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Fig. 1. We develop a new rendering method, vectorization, that computes analytic solutions to 2D point-to-region integrals in conventional ray tracing and
rasterization pipelines. Our approach revisits beam tracing and maintains all the visible regions formed by intersections and occlusions in the beam (shown
leftmost for primary visibility and shadows). This enables fast and analytic computation of direct lighting, including soft shadows (by tracing a beam from the
shading point to the area light). Our result is computed in only 44 sec, and is noise-free, exactly matching the reference (compare to path tracing in the insets
on the left). Crucially, this method enables automatic differentiation to compute exact derivatives with respect to any scene parameters (here the y-coordinate
of the light), without any changes to our rendering pipeline. Our derivatives, including complex visibility gradients, are noise-free and one to two orders of
magnitude faster than those obtained with previous differential methods (see insets; note that even with 256k samples per pixel, the finite difference reference
fails to converge).

In Computer Graphics, the two main approaches to rendering and visi-

bility involve ray tracing and rasterization. However, a limitation of both

approaches is that they essentially use point sampling. This is the source of

noise and aliasing, and also leads to significant difficulties for differentiable

rendering. In this work, we present a new rendering method, which we

call vectorization, that computes 2D point-to-region integrals analytically,

thus eliminating point sampling in the 2D integration domain such as for

pixel footprints and area lights. Our vectorization revisits the concept of

beam tracing, and handles the hidden surface removal problem robustly and

accurately. That is, for each intersecting triangle inserted into the viewport

of a beam in an arbitrary order, we are able to maintain all the visible regions

formed by intersections and occlusions, thanks to our Visibility Bounding
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Volume Hierarchy (VBVH) structure. As a result, our vectorization produces

perfectly anti-aliased visibility, accurate and analytic shading and shadows,

and most important, fast and noise-free gradients with Automatic Differen-

tiation (AD) or Finite Differences (FD) that directly enables differentiable

rendering without any changes to our rendering pipeline. Our results are

inherently high-quality and noise-free, and our gradients are one to two

orders of magnitude faster than those computed with existing differentiable

rendering methods.
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1 INTRODUCTION
In Computer Graphics, there are generally two approaches to render

images: rasterization and ray tracing. Rasterization projects scene

geometry onto the screen and breaks the geometry into pixels,

while ray or path tracing casts rays into the scene and bounces them

stochastically to find paths connecting the light and the camera.
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It is well-known that rasterization is fast but prone to aliasing,

and that ray tracing is high-quality but is slow and noisy. However,

a bigger problem shared by both approaches is point sampling. The
central point of each pixel is typically used to detect the coverage

of geometry in rasterization, producing aliasing. The sampled paths

in ray tracing are essentially points in the high dimensional path

space, and such random point sampling of the path space introduces

variance. Moreover, since the point samples are discrete, it is difficult

to calculate the gradients of the rendering process with respect

to scene parameters in order to enable differentiable rendering,

especially with discontinuities that are commonly seen, such as

boundaries of geometry and shadows.

An attempt to deal with the point sampling problem is beam

tracing [Heckbert and Hanrahan 1984]. In beam tracing, a ray is

extended to a frustum, and the goal is to find all the geometric

primitives within the viewport of this frustum. However, beam

tracing is far from practical. The biggest problem is that it does not

attempt to deal with the complexity of geometry that intersects

or resides in a beam. The original beam tracing [Heckbert and

Hanrahan 1984] requires sorting a list of geometry intersecting the

beam, which inevitably introduces the mutual occlusion problem as

known in the painter’s algorithm. Later variants of beam tracing try

to steer away from this problem, either by simply forming beams

with a starting point and a triangle, and assuming no visibility

change inside these beams [Watt 1990; Duvenhage et al. 2010, 2014],

or by splitting a beam into several smaller ones according to the

edges of geometry primitives [Overbeck et al. 2007], introducing

multiple BVH traversals of the scene that can significantly hinder

high performance. Moreover, it is unknown how these methods

would be extended to enable differentiable rendering.

In this paper, we revisit the concept of beam tracing, bringing out

its merits that eliminate point sampling in the 2D point-to-region

visibility problem, produce accurate and anti-aliased rendering re-

sults, and enable differentiable rendering automatically without any

changes to the light transport computations. To achieve these goals,

our high level idea is to maintain all the visible regions as we insert

projected triangles into the viewport of the beam’s frustum. This

process is independent of the order of triangles inserted, and occlu-

sions are handled precisely (see Fig. 1, leftmost, showing the precise

beam frustum for primary visibility and shadows). Compared to

rasterization that produces a bitmap, this process is more similar to

drawing a vector graph, thus we name it vectorization.
The most difficult part of the vectorization process is the dynamic

maintenance of the regions formed by the overlapped triangles

projected onto the 2D image plane of a beam’s viewport. To our

knowledge, there is no convenient and efficient data structure pre-

viously that supports this, especially taking depths and occlusions

into consideration. We present Visibility Bounding Volume Hierar-

chy (VBVH) that enables quickly locating intersecting primitives

and dynamic splitting and merging to guarantee fast performance.

With our vectorization in §4, accurate visible regions are extracted

as seen from the starting point of a beam. Then the rendering be-

comes a 2D point-to-region integration, which has analytic and

accurate solutions and naturally removes aliasing. The benefits of

such elimination of point sampling in the 2D domain are immediate,

as we demonstrate in our applications in §5 on accurate primary visi-

bility, soft shadows from area lights, anti-aliased shadows from point

lights, and pure specular reflection. Our point-to-region integration

also provides preliminary insights in solving the more general 4D

region-to-region integration for direct illumination. More details

and potential extensions will be discussed in Appendix A.

