Scalability of the Parallel Pollard-Rho Algorithm

Faisal Nawab
nawab@cs.ucsb.edu

Faisal Nawab (UC Santa Barbara) Project presentation 1/17


nawab@cs.ucsb.edu

The discrete logarithm problem

o The Pollard-Rho algorithm [1] is one of the best generic algorithms
for the discrete logarithm problem

o Variants of the algorithm apply to the integer factorization problem

o Various cryptography techniques rely on the difficulty of the discrete
logarithm and factorization problems

o Studying the efficiency of algorithms to solve them is important to
establish the integrity of these cryptography techniques

Faisal Nawab (UC Santa Barbara) Project presentation 2/17



The Pollard-Rho method

@ The discrete logarithm problem is the problem of finding the value x
that satisfies the equation

y = g*(mod p)
where y, g, and p are given
o The Pollard-Rho method has /%P computational complexity [1]

@ The algorithm searches for a cycle in a sequence in the group (search
factor)

o The cycle is deterministic: each step in the sequence depends on its
predecessor (determinism factor)

Faisal Nawab (UC Santa Barbara) Project presentation 3/17



Challenges of the Pollard-Rho method

@ The search factor means that we need to search for occurrences of
elements to find repetitions

@ The search might imply the need for storing elements and
continuously searching in the stored elements

o With large group sizes this might lead to degraded performance as
the number of stored elements becomes high

o The determinism factor means that we cannot compute multiple
elements of the same sequence in parallel

@ This makes the algorithm serial in nature, which makes taking
advantage of parallelism challenging

o This project studies variants of the Pollard-Rho method and compares
their space efficience and scalability

Faisal Nawab (UC Santa Barbara) Project presentation 4/17



Pollard-Rho algorithm back

o A sequence is defined, where an element a; 4, is equal to:

y.a; fora; € S
2

a; foraj € S5
g.a fora; € S
Where S;'s are disjoint partitions
@ A random « is chosen for the initial element so that ag = g“

o Equality of elements in the sequence implies equality of the exponents
mod (p-1)

o This equality can be used to solve for x

Faisal Nawab (UC Santa Barbara) Project presentation 5/17



A straight-forward implementation (ALL)

o A straight-forward implementation of the Pollard-Rho algorithm is to
compute elements in the sequence and stop when the first
re-occurrence is detected

o To find re-occurrences, all computed elements are stored

@ Sorting or indexing can be used to detect re-occurrences efficiently
o Space needed by the algorithm is in the order of |/ %P

o We call this variant ALL, because it considers all computed elements
o Is there a trade-off between efficiency and space?

Faisal Nawab (UC Santa Barbara) Project presentation 6 /17



The distinguished points optimization (DIST)

o Manage the trade-off between efficiency and space

@ Main idea: only store and search for elements with a certain
distinguishing property [2]

o For example, only store elements with values that are multiples of a
number D

@ In this way, space required becomes in the order of ~¥?

o We call this variant DIST(D'), where D’ is the percentage of

distinguished points to all points

We can control the trade-off of efficiency and space by controlling D’

o How does the trade-off look like?

Faisal Nawab (UC Santa Barbara) Project presentation 7/17



Distinguished points space-efficiency trade-off

@ The trade-off is shown in the expected number of computations
needed to find a cycle:

. 1
A
where 6 is the proportion of points satisfying the distinguishing
property [2]
o The trade-off is quantified for a group size 5915587277

o We measure the efficiency as the time it takes to find x (latency)

o We measure space as the number of elements in storage

12000[

44

b 10000

42 8000

40 6000
B

38 4000

Latency (s)
Size

]

2000
36

0 = ]
10% 1% 0.1% 0.01% 10% 1% 0.1% 0.01%
Percentage of distinguished points Percentage of distinguished points

Faisal Nawab (UC Santa Barbara) Project presentation 8 /17



Caveats in DIST performance results

o The group size used in the previous experiments is much smaller than
what is used in cryptography

@ Although in our case 0.01% of points leads to a very small storage
(less than 10 objects), with realistic group sizes, this percentage must
be much smaller to have a significant effect on space saving

o It can be speculated that the trade-off trend we observe is going to be
similar to “real” larger group sizes

@ Thus, if the theoretical bound continuous to hold, the cost of saving
space with distinguished points will be proportional to % 2]

o However, what is concluded from the previous experiments is a
byproduct of both the group size and size of distinguished points —
further experiments with larger sizes are needed to confirm the effect
of distinguished points

Faisal Nawab (UC Santa Barbara) Project presentation 9 /17



The cycle variant (CYCLE)

o Is there a way to detect re-occurrences without maintaining any
storage?

o Re-occurrences can be detected by maintaining two iterators moving
at a different speed.

