
Elliptic Curves in Transport Layer Security (TLS) -
A Presentation Tutorial

Balakrishnan Vasudevan
Department of Electrical and Computer Engineering

University of California, Santa Barbara
Santa Barbara, California - 93106

balakrishnanvasudevan@umail.ucsb.edu

Abstract—Transport Layer Security (TLS) is a mechanism
used to provide privacy and data security between two commu-
nicating applications. All major web browsers provide support
for TLS to secure communications between them and the web
servers. TLS ensures that the communication between the two
applications is private using symmetric cryptography. Public Key
Cryptography is optionally used to authenticate the identity of
communicating devices. TLS also provides Message authentica-
tion to ensure reliable communication between the applications.
This tutorial explains the TLS algorithm for key exchange,
ciphering and message authentication. The various Elliptic Curve
cryptographic functions being used in the current version TLS 1.2
and the draft version of TLS 1.3 are explained. It also discusses
the strengths and vulnerabilities of algorithms like Elliptic Curve
Diffie Hellman, Elliptic Curve Ephemeral Diffie Hellman and
Elliptic Curve Digital Signature.

I. INTRODUCTION

By the end of the year 2016, approximately 2.94 billion
people and more than 25 billion devices [1] will have accessed
1.1 zetabytes of data that includes anything from movies on
Netflix or papers on arXiv to grocery shopping and cash
transfers on the internet. Securing these transactions is of
utmost importance. In February 2015, it was discovered that
the insurance provider Anthem was the target of an attack that
resulted in more than 80 million records of Social Security
numbers, email and physical addresses being stolen.

Public-key cryptographic systems use the trapdoor function
to achieve security. The trapdoor is based on the fact that
securing a message is easy, but it is a numerically hard
problem to decrypt the message when a user does not have
the private key. Elliptic curve cryptography systems make the
trapdoor function even harder. To find the roots of an elliptic
curve system is infeasible and is known as the Elliptic Curve
Discrete Logarithmic Problem (ECDLP).

The security of an elliptic curve cryptosystem depends on
the ability to compute a point multiplication and the inability
of the attacker to to calculate the multiplicand when he is given
the original and product points. The situation is akin to having
a person play pool alone in a room. The person hits the cue
ball to displace the other balls. When an another person with
thorough knowledge of the game enters the room, it would be
highly unlikely that the person can find the initial position of
the ball given its current position.

Elliptic curves were suggested for usage by Neal Koblitz
and Victor Miller independently in 1985. The NIST has

since endorsed the Elliptic Curve Diffie Hellman (ECDH) and
Elliptic Curve Digital Signature Algorithm in the Suite B set
of recommended algorithms.

TLS is highly flexible and lets developers use various
schemes for encryption, authentication and key exchange. This
will go a long way in ensuring the relevance of TLS in the
current and future. The flexibility is also the main reasons why
TLS is being considered to secure IoT applications which keep
growing every single day.

The rest of the paper is organized as follows: Transport
Layer Security details the fundamentals of the concept of TLS,
TLS Algorithm explains the various steps followed in securing
data from the higher layers, Elliptic Curves in TLS discusses
the various Elliptic curves used in the current version TLS 1.2,
the section TLS 1.3 explains how the version of TLS currently
in the pipeline is different from its predecessors. Attacks and
Mitigation discusses attacks that have been carried out so far
on TLS and steps for their mitigation.

II. TRANSPORT LAYER SECURITY

Transport Layer Security uses cryptographic systems to
ensure privacy between a server and a client. Although the
name suggests that the protocol operates in the Transport layer,
TLS operates in the Application layer of the IP protocol suite.
In the OSI model, TLS is initialized and operated from the
Presentation and Session layers respectively.

The predecessors to TLS were Secure Network Program-
ming and SSL (Secure Sockets Layer). SSL is still being used
by a few websites. The earlier versions of TLS were TLS
1.0 and TLS 1.1 which have since been upgraded to TLS 1.2
with enhanced support for cipher suites and providing greater
abilities to the client and the server to negotiate the hash
and signature algorithms that are being used. With TLS 1.2,
backward compatibility with SSL 2.0 has been discontinued
[5].

TLS is made up of two protocols viz. TLS Record protocol,
which is optional and which secures a connection using DES
and the TLS Handshake protocol, which allows the client
and the server to authenticate each other using a certificate
provider and negotiate an encryption algorithm based on their
computational capabilities to encrypt the data being exchanged
between the two.



The current version of TLS, TLS 1.2 is defined by RFC
5246 [2].

III. TLS ALGORITHM

The following are the various steps involved in TLS [3],
1) The client requests a TLS enabled server for a secure

connection and presents a list of cipher suites that it
supports.

2) The server responds by picking up a cipher and a hash
function and sends its digital certificate. The certificate
has its name, the identity of the trusted certificate
authority and its public encryption key.