Moreover, with our vectorization, differentiation becomes straight-

forward without any other modifications to our vectorization pro-

cess, using either Automatic Differentiation (AD) or Finite Differ-

ences (FD) (see Fig. 1, right, §6). This enables differentiable rendering

with regard to any scene parameters without any noise, any addi-

tional cost from edge sampling [Li et al. 2018; Zhang et al. 2020] or

reparameterization [Loubet et al. 2019]. Our differentiable renderer

naturally supports zero-measure light sources (point lights) and

BRDFs (pure specular reflection), which is challenging for existing

methods. Thanks to the noise-free scene derivatives, we can uti-

lize second-order optimization methods such as L-BFGS [Liu and

Nocedal 1989] in inverse rendering applications and achieve faster

convergence rates than first-order optimization methods such as

stochastic gradient descent (SGD) or Adam [Kingma and Ba 2015].

With noisy gradients estimated by existing techniques, convergence

using second-order optimization methods is not guaranteed.

To briefly summarize, our paper makes the following contribu-

tions to the rendering community:

• a novel vectorization pipeline different from both ray tracing and

rasterization, eliminating point sampling in the 2D integration

domain, producing fully analytic, accurate and anti-aliased point-

to-region shading results,

• a hierarchical data structure for efficient, robust, depth-aware and

order-independent insertion and maintenance of polygons, and

most important,

• a differentiable rendering framework for visibility using only au-

tomatic differentiation or finite differences without special treat-

ments to the rendering pipeline, resulting in noise-free gradients,

which enables second-order optimization methods in inverse ren-

dering for the first time, and orders of magnitude faster perfor-

mance than existing approaches.

2 RELATED WORK
Beam tracing was proposed to exploit coherence among adjacent

rays [Heckbert and Hanrahan 1984], so the original implementation

of beam tracing will switch to ray tracing in the end. A similar

concept to beam tracing is cone tracing [Amanatides 1984], which

was originally designed as a naive version of ray differentials [Igehy

1999], but is currently often used for beam tracing with the shape of

a cone rather than a frustum [Crassin et al. 2011]. Later extensions

of beam tracing [Fortune 1999] consider geometric primitives inter-

sected by a beam, but would require sorting the list of intersecting

geometry from back to front. This introduces the mutual occlusion

problem as known in the painter’s algorithm. Overbeck et al. [2007]

avoid the geometric complexity in a beam by splitting the beam

into sub-beams along the edges of each triangle, but the number

of sub-beams can be large and each of them will continue to be

traversed in the scene. This significantly hinders high performance.

Liu et al. [2011] extend beam tracing to handle nonlinear effects
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such as curved reflection or refraction. None of the previous meth-

ods explicitly address the hidden surface removal problem, and it

is also unknown how these methods would be extended to enable

differentiable rendering. To our knowledge, our vectorization is the

first method that can achieve both.

Visibility computation has been crucial for Computer Graph-

ics since the beginning of the field. There were abundant stud-

ies in visibility surface determination in the 1970s, involving not

only point-to-point visibility, but also point-to-region and region-

to-region problems. Since our vectorization exploits beam tracing,

it belongs to the point-to-region category. So global illumination is

not handled by our method directly, because it involves the region-

to-region problem discussed more in §7. For a complete overview

of these visibility problems, we refer readers to the famous survey

by Sutherland et al. [1974]. With the development of the hardware

rasterization pipeline and ray tracing techniques, these traditional

visibility methods were gradually replaced by point sampling. More

recently, Durand [1999] provides a comprehensive review of the

visibility problem in 3D. Nowrouzezahrai et al. [2014] propose a

semi-analytical spherical integration scheme to determine the cov-

erage of occluders. But their method is discrete, and is aimed at

solving the binary visibility problem, instead of fully resolving all

the different regions from different objects.

Hidden surface removal in Computational Geometry studies

the point-to-region visibility problem in theory, and is closest to

our vectorization. It deals with accurate occlusions of triangles in

a 2D plane. Various methods are designed, and they can be cat-

egorized into two different types: online and offline. The online

methods dynamically insert each triangle into the set of currently

visible geometry, while the offline methods require storing all the

triangles, processing them for more information, then inserting

them sequentially. Our vectorization belongs to the online meth-

ods. Each intersecting triangle of a beam is processed immediately

without additional storage, so the space complexity of our method

is proportional to the number of visible triangles (§4.2).

A well-known hidden surface removal method is built on a data

structure named the trapezoidal map [de Berg et al. 1997], where

different regions on the planar subdivision are guaranteed to be

trapezoids. It is online, and was originally invented for inserting

line segments. Later, it has been extended to handle occlusions of

triangles in the order of insertion or based on their depths [Mulmu-

ley 1989, 1994; Goodrich 1992]. Other methods are also explored to

solve the hidden line and hidden surface removal problem, such as

the line-sweep based methods [Nurmi 1985; Sharir and Overmars

1992; McKenna 1987], which are vectorized and intrinsically similar

to the rasterized scan conversion method in Computer Graphics.

They are offline and require sorting all the vertices of 2D triangles.

However, these theoretical methods all suffer from severe numer-

ical issues in practice. We emphasize that numerical robustness is

a crucial problem rather than minor implementation detail in §3.2.

And in §4.3, we demonstrate that our method achieves numerical

robustness with a lightweight strategy, while only using finite pre-

cision representation. Finally, we present an extensive discussion in

§7 on the relationship between our method and existing visibility

methods as well as hidden surface removal methods.

Geometric anti-aliasing is related to several different branches

of research. The first approach is to avoid the aliasing problem

within pixels with a minimum amount of performance overhead.

The related methods are usually seen in a rasterization pipeline.

These methods are essentially still point sampling, either distribut-

ing more samples per pixel smartly [Wyman and McGuire 2017;

Crassin et al. 2018] or reusing samples temporally (over time) [Yang

et al. 2020]. The second approach is known as geometric level of

detail [Loubet and Neyret 2017]. Methods in this category simplify

the geometry to different levels, and choose a reasonably simplified

geometry based on the distance from which it is viewed. These

methods are also extended to guarantee smooth transition of both

geometry and appearance under arbitrary view distances [Heitz

et al. 2015; Zhao et al. 2016; Wu et al. 2019]. Finally, there are a

few methods that derive specialized analytic formulae for certain

simplified anti-aliasing problems so that stochastic sampling can

be completely avoided [Auzinger et al. 2012; Manson and Schaefer

2013]. Our vectorization results in anti-aliased geometries, but is

based on neither sampling nor simplification. Instead, our method

accurately maintains all the geometries in an alias-free vector rep-

resentation, regardless of their complexity.

