2

Where Si ’s are disjoint partitions

A random α is chosen for the initial element so that a0 = gα

Equality of elements in the sequence implies equality of the exponents
mod (p-1)

This equality can be used to solve for x

Faisal Nawab (UC Santa Barbara) Project presentation 5 / 17

A straight-forward implementation (ALL)

A straight-forward implementation of the Pollard-Rho algorithm is to
compute elements in the sequence and stop when the first
re-occurrence is detected

To find re-occurrences, all computed elements are stored

Sorting or indexing can be used to detect re-occurrences efficiently

Space needed by the algorithm is in the order of
√

π.p
2

We call this variant ALL, because it considers all computed elements

Is there a trade-off between efficiency and space?

Faisal Nawab (UC Santa Barbara) Project presentation 6 / 17

The distinguished points optimization (DIST)

Manage the trade-off between efficiency and space

Main idea: only store and search for elements with a certain
distinguishing property [2]

For example, only store elements with values that are multiples of a
number D

In this way, space required becomes in the order of

√
π.p
2

D

We call this variant DIST(D’), where D ′ is the percentage of
distinguished points to all points

We can control the trade-off of efficiency and space by controlling D ′

How does the trade-off look like?

Faisal Nawab (UC Santa Barbara) Project presentation 7 / 17

Distinguished points space-efficiency trade-off

The trade-off is shown in the expected number of computations
needed to find a cycle: √

π.p
2 + 1

θ

where θ is the proportion of points satisfying the distinguishing
property [2]

The trade-off is quantified for a group size 5915587277

We measure the efficiency as the time it takes to find x (latency)

We measure space as the number of elements in storage

 36

 38

 40

 42

 44

10% 1% 0.1% 0.01%

L
a
te

n
c
y
 (

s
)

Percentage of distinguished points

 0

 2000

 4000

 6000

 8000

 10000

 12000

10% 1% 0.1% 0.01%

S
iz

e

Percentage of distinguished points

Faisal Nawab (UC Santa Barbara) Project presentation 8 / 17

Caveats in DIST performance results

The group size used in the previous experiments is much smaller than
what is used in cryptography

Although in our case 0.01% of points leads to a very small storage
(less than 10 objects), with realistic group sizes, this percentage must
be much smaller to have a significant effect on space saving

It can be speculated that the trade-off trend we observe is going to be
similar to “real” larger group sizes

Thus, if the theoretical bound continuous to hold, the cost of saving
space with distinguished points will be proportional to 1

θ [2]

However, what is concluded from the previous experiments is a
byproduct of both the group size and size of distinguished points –
further experiments with larger sizes are needed to confirm the effect
of distinguished points

Faisal Nawab (UC Santa Barbara) Project presentation 9 / 17

The cycle variant (CYCLE)

Is there a way to detect re-occurrences without maintaining any
storage?

Re-occurrences can be detected by maintaining two iterators moving
at a different speed.

This is called the Floyd’s cycle-finding problem [3]

Call this variant CYCLE

step 1 step 2 step 3

Faisal Nawab (UC Santa Barbara) Project presentation 10 / 17

Performance of Pollard-Rho variants

Figures below measure latency and size of the Pollard-Rho different
variants

DIST(1%) performs closely to ALL with good space savings

CYCLE takes more than 2x the time to find a cycle than DIST(1%)
and ALL

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

ALL Distinguished (1%) Cycle

L
a
te

n
c
y
 (

s
)

Scheme

 1

 10

 100

 1000

 10000

 100000

 1e+06

ALL Distinguished (1%) Cycle

S
iz

e

Scheme

Faisal Nawab (UC Santa Barbara) Project presentation 11 / 17

Parallelizing the Pollard-Rho algorithm

A straight-forward way of parallelizing could be to run different
instances of each algorithm concurrently with different initializations

Unfortunately, this does not lead to better performance [4]

The reason is that the expected time to find a cycle is the same from
any point

 40

 50

 60

 70

 80

 90

 1 1.5 2 2.5 3 3.5 4

L
a

te
n

c
y
 (

s
)

Number of threads

FULL DIST.(100) CYCLE

Faisal Nawab (UC Santa Barbara) Project presentation 12 / 17

Parallelizing the Pollard-Rho algorithm

To leverage parallelizm, different instances need to cooperate

Each instance runs with a different sequence and initialization

All instances share one storage and look for re-occurences amongst all
sequences (in ALL and DIST)

CYCLE makes each instance responsible for one speed of iteration
and checks in each step if there is a re-occurrence

Faisal Nawab (UC Santa Barbara) Project presentation 13 / 17

Parallelizing the Pollard-Rho algorithm

Speedup of ALL is close to a linear speedup

Speedup of DIST(1%) is close to
√

m, where m is the number of
processors [2]

CYCLE does not experience any speedup – with larger numbers of
threads blocking is affected by the weakest link

 0

 20

 40

 60

 80

 100

 120

 1 1.5 2 2.5 3 3.5 4

L
a

te
n

c
y
 (

s
)

Number of threads

FULL DIST.(1%) CYCLE

Faisal Nawab (UC Santa Barbara) Project presentation 14 / 17

Enhancing the parallel DIST

A proposed enhancement of parallel DIST to improve its performance
(called Enhanced DIST) [2]

Main idea: when a distinguished point is found, change to a new
sequence

Enhanced DIST scales linearly similarly to ALL

 0

 20

 40

 60

 80

 100

 120

 1 1.5 2 2.5 3 3.5 4

L
a

te
n

c
y
 (

s
)

Number of threads

FULL
DIST.(1%)

CYCLE
Enhanced DIST. (1%)

Faisal Nawab (UC Santa Barbara) Project presentation 15 / 17

On scalability and observed latency

The theoretical studies about scalability [2] are based on the number
of iterations needed to find a re-occurrence

For example, a linear scale-up means that with n agents, we expect to
find a re-occurrence in k

n iterations, where k is the number of
iterations expected to find a re-occurrence with one agent

Reminder: The observed latency is the time until a re-occurrence is
found

Agents collectively process iterations, thus the number of already
scaled iterations is divided among participating agents

Thus, latency to finding a re-occurrence scales with a factor n of the
number of iterations, where n is the number of agents

Faisal Nawab (UC Santa Barbara) Project presentation 16 / 17

Conclusions

DIST offers good space savings without significantly affecting
efficiency and provide the ability to control the trade-off between
space and efficiency

CYCLE’s blocking nature limits scalability – asynchronous
implementations might overcome this limit

ALL has good scalability, but as the storage gets larger, scalability
might be affected

DIST can be enhanced to reach similar scalability to ALL without the
same storage cost by the optimization of re-initialization when hitting
a distinguished point

Faisal Nawab (UC Santa Barbara) Project presentation 17 / 17

Pollard, John M. “Monte Carlo methods for index computation
(mod\ p).” Mathematics of computation 32.143 (1978): 918-924.

Van Oorschot, Paul C., and Michael J. Wiener. “Parallel collision
search with crypt-analytic applications.” Journal of cryptology 12.1
(1999): 1-28.

Knuth, Donald E. (1969), The Art of Computer Programming, vol. II:
Seminumerical Algorithms, Addison-Wesley, p. 7, exercises 6 and 7

Brent, Richard P. “Parallel algorithms for integer factorisation.”
Number theory and cryptography 154 (1990): 26-37.

Faisal Nawab (UC Santa Barbara) Project presentation 17 / 17

