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Figure 1: We render fancy leather shoes and the sparkling wood floor lit by a strong point light and an environment map. We implement the
method of Yan et al. [YHMR16] on GPU as the reference. The reference’s input normal map resolution is 4K2, while our input example normal
map resolution is 2562. Our method’s implicitly generated normal maps have the same resolution as the reference. The reference’s memory
cost of each material is as high as 4.94GB, while ours is only 27.4MB (14.3MB for the MIP-mapped organized 4D lobes and 13.1MB for a
lookup table). The rendering quality of our method is similar to the reference. In addition, our method costs 26.3ms for global illumination,
with less than 19.2ms for direct illumination, and reaches up to 52 fps for direct illumination with a full high-definition resolution, which is
10.6× faster than the reference on the Leather Shoes and Wooden Floor Scene.

Abstract
Normal map-based microstructure rendering can generate both glint and scratch appearance accurately. However, the extra
high-resolution normal map that defines every microfacet normal may incur high storage and computation costs. We present
an example-based real-time rendering method for arbitrary microstructure materials, which significantly reduces the required
storage space. Our method takes a small-size normal map sample as input. We implicitly synthesize a high-resolution normal
map from the normal map sample and construct MIP-mapped 4D position-normal Gaussian lobes. Based on the above MIP-
mapped 4D lobes and a LUT (lookup table) data structure for the synthesized high-resolution normal map, an efficient Gaussian
query method is presented to evaluate P-NDFs (Position-Normal Distribution Functions) for shading. We can render complex
scenes with glint and scratch surfaces in real-time (≥ 30 fps) with a full high-definition resolution, and the space required for
each microstructure material is decreased to 30MB.
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1. Introduction

Many glossy materials with complex microstructures show high-
frequency highlights, such as glittery, scratched, or brushed metal
materials. Efficiently modeling and evaluating the complex mi-
crostructures becomes an interesting topic in physically based ren-
dering, especially in the modern Graphics Processing Unit (GPU)
context.

Yan et al. [YHJ∗14, YHMR16] provided a general approach by
using normal maps which can represent both glints and scratches.
Since the required high-resolution normal maps may reach the up-
per bound of GPU storage, the work is not GPU friendly in a scene
with many high-frequency materials. Some recent works are de-
signed for real-time microstructure rendering based on approximate
representations. Zirr and Kaplanyan [ZK16] introduced a stochas-
tic bi-scale microfacet model to fit glints. Velinov et al. [VWH18]
presented a set of analytical pre-integrations and an approximate
closed-form solution for iridescent scratches. Wang et al. [WDH20]
introduced an approximated separate radiance convolution model
for glints. These real-time algorithms focus on special glossy ef-
fects and are not suitable for arbitrary complex specular microstruc-
tures.

We present a real-time microstructure rendering method based
on the microfacet-based BRDF model of Yan et al. [YHMR16].
Our method is physically based and can simulate all types of glossy
materials. We greatly decrease the memory cost by implicitly gen-
erating microstructures from a normal map sample. We use 4D
Gaussian lobes to fit the position-normal distribution. Unlike Zhu
et al. [ZXW19] and Wang et al. [WHHY20], our synthesis is im-
plemented on 4D Gaussian lobes instead of the 2D textures, which
can give the generated 4D lobes better coherence. By using a MIP-
mapped data structure of 4D lobes, we achieve fast range queries
on GPU to accurately evaluate P-NDF contained in a ray footprint.
Our method has the following contributions:

• We provide a real-time rendering method, which fits all types
of high-frequency materials, including anisotropic highlights
caused by structured materials, glinty appearance caused by dis-
crete materials, and mixed materials of both discrete and struc-
tured materials. Moreover, we implement it in the GPU raytrac-
ing rendering pipeline in real-time.
• We present a 4D position-normal lobe generation method for the

infinite size microstructure. We generate 4D Gaussian lobes from
a fixed-size normal map sample and then synthesize these lobes
instead of normal map pixels to describe the microstructure.
• We also introduce a MIP-mapped data structure to organize 4D

Gaussian elements on GPU, which supports fast lobe queries for
ray footprints to evaluate P-NDF.

2. Related Work

The conventional microfacet BRDF models the detailed surface
microstructure with smooth normal distribution functions (NDFs),
including Beckmann [BS87] and GGX [WMLT07] distributions.
They are suitable for rendering isotropic highlights under distant

†Corresponding Author

views but are not enough to deal with high-frequency glint mi-
crostructures. Recent works mainly focus on the rendering of struc-
tured and discrete microfacet surfaces.