Differentiable light transport computes the gradient of render-

ing results w.r.t. any input parameters of a scene, typically materials

and transformations of objects, light sources and cameras. In an early

work, Jalobeanu et al. [2004] introduced a differentiable rendering

model. However, it is limited to differentiating pixel occupancy and

hard shadows. To generalize its capability to compute derivatives

with respect to arbitrary scene parameters, the key is to accurately

detect and differentiate discontinuities, especially around geometric

boundaries. This is because ray tracing is essentially point sampling,

and point sampling is completely local, so no rays will know the

existence of the boundaries, even if they are close.

Therefore, Li et al. [2018] develop an edge sampling approach

to specifically sample the boundaries in the scene, but with a slow

performance. To accelerate the computation, Loubet et al. [2019]

come up with a reparameterization scheme, to fit a local change of

parameters that approximately guarantees invariant boundaries, so

the integration in the path space is then differentiable. This method

is much faster, but is approximate and biased. Zhang et al. [2019] pro-

pose a differential theory for radiative transfer using the Reynolds

transport theorem, and later extend it to work in path space [Zhang

et al. 2020], which provides the state of the art performance, but

requires precomputation and integration on boundaries. In concur-

rent work, Bangaru et al. [2020] present warped-area sampling that

converts the integral at discontinuous boundaries to an area integral.

Although their method is consistent and unbiased, it still has Monte

Carlo noise in gradient images. Our method is compatible with the

radiative backpropagation formulation proposed by Nimier-David

et al. [2020], which can lead to better scalability.

All these previous methods require a certain level of modification

to their rendering pipelines to enable differentiable rendering. In

contrast, our vectorization directly supports differentiable visibility

using automatic differentiation or simpler finite differences without

any special treatments. Moreover, our method always generates

noise-free gradients, and outperforms previous methods running

an order of magnitude longer (Figs. 1, 10). The noise-free gradients
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also enable using second-order optimization methods in inverse

rendering for the first time.

Differentiable rasterization is widely used in 3D computer

vision because of its relatively fast performance, but comes at the

cost of inaccurate scene gradients due to the approximations to

visibility [Liu et al. 2019; Ravi et al. 2020]. In concurrent work, Laine

et al. [2020] present a high-performance differentiable rasterizer

that can handle surface occlusion and edge anti-aliasing. However,

it does not support visual effects caused by secondary rays such as

soft shadows, while our method can handle these effects accurately.

Automatic differentiation (AD) provides an automatic way to

keep track of the derivatives of variables of interest. It applies the

chain rule to the user-specified computation. Therefore, AD can be

treated as a black box without structural changes to the code, thus

is easy to use, especially with support from mathematical libraries

such as Eigen [Guennebaud et al. 2010] and Stan [Carpenter et al.

2015] on the CPU and Enoki [Jakob 2019] on the GPU. As mentioned

earlier, our vectorization can be differentiated directly with the help

of AD, and we choose Eigen in our implementation since other

vector and matrix computations also depend on it.

Vector representation in images. It is also worth noticing that

vector representation of images has already been applied, though

these methods are not used to represent visibility. Apart from the

classic curves and splines that are of infinite resolution, the Scalable

Vector Graphics (SVG) [Ferraiolo et al. 2000] is able to represent

vector images in different regions in an image. This is in essence

similar to the result of our vectorization in the viewport. Also, the

diffusion curve method [Orzan et al. 2008; Zhao et al. 2017] has

been used to facilitate artists creating smoothly shaded vector im-

ages with gradient colors. Concurrent to our work, Li et al. [2020]

present a differentiable rasterizer for vector graphics that allows

the computation and backpropagation of per-pixel gradient with

respect to the parameters of vector primitives.

3 OVERVIEW
In this section, we start by accurately defining the scope of the

problems that our proposed method aims at. Then we briefly analyze

the difficulties, to motivate our solution in §4.

3.1 The Point-to-Region Light Transport Problem
Many problems in light transport involve solving high dimensional

integrals. In this work, we focus on direct illumination from area

light sources, which can be formulated as a 4D region-to-region

light transport integral:

𝐼 =

∫
P
𝑊 (𝒙)

∫
𝐴

𝐿𝑒 (𝒚→𝒙) 𝑓𝑟 (𝒚↔𝒙↔𝒙c)𝐺 (𝒙↔𝒚)𝑉 (𝒙,𝒚) d𝒚︸                                                            ︷︷                                                            ︸
=: 𝐿 (𝒙)

d𝒙,

(1)

where P is the pixel coverage (i.e., pixel footprint), 𝐴 is the set

of area lights,𝑊 (·) is the pixel reconstruction filter, and 𝐿(𝒙) is
the radiance received at a primary shading point 𝒙 . The received
radiance 𝐿(𝒙) integrates over contributions from area light sources,

in which 𝒚 is a point on the area lights, 𝐿𝑒 is the emitted radiance,

𝑓𝑟 is the BRDF, 𝒙𝑐 is the camera position, 𝐺 is the geometry term,

and 𝑉 is the binary visibility function. Note that 𝐿(𝒙) is a 2D point-

to-region integral involving visibility of scene geometry.