@ This is called the Floyd's cycle-finding problem [3]
o Call this variant CYCLE

step 1 step 2 step 3

Faisal Nawab (UC Santa Barbara) Project presentation 10 / 17



Performance of Pollard-Rho variants

o Figures below measure latency and size of the Pollard-Rho different

variants

o DIST(1%) performs closely to ALL with good space savings
o CYCLE takes more than 2x the time to find a cycle than DIST(1%)

and ALL

90

80
70
60

Latency (s)

40
30
20

0
ALL Distinguished (1%)

Scheme

Faisal Nawab (UC Santa Barbara)

Cycle

1e+06

100000

10000

8 1000
8

100

10

1

Project presentation

ALL Distinguished (1%) Cycle
Scheme

11 /17



Parallelizing the Pollard-Rho algorithm

o A straight-forward way of parallelizing could be to run different
instances of each algorithm concurrently with different initializations

o Unfortunately, this does not lead to better performance [4]

@ The reason is that the expected time to find a cycle is the same from

any point
[ FULL 1 DIST.(100) —F— CYCLE
90
80
2 70t
[
§ 60r
[
= 50t 1
40 E;::—_E%]
1 15 2 25 3 35 4

Number of threads

Faisal Nawab (UC Santa Barbara) Project presentation 12 /17



Parallelizing the Pollard-Rho algorithm

To leverage parallelizm, different instances need to cooperate

Each instance runs with a different sequence and initialization

All instances share one storage and look for re-occurences amongst all
sequences (in ALL and DIST)

o CYCLE makes each instance responsible for one speed of iteration
and checks in each step if there is a re-occurrence

Faisal Nawab (UC Santa Barbara) Project presentation 13 /17



Parallelizing the Pollard-Rho algorithm

o Speedup of ALL is close to a linear speedup

o Speedup of DIST(1%) is close to v/m, where m is the number of
processors [2]

o CYCLE does not experience any speedup — with larger numbers of
threads blocking is affected by the weakest link

[ FULL —1— DIST.(1%) —f— CYCLE

120
100
80
60 -
405

Latency (s)

20 %,
0 ]
1 15 2 25 3 35 4
Number of threads
Faisal Nawab (UC Santa Barbara) Project presentation

14 / 17



Enhancing the parallel DIST

o A proposed enhancement of parallel DIST to improve its performance
(called Enhanced DIST) [2]

o Main idea: when a distinguished point is found, change to a new
sequence

o Enhanced DIST scales linearly similarly to ALL

‘ FULL CYCLE ‘
DIST.(1%) Enhanced DIST. (1%) —5—

120
100 |
80
60 -

405 —
20 %,
0

1 1.5 2 25 3 35 4
Number of threads

Latency (s)

L

Faisal Nawab (UC Santa Barbara) Project presentation 15 /17



On scalability and observed latency

o The theoretical studies about scalability [2] are based on the number
of iterations needed to find a re-occurrence

o For example, a linear scale-up means that with n agents, we expect to
find a re-occurrence in % iterations, where k is the number of
iterations expected to find a re-occurrence with one agent

o Reminder: The observed latency is the time until a re-occurrence is
found

o Agents collectively process iterations, thus the number of already
scaled iterations is divided among participating agents

@ Thus, latency to finding a re-occurrence scales with a factor n of the
number of iterations, where n is the number of agents

Faisal Nawab (UC Santa Barbara) Project presentation 16 / 17



Conclusions

o DIST offers good space savings without significantly affecting
efficiency and provide the ability to control the trade-off between
space and efficiency

o CYCLE's blocking nature limits scalability — asynchronous
implementations might overcome this limit

o ALL has good scalability, but as the storage gets larger, scalability
might be affected

o DIST can be enhanced to reach similar scalability to ALL without the
same storage cost by the optimization of re-initialization when hitting
a distinguished point

Faisal Nawab (UC Santa Barbara) Project presentation 17 /17



Pollard, John M. “Monte Carlo methods for index computation
(mod\ p).” Mathematics of computation 32.143 (1978): 918-924.

Van Qorschot, Paul C., and Michael J. Wiener. “Parallel collision
search with crypt-analytic applications.” Journal of cryptology 12.1
(1999): 1-28.

Knuth, Donald E. (1969), The Art of Computer Programming, vol. II:
Seminumerical Algorithms, Addison-Wesley, p. 7, exercises 6 and 7

Brent, Richard P. “Parallel algorithms for integer factorisation.”
Number theory and cryptography 154 (1990): 26-37.

Faisal Nawab (UC Santa Barbara) Project presentation