Structured materials modeling: For the simulation of
anisotropic highlight distribution caused by structured materials,
the nonlinear pre-filtering normal distribution is required to main-
tain the material model’s features and avoid aliasing during ren-
dering. Westin et al. [WAT92] proposed a multi-scale rendering
method for structured materials and addressed the necessity of the
research on this feature. Fournier [Fou92] discussed how to com-
bine the normal distribution of the structured high-frequency ma-
terial with the traditional BRDF. Becker and Max [BM93] used
multiple BRDF hierarchies to achieve smooth transitions at dif-
ferent scales when rendering structured materials. Kautz and Sei-
del [KVHS00] intended to parameterize and pre-calculate BRDF
models as a set of nonlinear bases, efficiently rendering structured
materials on GPU. Toksvig [Tok05] proposed a practical method,
which uses an anisotropic Gaussian lobe to fit the normal distribu-
tion of structured materials and multi-scale nonlinear filtering for
acceleration. Han et al. [HSRG07] used several lobes to simulate
the normal distribution functions, which can render a more com-
plex anisotropic highlight. Wu et al. [WDR11] proposed a bi-scale
model, which derives a large-scale appearance from the small-scale
geometry features designed by users.

Discrete materials modeling: Recent works try to model
discrete high-frequency materials such as glinty, scratched, and
brushed marks to simulate their complicated reflectance properties.

For offline rendering, Jakob et al. [JHY∗14] addressed the prob-
lem of glinty surfaces using a stochastic approach. They modeled
surfaces covered by pixel footprints as several randomly distributed
mirror-like flakes. Then they found an effective way to evaluate the
percentage of flakes in the specific spatial and directional domains.
This method can only be applied to the glinty surface caused by
discrete mirror flakes. Wang et al. [WWH18] further extended the
method to make the model separable and filterable. This method is
more efficient but is still designed for offline rendering.

Yan et al. [YHJ∗14] proposed a method to render spatially vary-
ing high-frequency discrete materials defined by high-resolution
normal maps. Yan et al. [YHMR16] further used the 4D Gaus-
sian mixture elements to simulate the normal distribution of dis-
crete high-frequency materials and achieved better performance
than their previous work. Yan et al. [YHW∗18] also extended the
rendering schemes for discrete materials to deal with wave optics
cases. Cheirmain et al. [CCM19] improved the normal mapping-
based wave optics rendering. However, all these methods need
high-resolution normal maps as input to avoid artifacts.

Since the explicit microstructure is costly to store, a series of
methods are designed to reduce storage by dynamically generating
large-sized normal maps by small-sized samples. These methods
consider the self-similar feature of materials and use the texture
synthesis idea. Zhu et al. [ZXW19] synthesized the high-resolution
normal maps and stored the corresponding relationship between
the Gaussian lobes and the synthesized index position. This work
can generate large-scale texture maps while maintaining random
patterns. However, lobes at the boundaries between the compos-
ite blocks need to be processed to ensure the continuity of normal.
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Also, the storage space will increase as the size of the synthetic
high-resolution normal maps increase. Wang et al. [WHHY20]
used the blending method, which ensures a constant storage space.
However, since the method does not store lobe information, it gen-
erates lobes during the rendering process, which brings a certain
amount of additional time overhead. The mixed information blurs
the high-frequency features within a specific range, and the spa-
tial continuity of features cannot be well maintained. Our method
synthesizes Gaussian lobes instead of normal maps, which can pre-
cisely deal with arbitrary microstructures accurately and be adapted
to the GPU easily in our practice.

Real-Time high-frequency material rendering: Current real-
time research works mainly focus on dealing with certain high-
frequency materials. Zirr et al. [ZK16] proposed a stochastic bi-
scale microfacet model for real-time rendering of multi-scale glint
features, including the discrete glint materials and brushed marks.
Wang et al. [WDH20] proposed a pre-filtering method for the
stochastic discrete microfacet model to simulate glints under both
environment maps and point light sources in real-time. Velinov et
al. [VWH18] proposed the treatment of scratches under wave op-
tics. However, no existing real-time solutions can consistently pro-
cess high-frequency materials explicitly defined by high-resolution
normal maps. To our knowledge, this is the first method to render
glints, scratches, and their mixtures in one complex scene in real-
time. Furthermore, the GPU memory is almost constant, which is
30MB in our practice.

3. Background

The discrete microfacet model [YHMR16] uses high-resolution
normal maps to model the microstructure and can be defined as:

fr(ωi,ωo) =
F(ωi,ωh)DP (ωh)G(ωi,ωo,ωh)

4(ωi.n)(ωo.n)
. (1)

Here, ωh is the half vector computed by normalizing the sum of
the light vector ωi and the view vector ωo, n represents the surface
normal, F refers to the Fresnel reflection function, and G is the
shadowing and masking term. P is defined on the texture space
and is as large as the pixel projection onto the surface. DP (ωh) is
also namedP-NDF, and represents the normal distribution function
over a spatial footprint P according to the querying direction ωh.