Finding an analytic solution to the full 4D region-to-region inte-

gral is challenging. So, in this paper, we present a geometry vectoriza-
tion method that can compute its 2D point-to-region sub-problem,

i.e., 𝐿(𝒙) in Eq. (1), in an analytic manner. Our method is based on

beam tracing, which traces beams from a shading point 𝒙 to the

area lights. First, we reformulate the received radiance 𝐿(𝒙) as

𝐿(𝒙) =
∫
H2

𝐿𝑖 (𝒙,𝝎𝑖 ) 𝑓𝑟 (𝒙,𝝎𝑖 ,𝝎𝑜 )⟨𝒏(𝒙),𝝎𝑖 ⟩𝑉 (𝒙,𝝎𝑖 ) d𝝎𝑖

=

∫
𝑄 (𝒙)

𝐿𝑖 (𝒙,𝝎𝑖 ) 𝑓𝑟 (𝒙,𝝎𝑖 ,𝝎𝑜 )⟨𝒏(𝒙),𝝎𝑖 ⟩ d𝝎𝑖 . (2)

We change the integral in Eq. (1) to the solid angle measure, where

H2
is the hemisphere domain, 𝝎𝑖 = (𝒚−𝒙)/∥𝒚−𝒙 ∥ is the incoming

light direction, 𝐿𝑖 (𝒙,𝝎𝑖 ) = 𝐿𝑒 (𝒚 → 𝒙) is the incoming radiance,

𝝎𝑜 = (𝒙𝑐 − 𝒙)/∥𝒙𝑐 − 𝒙 ∥ is the view direction, ⟨·, ·⟩ represents the
clamped dot product, 𝒏(𝒙) is the shading normal, and𝑉 (𝒙,𝝎𝑖 ) indi-
cates whether a shadow ray that starts at 𝒙 towards 𝝎𝑖 is occluded

or not. We further move the visibility function from the integrand

to the integration domain by defining 𝑄 (𝒙) = {𝝎 |𝑉 (𝒙,𝝎) = 1} as
a set of spherical polygons, which are formed by projecting all the

visible regions of area lights onto the unit sphere centered at the

shading point 𝒙 .
The key component of our method is computing all the visible

regions of area lights 𝑄 (𝒙) within the beams using a binary Visibil-

ity Bounding Volume Hierarchy (§4). Finally in §5, we demonstrate

how to compute an analytic solution to Eq. (2) given 𝑄 (𝒙). With

our solution, a wide range of rendering applications can benefit

from our analytic point-to-region integrals, as we demonstrate in §6.

Although our method is not designed specifically for differentiable

rendering, it allows elegant computations of noise-free scene deriva-

tives with almost no additional effort using automatic differentiation,

which is not possible previously.

3.2 Analysis and Motivation
From the problem formulation, we can see that it is ideal to directly

solve the region-to-region light transport. However, how to find

this 4D region-to-region integral analytically still remains unsolved,

mainly due to the visibility function. To our knowledge, there is no

efficient solution to the acquisition, representation, compression

and analytic computation of such a complex 4D integral. A vast

amount of literature [Durand 1999; Apostu 2012] has analyzed this

problem, but still cannot fully solve it.

What we argue is that even for our point-to-region light trans-

port, it is already of practical importance and is difficult to solve.

We briefly provide evidence and insights on both, to motivate our

solution next.

Practicality. In practice, most of the 4D region-to-region light

transport problem can be factored out into several point-to-region

sub-problems. This is not only because a pixel is usually small, but

also thanks to the well-studied anti-aliasing problem in Computer

Graphics.

With our analytic 2D point-to-region integral, we use a hybrid

approach to estimate the 4D region-to-region integral. We first sam-

ple primary rays within a 2D pixel footprint P, then trace beams
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to compute the other 2D point-to-region integral. In terms of sam-

pling primary rays, we use adaptive sampling similar to that in

the Multi-Sampling Anti-Aliasing (MSAA) [Kirkland et al. 2002]. In

most non-edge pixels, it suffices to sample only a single primary

ray. Therefore, inspired by Wang et al. [2015], we group similar

regions inside each pixel into at most 4 groups, and for each group,

we perform beam tracing once. The performance overhead of adap-

tive sampling is no more than 1%, but the result is much better as

compared to tracing one beam from the center of each pixel (demon-

strated in Fig. 18). We provide further discussions for our hybrid

approach to region-to-region integrals in Appendix A.

Difficulty. In Computational Geometry, there are two kinds of

tasks: predicates and constructions. Predicates detect relationships

between geometric primitives, including problems like detecting

whether a point is on a line segment. When implementing them

with floating-point numbers, the numerical inaccuracies are usu-

ally ignored or walk-arounded by 𝜖-tweaking in engineering. On

the other hand, constructions, such as the hidden surface removal

problem, generate new geometric primitives based on predicates.

They require much stronger guarantee on numerical robustness

because otherwise, errors will accumulate and will lead to invalid

control flow. We refer to the work of Kettner et al. [2008] for an

extensive illustration of the failure cases in geometric computation

due to floating-point numbers, and the work of Shewchuk [2013]

for further discussions on geometric robustness.

While the Computational Geometry literature is usually theoreti-

cal and will simply ignore degeneracies, they happen frequently in

Computer Graphics. For example, multiple triangles often share a

common vertex in 3D models, which is a direct violation of their

“general position assumption”. In fact, we haven’t found any exist-

ing implementation of hidden surface removal with finite precision

arithmetic that will not crash in vectorizing the Stanford bunny

model, including major software libraries such as CGAL [The CGAL

Project 2020] and LEDA [Mehlhorn and Naher 1995].

The ultimate solution to the robustness problem is Exact Geomet-
ric Computation [Burnikel et al. 1995; Yap 1997; Li et al. 2005; Toth

et al. 2017] taking advantage of exact arithmetic, but it will cause

several orders of magnitude of performance degradation, which is

unacceptable for us.

In summary, we emphasize that it is especially challenging to

guarantee the robustness of algorithms that involve iterative geo-

metric constructions depending on the logic decisions of geometric

predicates. Such algorithms must ensure consistent evaluation of

the predicates at all times, otherwise they may fail to execute prop-

erly. We keep this goal in the design of our hidden surface removal

algorithm (§4.2). Meanwhile, numerical precision issues will always

persist, because any finite number of bits will introduce impreci-

sions. We further alleviate such numerical issues by enforcing the

convex invariant of our method, as described in detail in §4.3.