3) The client can, if it so requires, contact the certificate
authority to verify the authenticity of the server.

4) With the exchange of the certificates and other informa-
tion, the session keys are generated. The client encrypts
a random number with the server’s public key which it
then sends to the server. This random number can be
decoded by the server with its private key. The random
number is then used for encryption and decryption by
the client and the server.

5) The client uses Diffie-Hellman key exchange to securely
generate and transmit a random and unique session key
for the purposes of encryption and decryption.

6) With this, the handshaking is complete and the secure
connection is initiated. The session keys are used till the
end of the session for encryption and decryption of data.

Failure of any of the above steps results in the TLS handshake
being taken down.

Client Server
Client Hello Message ———–> Server Hello Message *

Server Certificate
Server Key Exchange

Certificate Request

<——————————- Server Hello Done

Client Certificate
Client Key Exchange
Certificate Verify (Change Cipher specs)

Client tasks done ——————————–>

Server changes Cipher Spec
<———————————– Server tasks done

Data transfer <———————————> Data transfer

A. Forward Secrecy

Forward secrecy is the property by which cryptosystems
ensure that even if the server or the client’s private key is
disclosed in the future, the integrity of the session would
not be compromised. Forward secrecy also prevents the data
from being decrypted even if the session was recorded by an
attacker.

Forward secrecy is achieved by computing a random key
for each session. This ensures that if one key is compromised,
it does not result in the loss of integrity of other keys that are
generated later on for the session. Google has been providing
forward secrecy with TLS for the Gmail and Google Docs
service and Twitter has also been using TLS with forward
secrecy for its services since November, 2013.

IV. ELLIPTIC CURVES IN TLS

There has been a renewed interest in the use of elliptic
curve cryptosystems given the level of security they provide
for a smaller key size. TLS be made more secure by the
use of ECC. RFC 4492 [4] specifies the list of elliptic curve
systems being used in TLS. A comparison of the comparable
key sizes for symmetric and asymmetric key cryptosystems
was analyzed in [6] and is shown below,

Symmetric ECC DH/DSA/RSA
80 163 1024

112 233 2048
128 283 3072
192 409 7680
256 571 15360

The following elliptic curve cryptosystems are used in TLS
1.2,

1) ECDH + ECDSA
2) ECDHE + ECDSA
3) ECDH + RSA
4) ECDHE + RSA
5) ECDH + Anon

The first elliptic curve specifies the cryptosystem used to
generate the public key and the second protocol specifies the
system used to sign the certificate. For example, ECDH +
ECDSA uses an Elliptic Curve Diffie Hellman scheme to
generate a public key. The client then generates an ECDH key
pair on the same curve as the server’s long term public key
and then sends its public key in the Client Exchange message
that it sends to the server.

ECDHE refers to Elliptic Curve Diffie Hellman Ephemeral
meaning that the key is generated for each and every execution
of the key establishment process. ECDH + RSA and ECDHE
+ RSA are used to let the server can reuse its existing RSA
certificate. This scheme does not provide forward security
which is the key feature of TLS.

ECDH + anon does not provide any authentication of the
server or the client. The server and the client’s certificate
and the certificate request and the certificate verify messages
are sent in order to ensure anonymity. The server uses the
ECDH algorithm to generate the public key and sent to the
client. The Server Key Exchange message is not signed by
the server. When the client receives the message, it generates
a curve pair from the same curve and sends the public key
back to the server in the Client Key Exchange message. This
scheme is prone to man-in-the-middle attacks due to the lack
of authentication.

TLS 1.2 also proposed two new extensions for use of ECC
in TLS,



1) Supported Elliptic curves extension
2) Supported Points format extension

Both these schemes allow the system to negotiate the use of
specific points and curves during the handshaking phase. Both
the client and the server should support the above schemes so
as to be able to use them during data transfer.

V. TLS 1.3

The draft specification for TLS 1.3 [7] is still being worked
upon. The following are some of the major changes being
proposed in the new version,

1) Support for weak and lesser used Elliptic curves like
ECDH+RSA and ECDH+ECDSA is being withdrawn.

2) Support for hash functions like MD5 and SHA-224 is
being withdrawn.

3) Requirement for a digital signature even when a previous
configuration is being used.

4) Use of SSL and RC4 negotiation for backward compat-
ibility is being withdrawn.

5) Authentication modes unified and post-handshake client
authentication has been added.

6) Client and server key shares have been merged into a
single extension.

7) Support for DSA has been removed and MTI algorithms
have been added.