The evaluation of P-NDF can be written as:

DP (s) =
∫
R2

GP (u)N (u,s)du. (2)

where s is the query direction, and u is the query position. GP (u)
is the Gaussian distribution function about position u. N (u,s) is
the position-normal distribution and it can be further expressed as
N (u,s) = Gr(n(u)− s). The Gaussian Gr specifies the closeness
between the normal in position u and the query direction s with an
intrinsic roughness parameter σr. Yan et al. [YHMR16] traversed
each texel in the normal map texture space at the same step size to
obtain Gaussian L(u,s) with standard deviation σh. They approxi-
matedN (u,s) using many 4D Gaussian lobes:

N (u,s)≈
k

∑
i=1

Li(u,s). (3)

Each lobe is defined as:

Li(u,s) = cie
− 1

2 ((u,s)
T−(ui,si)

T )T
∑
−1
i ((u,s)T−(ui,si)

T ), (4)

where ci is a constant for normalization, and ∑i is the covariance
matrix computed from the Jacobian J of the normal n(u). The in-
verse of this 4×4 covariance matrix can be expressed as:

∑
−1
i =

1
σ2

h

(
I 0
0 0

)
+

1
σ2

r

(
JTJ −JT

−J I

)
. (5)

Thus, the evaluation of P-NDF for a given P and s becomes:

DP (s)≈
k

∑
i=1

∫
R2

GP (u)Li(u,s)du. (6)

In Equation 6, since s is fixed, the integral inside the sum col-
lapses to a 2D Gaussian, which leads to a closed-form solution. Yan
et al. [YHMR16] suggested that converting texels to 4D Gaussian
lobes would suffice to produce high-quality results. However, this
indicates that millions of Gaussian lobes will be retrieved in each
query. In their work, they implement a 4D acceleration hierarchy
over both normal and position space to organize these lobes. The
query is performed from top to bottom in the hierarchical struc-
ture, and only the 4D lobes within the specified range need to be
calculated.

4. Overview

Fig. 2 presents a summary of our algorithm. The rendering pipeline
includes three stages:

• Preprocessing:

– Generate 4D lobes from an input sample normal map and
synthesize the corresponding LUT (Section 5.1.1).

– Generate the MIP-mapped structure to accelerate P-NDF
evaluation (Section 5.1.2).

• Shading:

– Locate MIP-mapped levels and query matched 4D lobes
(Section 5.2.1).

– Evaluate P-NDF by interpolating between two MIP-mapped
levels (Section 5.2.2).

• Postprocessing:

– Denoise indirect illumination by applying a spatial filtering
pass. Combine the denoised indirect and direct illumination
to get a global lighting effect.

In the preprocessing stage (Section 5.1), we implicitly synthesize
a fixed-size MIP-mapped normal map with a corresponding LUT
instead of explicitly generating a large-size high-resolution normal
map. We also build the MIP-mapped structure on spatial domain,
just like the MIP-map of the texture maps. The difference is that
our texel at each level stores the Gaussian approximation of NDF
in the position domain.
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Figure 2: Pipeline of our algorithms.

The generated MIP-mapped structure can be reused in the shad-
ing stage (Section 5.2). Query time decreases by merging several
lobes into a big one and lobe queries can be stopped at a proper
MIP-map level. Because the glinty effects mainly come from direct
illumination, we separate direct illumination from indirect illumi-
nation, and our P-NDF evaluation method is applied only to direct
illumination in the shading stage. For indirect illumination, we re-
fer to the work of Yan et al. [YHMR16] and replace the complex
microfacet material with traditional material of the same roughness.

Our method is accurate and gives noise-free results in direct il-
lumination, and we use the usual filtering operation to deal with
the noise in ray-traced indirect illumination. In the postprocessing
stage, we adopt an edge-avoiding wavelet transform filter referred
to Dammertz et al. [DSHL10] and a bilateral filter for spatial filter-
ing, while albedo, depth, position normal are collected during ray
tracing for keeping illumination features.

5. Real-Time Rendering of High-frequency Materials

5.1. Synthesized MIP-mapped normal map

Some methods [YHMR16,ZXW19] rely on a large number of lobes
to fit the microfacet distribution of glinty surfaces. In order to eval-
uate P-NDF efficiently, they use 4D hierarchy trees to organize
the lobes. But this acceleration structure is challenging to port to
GPU because the tree pruning operation will consume a long time

Leather

ZXW[19] WHHY[20]

Scratch

Ours

Figure 3: Comparison with Zhu et al. [ZXW19] and Wang et
al. [WHHY20] on the explicitly generated normal map. For struc-
tured materials such as leather (Top row), both our method and
Zhu et al. [ZXW19] maintain the structural features of the material
without visible seams, while Wang et al. [WHHY20] has a signifi-
cant over-blur at the seams (refer to the inset). For discrete materi-
als such as scratches (Bottom row), our method maintains the local
characteristics of the scratches in the normal map sample (refer to
the inset) compared to Wang et al. [WHHY20]. α is set to 0.9.