4 GEOMETRY VECTORIZATION
In this work, we focus on evaluating 2D point-to-region integrals

in the following form (a generalized version of Eq. (2)):

𝐼 = 𝐿(𝒙) =
∫
𝑄 (𝒙)

ℎ(𝝎) d𝝎, (3)

Algorithm 1 Iterative computation of 2D visible polygons

1: function ComputeVisiblePolygons({△𝑖 }𝑛𝑖=1)
2: 𝐷 = {[−1, 1]2} ⊲ Initialize 𝐷 with a square

3: Initialize the VBVH tree(𝐷) with a single root node

4: for 𝑖 = 1 to 𝑛 do ⊲ Add the triangles iteratively

5: {𝑝𝑘 }𝑚𝑘=1 = Traverse(△𝑖 , tree(𝐷).root) ⊲ Algo. 2

6: for 𝑘 = 1 to𝑚 do ⊲ Iterate over the intersections

7: 𝑝𝑘 , 𝑟𝑘 = Intersect(△𝑖 , 𝑝𝑘 )
8: ⊲ [O’rourke et al. 1998] chapter 7.6

9: if 𝑝𝑘 and 𝑟𝑘 have different labels then ⊲ Split

10: Decompose 𝑟𝑘 into convex regions {𝑟𝑘,𝑗 }
11: 𝐷 = 𝐷 − 𝑝𝑘 + 𝑝𝑘 + {𝑟𝑘,𝑗 } ⊲ Eq. 4

12: Build a sub-tree 𝑇 for 𝑝𝑘 and {𝑟𝑘,𝑗 }
13: ⊲ §4.2 splitting

14: Substitute the node of 𝑝𝑘 by the sub-tree 𝑇

15: Update the bounding boxes on the affected nodes

16: end if
17: end for
18: if All 𝑝𝑘 have the same label then ⊲ Merge

19: 𝐷 = 𝐷 − {𝑝𝑘 } + △𝑖 ⊲ Add the full triangle

20: Find the leaf node of 𝑝𝑘 that is closest to tree(𝐷) .root
21: ⊲ §4.2 merging

22: Replace 𝑝𝑘 by △𝑖
23: Remove the leaf nodes of other sub-regions

24: Update the bounding boxes on the affected nodes

25: end if
26: end for
27: return 𝐷

28: end function

where the integration domain 𝑄 (𝒙) = {𝝎 |𝑉 (𝒙,𝝎) = 1} is the

visible polygons projected to the unit sphere centered at 𝒙 , andℎ(𝝎)
represents a general spherical function whose explicit formulation

depends on specific rendering applications (we will show a few

examples in §5). Many problems in rendering, e.g. shading with area

lights, can be formulated in this form of integral. The usual approach

to solve this integral is Monte Carlo integration. Depending on

the complexity of the integrand ℎ(𝝎), it may require a number of

samples. However, for some specific spherical functions used in

rendering such as Linearly Transformed Cosines [Heitz et al. 2016],

integrating them over spherical polygons yields analytic solutions,

which is beneficial for noise-free anti-aliased rendering. Therefore,

the integral evaluation boils down to computing the visible spherical

polygons 𝑄 (𝒙).
Computing visible spherical polygons given scene geometries is

challenging because of complex occlusions. We present an incremen-

tal approach (Algo. 1) to maintain a list of visible polygons in §4.1.

To accelerate the intersection test of geometric primitives (trian-

gles), which is a key step in the algorithm, we introduce a Visibility

Bounding Volume Hierarchy (VBVH) in §4.2. Finally, we demon-

strate how to make our algorithm more robust by mitigating the

numerical issues caused by the limited precision of floating-point

numbers in §4.3.
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4.1 Computing Visible Polygons
The inputs of our method include a set of 3D triangles {△3D

𝑖
}𝑛
𝑖=1

and

a beam frustum. We assume that every pair of triangles are either

disjoint or sharing vertices and edges, i.e., there is no penetration.

The beam frustum is defined by a 4×4 perspective projection matrix.

From a geometric point of view, a beam frustum can be interpreted

as the viewport of a pinhole perspective camera (Fig. 2 (a0)), rep-

resented by an origin 𝒙 and a rectangle at the far plane. Therefore,

we can transform all the 3D triangles according to the perspective

projection matrix. After the projection, all the relevant triangles (tri-

angles out of the frustum are clipped) are in the normalized device

coordinate (NDC) space, i.e., the 𝑥 , 𝑦 and 𝑧 coordinates of triangle

vertices are within [−1, 1]. The occlusion between the original 3D

triangles (Fig. 2 (a2)) can be equivalently resolved using a set of

2D projected triangles {△𝑖 }𝑛𝑖=1 (taking the 𝑥 and 𝑦 coordinates, see

Fig. 2 (b2)) and their depths {𝑧𝑖 }𝑛𝑖=1.
Using the coordinate transformation mentioned above, we con-

vert the problem of finding 3D polygons that are visible within a

beam frustum, to a simpler but equivalent problem of finding 2D

visible projected polygons with the minimum depth values. This

hidden surface removal problem is classical in computational geom-

etry [Mulmuley 1989; Durand 1999]. However, previous methods

focus on theoretical solutions and complexity analysis. They are

prone to numerical errors, thus impractical to be used in render-

ing tasks. We present a practical algorithm to find visible polygons

efficiently and alleviate the numerical issues as much as possible

(§4.3). In addition, our algorithm directly supports automatic dif-

ferentiation, enabling noise-free differentiable rendering with little

additional implementation effort (§5.5).

We use an iterative approach to build a data structure 𝐷 =

{𝑝𝑘 }𝑚𝑘=1 recording all the visible polygons in 2D, as we add the

triangles {△𝑖 }𝑛𝑖=1 one by one. To make the geometric computation

easier, we require all of the polygons 𝑝𝑘 to be convex. We denote

𝐷𝑖 as the intermediate result after adding △1, △2, . . . , △𝑖 . Initially,
𝐷0 only has the square [−1, 1]2, indicating the projection of the

frustum viewport rectangle at the far plane (Fig. 2 (b0)). Without

loss of generality, we assume the order of triangles to be random.