VI. ATTACKS AND MITIGATION

RFC 7457 details the known attacks on TLS and datagram
TLS [8]. A version rollback attack is carried out by influencing
the cipher suite strength to a weaker symmetric key exchange
algorithm which the attacker can easily break in to. BEAST or
Browser Exploit against SSL/TLS uses vulnerabilities in TLS
1.0 implementations to decrypt HTTP cookies when HTTP
is run over TLS. Attacks like TIME or BREACH use HTTP
level compression to decrypt data being passed in the HTTP
response. TIME can be mitigated by disabling compression in
HTTP, however no known schemes of mitigation exist for pro-
tection against a BREACH attack. major vulnerabilities have
also been found in the RC4 cryptosystem with the keystream
being used to recover repeatedly encrypted plaintext. Current
versions of most browsers are capable of mitigating most of
these attacks.

For Elliptic Curves in TLS, attacks can usually exploit the
structure of the elliptic curves being used. It is conservative to
use elliptic curves for TLS with as little algorithmic structure
as possible. Given this condition, random curves are more
conservative than Koblitz curves. Another issue with the use
of Elliptic Curves in TLS is the repeated use of a single elliptic
curve. In this scenario, an attack can result in a large number
of keys being compromised.

Forward secrecy also plays a major role in selecting elliptic
curve protocols for use in TLS. Forward secrecy ensures that
the keys securing a session are not compromised in the event
that the certified keys from the client or the server are compro-
mised. ECDHE+ECDSA and ECDHE+RSA provide forward
secrecy in the event that the server’s keys are compromised.

use of ECDH+ECDSA and ECDH+RSA offer no protection
in the event that the server’s key has been compromised,
similarly ECDHA+Fixed ECDH and RSA+Fixed ECDH offer
no protection if the client’s keys have been compromised.

Both ECDHE+ECDHSA and ECDHE+RSA schemes offer
forward secrecy, ensuring secrecy even the server or the
client’s keys have been compromised. The list of curves
approved by the various standards organizations has been
provided in Table I.

TABLE I
LIST OF APPROVED CURVES

SECG ANSI X9.62 NIST
sect163k1 - K-163
sect163r1 - -
sect163r2 - B-163
sect193r1 - -
sect193r2 - -
sect233k1 - K-233
sect233r1 - B-233
sect239k1 - -
sect283k1 - K-283
sect283r1 - B-283
sect409k1 - K-409
sect409r1 - B-409
sect571k1 - K-571
sect571r1 - B-571
secp160k1 - -
secp160r1 - -
secp160r2 - -
secp192k1 - -
secp192r1 prime192v1 P-192
secp224k1 - -
secp224r1 - P-224
secp256k1 - -
secp256r1 prime256v1 P-256
secp384r1 - P-384
secp521r1 - P-521

VII. CONCLUSION

The ever increasing number of services offered on the
internet, the data deluge and the requirements for security for
most of the applications is proof that TLS has to be capable of
thwarting dynamically. A persistent issue with implementing
a strong TLS is the reluctance of websites and clients to
upgrade their set of cryptographic suites to better versions.
Complex cryptographic algoithms put a greater load on devices
thereby causing a significant drain of power and memory
resources. Internet of Things (IoT) is growing to encompass
major aspects of our life currently and ensuring the security of
these applications and devices is of utmost importance. Use of
Elliptic Curves can go a long way in securing TLS given the
infallibility of the curves to most kinds of attacks. However,
usage of complex elliptic curves comes with its own share
of problems. Complex curves are difficult to implement and
compute and would not be suitable for devices with limited
computational capabilities. Similarly use of algorithms like
ECDHE+ECDSA for forward secrecy would also result in
implementation difficulties. An ideal cryptosystem would have
to harness the potential of Elliptic Curves without placing
significant limitations on the implementation or the powers
of computation.

ACKNOWLEDGMENT

I would like to thank Professor Dr. Çetin Kaya Koç with the
Computer Science department of the University of California,
Santa Barbara for suggesting the topic and for his guidance
during the course of the project.



REFERENCES
[1] Cisco Systems Inc. The Zettabyte Era-Trends and Analysis - Cisco Visual

Networking index.
[2] T. Dierks, E. Rescorla. The Transport Layer Security (TLS) Protocol

Version 1.2. RFC 5246, IETF, August 2008.
[3] Wikipedia article on Transport Layer Security.

https://en.wikipedia.org/wiki/TransportLayerSecurity.
[4] S. Blake-Wilson et al. Elliptic Curve Cryptography (ECC) Cipher Suites

for Transport Layer Security (TLS). RFC 4492, IETF, May 2006.
[5] Turner and Polk. Prohibiting Secure Sockets Layer (SSL) Version 2.0.

RFC 6176, IETF Network Working Group, March 2011
[6] Lenstra, A. and E. Verheul, Selecting Cryptographic Key Sizes. Journal

of Cryptology 14 (2001) 255-293
[7] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.

Draft, IETF Network Working Group, December 2015
[8] Y. Sheffer et al. Summarizing Known Attacks on Transport Layer Security

(TLS)and Datagram TLS (DTLS). RFC 7457, IETF, Feb 2015.