on GPU, and the hierarchy structure occupies much extra memory.
In our work, we synthesize 4D position-normal lobes and organize
them with fixed-size MIP-mapped normal maps. In addition, we
build a MIP-mapped LUT for GPU-friendly parallel searching.
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5.1.1. Synthesized 4D position-normal lobes

The target large-sized normal mapH is composed of many patches,
as illustrated in Fig. 2. A patch can be represented by Pi, which is a
square area in the texture space. The size of Pi is user-defined and
smaller than the original input sample I. Pi can be understood as a
collection of many 4D lobes. The synthesis algorithm of H can be
illustrated as the following steps:

1. Extract 4D lobes from the original sample normal map Pi. The
4D lobes are described by position, direction, Jacobian determi-
nant, and other attributes.

2. Randomly pick a patch P0 from I and place it onto the upper
left corner ofH.

3. For the existing old patch Pi on H, traverse I to choose some
new patches. For each patch, calculate the overlap area error be-
tween the 4D lobes contained in the newly selected patch and
those contained in the old patches Pi. Randomly pick a new
patch that satisfies the error constraints. If no patch satisfies the
error constraint, the new patch with the minimum error is se-
lected.

4. Compute the error surface at the overlap region between the cho-
sen new patch and Pi. The boundary between patches is com-
puted as a minimum cost path (refer to Equation 7) through the
error surface at the overlap.

5. Position the new patch to Pi’s adjacent patch Pj on H, which is
fixed along with the minimum error boundary cut.

6. Repeat steps 3-5 untilH is generated.

It has been demonstrated in Yan et al. [YHMR16] that converting
a texel in the normal map texture space into four Gaussian lobes
with standard deviation σh = 1/

√
32log2 gives excellent results.

We also use the same approach in step 1.

The key step of the synthesizing method is to find Pi’s proper
neighbouring patch Pj from I (step 3). We first randomly choose
Pi from I. Then from I, we test many equally sized areas with
Pi, find one area that satisfies the overlap area error constraint, and
name it Pj. Finally, the lobes near the boundary of patches Pi and
Pj are fixed along with the minimum error boundary cut (step 4).

When synthesizing high-resolution normal maps from samples,
we basically follow the method of Zhu et al. [ZXW19], but differ-
ent from theirs, we use the Jacobian similarity as part of the error
constraint instead. By using this error constraint, we can generate
continuous position-normal distributions.

Both the overlap error constraint and the minimum error bound-
ary cut are evaluated by the similarity of lobes, which can give the
position-normal distribution of lobes on H good coherence. The
similarity of two neighbouring 4D lobes Li and L j is defined in
Equation 7, in which α balances the contribution of the normal sim-
ilarity and the Jacobian similarity.

Disti j = α||ni−n j||2 +(1−α)||Ji−J j||2, (7)

where ni and n j are normals for Li and L j. Ji and J j are Jacobian
matrix for Li and L j . Considering the Jacobian as an error con-
straint, the synthesized lobes near the boundary of patches on the
large-sized map are of good normal and Jacobian similarity.

We compare our texture synthesis method to Zhu et al. [ZXW19]

and Wang et al. [WHHY20] in Fig. 3. Our method keeps more de-
tails than Wang et al. [WHHY20] and can maintain better coher-
ence of 4D lobes compared to Zhu et al. [ZXW19].

We further define the LUT to save the mapping relationship be-
tween H and I, including the patch index and the lobe index on
patch boundaries. By only porting the basic 4D lobe data of the
input sample and the LUT forH, the memory cost is mainly deter-
mined by the resolution of the input sample, which is suitable for
GPU storage.

5.1.2. MIP-mapped acceleration structure

Since lots of nearby 4D lobes face a similar direction, we make
use of a LOD MIP-mapped structure to organize original 4D lobes,
which is in line with GPU data fetching at the same time. First,
the lobes on I are divided into n spatial grids. Then, the k-means
clustering method is used for each grid to aggregate the lobes into k
new lobes. During clustering, both position and normal distribution
are considered. We use the same k for different grids, making the
storage steady.

For H, we always use the bottom level of lobes to process the
boundary case for a patch (usually 2 to 4 lobes) when rendering.
Furthermore, the patch index of LUT is used to find inner lobes on
different MIP-mapped levels.

5.2. Real-Time P-NDF evaluation

5.2.1. MIP-mapped based lobe query

We can directly locate the corresponding LOD level λ according to
the ray footprint P by Equation 8. The ray footprint [Ige99] defines
the size of the query area in the texture space.