The output of our algorithm is 𝐷𝑛 , indicating all the 2D polygons

with the minimum depths. They can be mapped to 3D visible poly-

gons within the beam frustum by the inverse perspective projection

transformation, and further projected on the unit hemisphere to get

the integration domain 𝑄 (𝒙).
We now demonstrate the operation details at the 𝑖-th iteration

that updates 𝐷𝑖 by adding △𝑖 (illustrated in Fig. 2). The pseudocode

of our algorithm is demonstrated in Algo. 1.

Intersecting. Given a new triangle△𝑖 , wewant to find the convex
polygons 𝑝𝑘 ∈ 𝐷𝑖−1 that overlapwith△𝑖 , i.e., 𝑝𝑘 = △𝑖∩𝑝𝑘 ≠ ∅ (line 5
of Algo. 1). We build a 2D Visibility Bounding Volume Hierarchy

(VBVH) to speed up the intersection test and maintain this data

structure as we add new triangles. We will discuss the details of the

VBVH in §4.2.

Once we have the convex polygons 𝑝𝑘 that overlap with △𝑖 , we
can compute their overlapping regions 𝑝𝑘 (line 7). We use the al-

gorithm proposed by O’rourke et al. [1998] (please refer to chapter

7.6 of this book for algorithm details) to compute the intersection

Iteration 0 Iteration 1 Iteration 2

3
D
g
e
o
m
e
t
r
y

(a0) (a1) (a2)

2
D
p
r
o
j
e
c
t
i
o
n

(b0) (b1) (b2)

Fig. 2. Illustration of our geometry vectorization. The top row shows a
beam frustum and the process of adding a blue and a red triangle. The
bottom row demonstrates the corresponding 2D visible convex polygons as
the triangles are added.

(a) (b) (c) (d)

Fig. 3. Illustration of convex region splitting. (a) The red triangle overlaps
with 𝑝0, 𝑝1 and 𝑝3. (b–d)We compute the overlapping regions (red polygons)
and split the residual non-convex polygons into convex ones.

region 𝑝𝑘 between a triangle and a convex polygon. Then, we cal-

culate the residual region 𝑟𝑘 = 𝑝𝑘\𝑝𝑘 by 2D polygon differencing.

The running time is linear in the number of polygon vertices.

Labeling. Each visible convex polygon 𝑝𝑘 in 𝐷𝑖−1 is associated
with a label 𝑐𝑘 , indicating that it belongs to the triangle △𝑐𝑘 . For
every overlapping region 𝑝𝑘 , we compare the depth values of △𝑖
and 𝑝𝑘 (restricting on 𝑝𝑘 ). Given the no-penetrating assumption,

the new triangle △𝑖 is either behind or in front of 𝑝𝑘 . If △𝑖 is in
front of (closer to the beam origin) 𝑝𝑘 , we assign a new label 𝑖 to

the overlapping region. Otherwise the old label 𝑐𝑘 is kept because

the new triangle is invisible.

Note that sometimes it is unnecessary to use a different label for

every individual triangle. For example, in the application of shading

from area lights, the polygons representing occluders can share the

same label. It can simplify the further polygon splitting operation

and avoid keeping too many polygons in the data structure.

Splitting. For every convex polygon 𝑝𝑘 in 𝐷𝑖−1, it can be de-

composed into two disjoint regions 𝑝𝑘 and 𝑟𝑘 = 𝑝𝑘\𝑝𝑘 . If the two
regions have the same label, no changes have to be made. If they

have different labels (lines 9–16), we need to remove the original

polygon 𝑝𝑘 and add these two new regions 𝑝𝑘 and 𝑟𝑘 to the data

structure. Note that we must ensure the added regions are convex.

Clearly, 𝑝𝑘 is a convex polygon since it is the intersection of a con-

vex polygon and a triangle. The other part 𝑟𝑘 may be non-convex,

so we need to split it into multiple disjoint convex regions, i.e.,
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Algorithm 2 Tree traversal to find convex regions intersecting △
1: function Traverse(△, node)
2: if node is a leaf node then
3: Let 𝑝𝑘 be the convex region represented by this node

4: if △ ∩ 𝑝𝑘 ≠ ∅ then return {𝑝𝑘 } else return ∅
5: end if
6: if △ ∩ node.aabb = ∅ then return ∅
7: return Traverse(△, node.left) ∪ Traverse(△, node.right)
8: end function

𝑟𝑘 =
⋃

𝑗 𝑟𝑘,𝑗 . We demonstrate an example of adding the red triangle

and splitting regions in Fig. 3.

Though the general problem of splitting an arbitrary polygon

into convex regions, called convex decomposition, is expensive to

solve, we are facing a special case that leads to a simpler algorithm.

The non-convex polygon 𝑟𝑘 is formed by applying a mesh difference

function on a convex polygon and a triangle in 2D. The geometric

configurations are enumerable and splitting 𝑟𝑘 will produce at most

four convex sub-regions (Fig. 3 (b)). At last, the list of convex regions

is updated as

𝐷𝑖 = 𝐷𝑖−1 − {𝑝𝑘 } + {𝑝𝑘 } + {𝑟𝑘,𝑗 }. (4)

Merging. If the new triangle △𝑖 is completely visible, i.e., all the

sub-regions 𝑝𝑘 (note that △𝑖 =
⋃

𝑘 𝑝𝑘 ) are visible and share the

same label (the red triangle in Fig. 3), we can just add △𝑖 to 𝐷𝑖 by

merging all of 𝑝𝑘 (𝑝0, 𝑝1 and 𝑝3 in Figs. 3 (b–d), lines 18–25). This

approach can avoid unnecessary splittings and reduce the number

of convex regions in the data structure.