λ =CP log2P, (8)

where CP is the scale factor which controls the ray footprint.

If only lobes on one MIP-mapped level are used to evaluate P-
NDF, discontinuities between adjacent pixels will be obvious. In
our practice, the strategy of interpolating sampled lobes between
two adjacent MIP-mapped levels can resolve the problem perfectly.

For a shading point, the computed λ by Equation 8 is a floating-
point number, which means it may be located between two MIP-
mapped levels. We set the lower MIP-mapped level as bλc and the
higher one as dλe. Lbλci and Ldλei are the queried 4D lobes on these
two levels.

As shown in Fig. 4, when querying on a MIP-mapped level, we
can efficiently compute the four corners of the rectangle defined by
pixel footprint. By testing all the lobes located in the axis-aligned
bounding box (AABB) of this rectangle on GPU, we can easily cull
the lobes that have no intersection with the half-vector in planar
space and find the lobes that fit within the rectangle. Lobes on a
MIP-mapped level can be tested simultaneously, which is very fast.

5.2.2. P-NDF evaluation

Assuming that a ray footprint P is given on the microstructure, we
need to remove non-contributing lobes and get the candidate lobes
using the MIP-map. Wang et al. [WHHY20] used Range Minimum
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Figure 4: For a shading point in image space, we get its footprint
in texture space and then locate the MIP-mapped level to query
matching lobes (Section 5.2.1). The lobes of adjacent levels are
interpolated according to the weights to complete the evaluation of
P-NDF (Section 5.2.2).

(a) 10×10
Binning

(b) 10×10
[YHMR16]

(c) 10×10
Ours

(d) 30×30
Binning

(e) 30×30
[YHMR16]

(f) 30×30
Ours

Figure 5: Comparison of P-NDF evaluated by our approach to
Yan et al. [YHMR16] and P-NDF computed by binning. Top row:
a small pixel footprint covering 10×10 texels. Bottom row: a large
pixel footprint covering 30×30 texels.

Query (RMQ) as the pruning scheme. Yan et al. [YHMR16] re-
trieved the contribution lobes from top to bottom on the quadtree
based on normal and position space. If we implement the above
hierarchy structures directly on the GPU, a large number of lobes
will be separated into grids. As the lobe number of a single grid
increases, too many conditional branches will increase the eval-
uation time and will bring excessive storage overhead. We use
a MIP-mapped acceleration structure, apply the k-means cluster-
ing method to generate different levels of the MIP-mapped posi-
tion normal distribution, and remove the low contribution or non-
contribution lobes at the same time in the clustering process.

We query 4D lobes on two MIP-mapped levels (with τ lobes

located on level bλc and φ lobes located on level dλe), and the P-
NDF evaluation function in Equation 6 can be written as:

DP (s)≈ (dλe−λ)
τ

∑
i=1

∫
R2

GP (u)L
bλc
i du

+(λ−bλc)
φ

∑
j=1

∫
R2

GP (u)L
dλe
j du.

(9)

Our method can maintain the continuity between different
patches. One footprint may cover two or more patches during P-
NDF evaluation. In order to obtain a continuous position-normal
distribution and solve the problem that the position-normal dis-
tribution will be discontinuous around the patch boundaries, we
treat it separately. We subdivide a footprint into four sub-footprints
when the footprint crosses more than one patch. We will calculate
P-NDF value for each sub-footprint and add them up. However,
some sub-footprints may still cross several patches. For those sub-
footprints, we will search the non-clustered lobes.

According to Equation 9, we do not need to apply a top-down
traversal, and the complexity of the query is irrelevant to the dis-
tance from the shading point to the camera. In Fig. 5, we val-
idate the correctness of our P-NDF evaluation by comparing it
with Yan et al. [YHMR16], which is treated as the reference. The
ground truth is computed by the binning method. Results show a
good match between our P-NDF evaluation result and the refer-
ence. When the footprint size is expanded from 10×10 texels to
30×30 texels, our method always keeps P-NDF information in the
low-frequency domain with only a slight difference in the high-
frequency domain.

6. Results

We implement our algorithm inside Optix Renderer and compare
our algorithm against: (i) Yan et al. [YHMR16], which we consider
as the reference for quality validation, (ii) Wang et al. [WHHY20],
and (iii) Zhu et al. [ZXW19]. We implement algorithms of Yan et
al. [YHMR16] on GPU by using quadtree of position and normal.