In theory, for any pair of adjacent convex polygons that share the

same label, we can merge them if their union is still convex. This

will lead to significant reduction of the number of polygons and

make our algorithm more efficient. However, how to find the valid

polygon pairs for merging without a large overhead is challenging.

We leave it for future exploration.

4.2 Visibility Bounding Volume Hierarchy
To allow fast intersection tests, we use a binary Visibility Bounding

VolumeHierarchy (VBVH) to store a set of 2D convex polygons. Each

leaf node contains a visible convex polygon and its corresponding

bounding box. For an interior node of a VBVH, we store the union

of the bounding boxes of its children. The VBVH should be able to

support the following operations.

Intersecting. To find the intersection regions of a triangle and

a set of convex polygons, we perform a tree traversal (Algo. 2) on

the VBVH starting from the root node. If a triangle intersects the

bounding box of a VBVH node, we continue checking the intersec-

tion against its child nodes until they are disjoint. When we reach a

leaf node, we compute the exact intersection region 𝑝𝑘 = △𝑖 ∩ 𝑝𝑘 ,

where 𝑝𝑘 is the convex polygon represented by this leaf node.

Splitting. When we need to split a polygon into many sub-

regions due to occlusion, we first find the corresponding leaf node

of this polygon. Then, we substitute each leaf node by a sub-tree

(Figs. 4 (b–d)), reflecting the convex polygon splitting (Figs. 3 (b–d)).

The bounding boxes of the interior nodes are updated from bottom

to top. We illustrate this operation in Fig. 4, which corresponds to

(a) VBVH before adding

the red triangle

(b) Sub-tree after splitting 𝑝0

(c) Sub-tree after splitting 𝑝1 (d) Sub-tree after splitting 𝑝3

Fig. 4. Illustration of the region splitting operation on the VBVH. The
rectangles represent interior nodes and the circles represent leaf nodes.
(a) We show the VBVH before adding the red triangle (Fig. 2 (b1)). (b–d)
For every region that requires splitting, we create the sub-trees according
to the geometric configurations demonstrated in Figs. 3 (b–d). Finally, we
substitute the leaf nodes shown in (a) by the corresponding sub-trees.

the polygon splitting in Fig. 3. We also demonstrate the operation

in lines 12–15 of Algo. 1.

Merging. When the sub-regions of the newly added triangle

share the same label and can be merged (the red leaf nodes in Figs. 4

(b–d)), we choose the node that is closest to the root node (e.g., 𝑝0
in Fig. 4 (b)) and replace its associated region by the full triangle

(lines 20–22 of Algo. 1). Then, we remove all the other leaf nodes (𝑝1
and 𝑝3 in Figs. 4 (c, d), line 23). The bounding boxes of the affected

interior nodes should be also updated from bottom to top (line 24).

Discussion. Our method is efficient and able to finish (differen-

tiable) rendering tasks in a few seconds. Also, though we did not

specifically balance our VBVH, our closest-to-root heuristic in merg-

ing works well, and we haven’t observed any performance issues in

practice.

Because the order of the input triangles are random and each

splitting operation on a polygon results in at most four sub-regions

(meaning at most seven nodes on a binary tree), our VBVH will not

have a prohibitively large number of nodes in total. The number

of sub-regions also matches the prior hidden surface removal tech-

niques using trapezoidal maps [Mulmuley 1989]. So, our algorithm

shares the same complexity with those in theory. We refer to §6 for

further discussions of time and space complexity.

We also briefly validate our VBVH in Fig. 5. As we can see, our

method accurately and correctly handles cyclic occlusions and com-

plex geometry inside one beam. For more validations and compar-

isons, please refer to §5 and §6.

4.3 Numerical Robustness
It is critical to ensure the numerical robustness of our method while

maintaining its performance. Given its significant overhead, we

cannot afford to rely on Exact Geometric Computation. Instead, we
develop a lightweight strategy by enforcing the invariant of our

system.

Our method works by partitioning space into convex regions.

At each step, we compute intersection (difference) between the
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Fig. 5. Validation of our VBVH and color-coded visualization of regions
using indices of triangles. (Left) Three cyclic overlapping triangles. (Right)
An entire Stanford bunny in one pixel (with a close-up crop).

incoming triangle and existing regions. Our method will terminate

successfully if the following two conditions are met, which we

examine respectively:

(1) The intersection algorithm terminates successfully when inputs

are valid convex polygons.

(2) All regions produced by Algo. 1 are convex.

Most polygon intersection algorithms, including the one we

use, rely on the basic orientation predicate. The orientation pred-

icate, denoted by orient (𝑎, 𝑏, 𝑐), detects whether three 2D points

𝑎 = (𝑎𝑥 , 𝑎𝑦), 𝑏 = (𝑏𝑥 , 𝑏𝑦), and 𝑐 = (𝑐𝑥 , 𝑐𝑦) form a left turn, a right

turn, or a straight line (collinearity), and is defined as the sign of a

determinant:

orient (𝑎, 𝑏, 𝑐) = sign

©«
������1 𝑎𝑥 𝑎𝑦
1 𝑏𝑥 𝑏𝑦
1 𝑐𝑥 𝑐𝑦

������ª®¬ . (5)

However, it is well understood that such a simple predicate can-

not be robustly implemented by naïvely using floating-point num-

bers [Kettner et al. 2008]. A naïve floating-point implementation

produces erroneous and inconsistent results when three points are

close to collinear, which causes the intersection algorithm to either

fail catastrophically (crash or hang), or generate garbage output (e.g.

missing vertices).

To guarantee the correctness of the orientation predicate, and

satisfy condition (1), we represent polygons by a simple fixed-point

number scheme. Input floating-point coordinates are scaled by a

constant factor𝐶 and rounded to integers. Typically, the input coor-

dinates are within [−1, 1], so we effectively discretize the range with
a step size of 1/𝐶 . The scaling factor 𝐶 is chosen to provide enough

precision, while not causing overflow. In our implementation, we

set 𝐶 = 2
20
. By applying this scheme, the orientation predicate be-

comes exact, and the intersection algorithm is guaranteed to finish

successfully.