All results in this section are measured on a PC with 3.6GHz
Intel (R) i9-9900K CPU, 32GB of main memory, and NVIDIA TI-
TAN RTX GPU. The relevant information of the scene and its ma-
terials are listed in Table 1. Unless specified, the rendered images
are FHD resolution (1920 × 1080) with two ray tracing samples

LOD level 0

LOD level 3

Figure 6: (Left) the rendering result of Teapot Scene with isotropic
noise metal material under direct illumination. (Right) correspond-
ing level-of-detail (LOD) displayed with color coding. Higher MIP-
mapped levels are used for those pixels with larger footprints.
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Table 1: Performance for the scenes used in this paper. Polys. denotes the number of polygons of the scene; Input Res. denotes the resolution
of the input normal map. Most scenes are with global illumination, except the Car Scene with direct illumination.

Scene Polys. Material
Input Res. P-NDF Ev. Time (ms) Rendering Time (ms)

Ours [YHMR16] Ours [YHMR16] Speedup Ours [YHMR16]

Leather Shoes
& Wooden Floor

272.9K
leather 2562 4K2

7.9 192.8 24.4× 26.3 211.2isotropic 2562 4K2

Shoes 272.7K
anisotropic 2562 4K2 3.6 71.5 19.9× 15.2 83.4
isotropic 2562 4K2 3.4 72.2 21.2× 15.6 84.5

Teapot 254.1K

isotropic 2562 4K2 4.8 60.5 12.6× 15.6 71.4
brushed metal 2562 4K2 4.8 60.4 12.6× 15.6 71.2

structure 2562 2K2 3.4 46.8 13.8× 16.1 59.6

Door Handle 80.3K

scratch 5122 7K2 6.1 114.3 18.8× 18.6 126.4
structure 2562 4K2 4.9 71.8 14.7× 20.1 76.9
mixture 5122 7K2 5.8 107.9 18.6× 24.2 126.3

Material Ball 457.2K
scratch 5122 7K2 4.8 26.6 5.5× 26.3 47.6

anisotropic 2562 4K2 3.5 23.6 6.7× 18.6 38.5

Bunny 144.1K isotropic 2562 4K2 3.7 77.8 21.0× 16.7 90.9

Car 1023.1K

isotropic 2562 4K2

9.4 94.8 10.1× 32.2 116.3scratch 5122 7K2

structure 2562 4K2

per pixel. The global illumination only contains one extra bounce,
which means that the max depth of light tracing is two in default.

6.1. Quality analysis

We first compare our method with the reference method by Yan
et al. [YHMR16] in Fig. 1. Qualitatively, our approach produces
results that are very similar to the reference. In terms of compu-
tation time, our method costs 26.3ms for global illumination, with
less than 19.2ms for direct illumination and only 7.9ms for P-NDF
evaluation at FHD resolution.

In Fig. 7, we compare our method with Yan et al. [YHMR16],
Zhu et al. [ZXW19], and Wang et al. [WHHY20]. The method of
Wang et al. [WHHY20] is based on texture blending. For normal
maps with weak structural features, their method can get a good re-
sult (Fig. 7 (c)), but it is difficult for them to maintain the high struc-
tural features, such as scratches (Fig. 7 (g)). Zhu et al. [ZXW19]
and our method can get good results for materials with both struc-
tured and random discrete features, and our method achieves better
coherence (Fig. 7 (d) (h)).

Our method can handle different glossy effects based on different
normal maps. In Fig. 8, anisotropic highlights (Fig. 8 (b)), glints
(Fig. 8 (c)) and brushed marks (Fig. 8 (d)) are rendered by using
different microstructures on the sample normal maps. Furthermore,
our method can render mixed materials and display the anisotropic
highlights precisely caused by structured and discrete microfacet
distribution (Fig. 9).

Our method can process different microfacets well, and the ren-
dering results are visually identical to the reference [YHMR16].

Fig. 10 presents the rendering results using different microfacet
distributions in a complex scene. Two kinds of glint materials are
integrated with the car body and the front mask. The front mask is
a scratched material, and the car wheel hub is a structured one.

6.2. Performance analysis

We report the computation times of the reference method by Yan et
al. [YHMR16] and our method in Table 1 and compare the timings
for all our test scenes. We also provide the temporal cost associated
with P-NDF computation. In all the test scenes, the entire render-
ing time of our method is less than 33 ms, in which only less than
10 ms is spent on P-NDF evaluation.

Fig.15 displays the temporal costs for the main stages in our Op-
tix ray tracing-based implementations, including Ray tracing, Dif-
fuse Shading, P-NDF Evaluation, Indirect Illumination, and Post-
processing. In all of our test scenes, P-NDF evaluation costs less
than 32% of the total cost. Ray tracing and indirect illumination are
the most expensive components, while diffuse shading and post-
processing are relatively cheap.

In Fig. 11, we show the impact of image resolution on the ren-
dering time and P-NDF evaluation time over the Shoes Scene. The
cost of rendering increases linearly with the number of pixels in
the screen space, and P-NDF evaluation time also increases. Our
method can meet the real-time requirement in large screen space.

6.3. Storage analysis

The memory cost of our method is mainly on LUT and 4D lobes
of the input normal map, which are listed in Table 2. The storage
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(a)

(a)

[YHMR16]

(a)

(b)

[ZXW19]

(a)

(c)

[WHHY20]

(a)

(d)

Ours

(a)

(e)

(a)

(f)

(a)

(g)

(a)

(h)

Figure 7: Quality Comparison with Yan et al. [YHMR16], Zhu et al. [ZXW19] and Wang et al. [WHHY20] on the Material Ball Scene
highlighted by directional light and environment light. Top row: rendering results of isotropic noise metal material. Bottom row: scratched
metal material.

1080p
point light+Environment light
noise

(a) Smooth Conductor (b) Structured Material

/1080p
r point light+Environment light
ed material

(c) Isotropic Noise (d) Brushed Metal

Figure 8: Rendering results of our method by using different nor-
mal maps for the Teapot Scene. We get anisotropic highlights with
structural normal map (b), glinty effects with randomized discrete
normal map (c), brushed metal effects (d). The continous effect of
smooth conductor is shown in (a).

is constant for different scenes if we use the exact resolution of in-
put samples. Our method need storage space ranging from 27.4MB
(256×256) to 75.8MB (512×512) for different input samples in
this paper.

6.4. Parameter analysis

Fig. 6 visualizes the level of MIP-map used for each pixel (foot-
print) with gradient colors. Fig. 14 illustrates that results have better
coherence if we interpolate between two MIP-mapped levels.

Table 2: The storage of different materials in our test scenes. We
use normal map samples in size of 2562 to 5122 to generate high-
resolution normal maps. The patch blocks are in a resolution of
642 or 1282. For materials with strong discrete features such as
scratches, we set patch blocks resolution to 1282 and overlap size
of 4. For other materials in the scene, patch size is set to 642 and
overlap size of 2. For each high-frequency material, the prepro-
cessing process takes about 10-35 minutes in our implementation,
depending on the size of the synthesized normal maps and the size
of the patch.

Res. MIP-map LUT
Material Sample Generation (MB) (MB)

Leather 2562 4K2 14.3 13.1
Isotropic 2562 4K2 14.3 13.1

Anisotropic 2562 4K2 14.3 13.1
Scratch 5122 7K2 37.3 38.5

Structure 2562 2K2 14.3 4.3
Brushed Metal 2562 4K2 14.3 13.1

Mixture 5122 7K2 37.3 38.5

In Fig. 12, we analyze our approach’s impact of intrinsic rough-
ness σr on material’s appearance. For all roughness values, our
method provides similar results to the reference. We find that com-
putation time remains almost the same for all parameters’ values
because lobes can be queried on GPU in parallel.

We also analyze the influence of clustering parameter k of our
lobe clustering method in Fig. 13. For glints, our result with k = 32
(Fig. 13 (c) (g)) closely matches the reference [YHMR16] (Fig. 13
(a) (e)), with a speedup of 5.4× compared to Yan et al. [YHMR16].

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Haowen Tan, Junqiu Zhu, Yanning Xu, Xiangxu Meng, Lu Wang & Ling-Qi Yan / Real-Time Microstructure Rendering

(a) (b) (c)

(d) (e) (f)

Figure 9: Door Handle Scene: (a) the scratched appearance caused by discrete material. (b) the anisotropic highlights caused by structured
material. (c) a mixture of structured and discrete material. The closer details of the microsurface of (a) (b) (c) can be seen from (d) (e) (f).

Reference OursOurs

Normal Map Ref Ours

Figure 10: Comparison with reference [YHMR16] on the Car Scene highlighted by point light and environment light. The scene contains
three high-frequency materials: isotropic metal material, scratched material, and structural material. For reference, we use synthesized
normal maps as input to compare results with ours under the same condition.
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Figure 11: Rendering time and P-NDF evaluation time as a func-
tion of image resolution (number of pixels) on the Shoes Scene.

For scratches, a larger k = 64 is preferred to keep the scratching
details (Fig. 13 (j)), which is 1.8× faster than Yan et al. [YHMR16]
(Fig. 13 (i)).

0.08

(a) 16.7ms

0.12

(b) 16.5ms

0.16

(c) 16.5ms

Ref

Ref

Ref

0.08

0.12

0.16

Figure 12: Influence of intrinsic roughness σr parameter on Bunny
Scene lighten by a strong point light and environment light. (Left)
the general appearance of the scene. (Right) the detailed microsur-
face can be seen by zooming in.

6.5. Limitations

While our method can fit most high-frequency materials and main-
tains reflectance characteristics while keeping a constant storage
space, we identify scenarios in which our algorithm can be im-
proved.

Failure due to improper patch size. When implicitly generat-
ing a large-scale normal map, the size of patch Pi is usually set to 64
or 128 in practice. If the patch size is set too small, the patch Pi may
not cover enough features to produce plausible results (Fig. 16 (a)).
On the other hand, when the patch size is too large, it means that
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(a) 84.5ms

Reference
[YHMR16] k = 64

(b) 16.8ms

RMSE=0.0007

(c)

k = 32

15.6ms

RMSE=0.0081

(d)

k = 16

14.4ms

RMSE=0.0109

(e) 83.4ms

Reference

(f) 18.1ms

RMSE=0.0013

(g) 15.2ms

RMSE=0.0220

(h) 13.9ms

RMSE=0.0352

(i) 47.6ms

Reference

(j) 26.3ms

RMSE=0.0055

(k) 25.1ms

RMSE=0.0183

(l) 24.4ms

RMSE=0.0251

Figure 13: Comparison of clustering coefficient k on Shoes Scene and Material Ball Scene by our method. We compare three different
materials, and each row corresponds to one. The first column in each row is the reference, and the following three columns are from different
clustering coefficients. We compare four aspects with the reference in terms of RMSE, time, local zoom results, and NDF visualization. For
reference, we also use synthesized normal maps as input to compare results with ours under the same condition.

(a) Without MIP-mapped interpola-
tion

(b) With MIP-mapped interpolation

Figure 14: Quality comparison of the rendering results without
MIP-mapped interpolation (a) and with interpolation (b).

the diversity of the patches is reduced, and thus, repetitive patterns
appear in the results (Fig. 16 (b)). Our approach may fail when a
suitable neighboring patch can not be found. In this case, although
the overlap area is handled separately, the method still produces a
seam between the two patches (Fig. 16 (c)). The essential reason
is that the general texture synthesis methods assume that materials
usually have self-similar features. It is not easy to notice the appar-
ent boundary seams in our practice.

MIP-mapped level misalignment. The material’s microstruc-
ture may be lost when located to a misaligned level. In Fig. 17, we
analyze the effects of different CP of Equation 8 on the rendering

20

Glinty Shoes Teapot Material Ball Door Handle
0

5

10

15

25

Ti
m
e(
m
s)

Figure 15: Computation time for each component (P-NDF evalu-
ation, Ray tracing, Diffuse shading, Indirect illumination and Post-
processing) in our algorithm for four scenes.

results and the overhead performance. Higher CP value (Fig. 17
(c)) tends to locate to a higher MIP-mapped level, lower time over-
head, but brings more over-blurred rendering results. In our practice
we set CP to 0.5.

Indirect illumination of high-frequency materials. We assume
that sparkling effects mainly come from direct illumination and in-
tegrate single scattering of high-frequency materials only in our
raytracing implementation. In the case of glints objects in a mir-
ror, our work may fail (Fig. 18 (a)). We can settle the problem by
evaluatingP-NDF for each bounce of ray without filtering in global
illumination (Fig. 18 (b)), but it undoubtedly results in a significant
overhead performance.

Anisotropic texture fetching near object edges. We assume
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Sample
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Small Patch

(a)

Sample

Ref Ours

Large Patch

(b)

Sample

Ref Ours

No Suit Patch

(c)

Figure 16: Limitations of our approach. (a) shows loss of scratch
structure due to small-sized patches. (b) shows visible repeating
patterns caused by oversized patches, which is due to the fact that
generated normal map with fewer patches involved would present
a strong pattern-like organization. (c) shows obvious seams of our
method when no suitable neighboring patch is found. We take the
zoomed-in results when our method is correctly rendering as the
reference (green inset) and compare it to when our method goes
wrong (orange inset). We also show the corresponding generated
normal map (blue inset) and the normal map sample (black inset).

(a) 27.8ms

0.3

(b) 24.3ms

0.5

(c) 19.6ms

0.8 Ref 0.3

0.5 0.8

Figure 17: Influence of different scale factor CP on results. The
results may have over blur with improper CP (c).

that the ray footprint P in Equation 8 is an isotropic variable. How-
ever, it is anisotropic and thus leads to over-blurring at the edges of
objects of anisotropic materials. All MIP-mapped-based methods
also share this limitation.

7. Conclusion and Discussion

This paper proposes a practical real-time rendering method for
high-frequency materials. We reduce the storage by two orders of
magnitude and increase the speed by one order of magnitude while
maintaining the same quality as the reference. We use MIP-map
as our acceleration structure adapted to the GPU requirement. Ad-
ditionally, multi-level models generated using our technique with
varying cluster scales can be combined to form a MIP-map, allow-
ing level-of-detail rendering of detailed surfaces in an efficient and
consistent manner.

Future works will focus on paralleling the preprocessing stage
on GPU and modeling the specular light transport within the mi-
crostructure.
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to four to show the reflection effect more clearly.
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