To satisfy condition (2), we observe that violations can happen at

two places. First, an input triangle of Algo. 1 may become degener-

ate or have its winding order flipped during the initial conversion

to fixed-point representation. This case is easy to detect and fix.

Second, when computing intersection, a new vertex may not be

representable by an integer. Rounding the new vertex may change

the topology of the output polygon, such as making it non-convex

or self-intersecting. If such cases happen, we satisfy condition (2) by

replacing the output polygon with its convex hull, which has a very

close shape. The overhead of convex hull computation is negligible

because typically the violating polygon only has a few vertices.

Fig. 6. We demonstrate a polygon
represented with floating-point num-
bers (red) and another represented
with fixed-point numbers (green). The
green polygon is not exactly the same
as the red one due to the vertex offset
caused by rounding.

We demonstrate such an ex-

ample in Fig. 6. The red poly-

gon 𝐹0𝐹1𝐹2𝐹3 is represented by

floating-point numbers. With

fixed-point numbers, the poly-

gon vertices are rounding to

their nearest grid points, re-

sulting in the green polygon

𝐺0𝐺1𝐺2𝐺3. However, the poly-

gon becomes non-convex af-

ter the discretization. We re-

solve this problem by com-

puting the convex hull of the

non-convex polygon [O’rourke

et al. 1998], yielding a trian-

gle𝐺0𝐺1𝐺3. Therefore, we con-

vert the red polygon (𝐹0𝐹1𝐹2𝐹3)

represented by floating-point

numbers to the green polygon

(𝐺0𝐺1𝐺3) represented by fixed-point numbers. Though the two poly-

gons are not exactly the same, the difference is negligible when we

have a high resolution of discretization.

We have shown that our method always terminates successfully

by satisfying the two invariant conditions. Therefore, we conclude

that ourmethod is theoretically accuratewithin the limit of numerical
precisions. This immediately indicates that there will be no visible

artifacts such as cracks generated by our method. And in practice,

the numerical accuracy of our method is sufficient for all rendering

applications we consider.

5 APPLICATIONS
Our vectorization leads to analytic solutions to 2D point-to-region

integrals, avoidingMonte Carlo sampling. In this section, we present

several practical applications that directly benefit from our tech-

nique. We start from a toy problem, demonstrating anti-aliased

primary visibility with our analytic point-to-region integrals (§5.1).

Then, we show three practical rendering tasks: accurate shading

from area lights (§5.2), anti-aliased shadows from point lights (§5.3),

and pure specular surface reflection (§5.4). Finally, we present our

main application, noise-free differentiable rendering (§5.5) by ex-

tending our vectorization algorithm with automatic differentiation.

Unlike existing differentiable rendering techniques [Li et al. 2018;

Loubet et al. 2019; Zhang et al. 2020], our method does not require

any special treatments to the forward rendering process.

5.1 Toy Problem: Anti-Aliased Primary Visibility
Primary visibility is used to determine the occupied area of visible

polygons inside a pixel. For traditional rasterization or ray tracing

methods, it is common to get aliased results due to the insufficient

sampling rates, especially at the object’s boundary regions that have

many sub-pixel geometric details. While supersampling methods

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Vectorization for Fast, Analytic, and Differentiable Visibility • 1:9

(a) Pixel color (b) Derivative

Fig. 7. Primary visibility result of the hairball scene. Random colors are
assigned to each triangle. The model has 2.88M triangles and is challenging
for anti-aliased rendering. (a) Image rendered by our method, which is
accurate even at the complex boundary regions. (b) Noise-free derivative of
the pixel values with respect to the model moving away from the camera
(mapped to false color for visualization).

can alleviate the aliasing problem at the cost of expensive computa-

tion, it is straightforward for our vectorizationmethod to completely

eliminate aliases and produce accurate pixel coverage values.

For each pixel on the image plane, we create a beam that originates

from the camera and goes exactly through the pixel. Assuming the

pixel is a square of [−1, 1]2, the pixel color is

𝐼 =

∫
[−1,1]2

𝛼 (𝒖)𝑐 (𝒖) d𝒖, (6)

where 𝛼 (𝒖) is the binary function indicating whether a position 𝒖
inside the pixel is covered by the projected triangles and 𝑐 (𝒖) is the
color of the triangle. Let {𝑝𝑘 }𝑚𝑖=1 be the set of 2D regions generated

by our method (Algo. 1) and {𝑐𝑘 }𝑚𝑖=1 be the corresponding colors.
1

The pixel color can be reformulated as a summation

𝐼 =

𝑚∑
𝑘=1

𝑐𝑘

∫
𝑝𝑘

d𝒖︸  ︷︷  ︸
=:Area(𝑝𝑘 )

, (7)

where the region areas Area(𝑝𝑘 ) can be evaluated analytically given
the polygon vertices. So we can compute the exact pixel colors and

produce anti-aliased images. Figure 7 (a) shows a hairball model

that is generally believed difficult for anti-aliased rendering, but our

method can produce an accurate image efficiently (Fig. 7 (b)). In the

supplementary video, we show an animation sequence in which the

hairball model is moving away from the camera. It is temporally

stable without flickering.

Note that this application is only a simple proof of concept. We

acknowledge that for this specific problem (anti-aliasing), there are

many other potential (differentiable) solutions [Laine et al. 2020]. A

full comparison is beyond the scope of this paper.

5.2 Accurate Shading from Area Lights
As mentioned in §3, our vectorization allows accurate computation

of the 2D point-to-region integral that represents the shading from

an area light. We assume that the area light emits constant radiance

1
We consider the background as one of these regions.

𝐿𝑒 . According to Eq. (2), the received radiance at a shading point 𝒙
from area lights

2
is

𝐼 = 𝐿(𝒙) = 𝐿𝑒

∫
𝑄 (𝒙)

𝑓𝑟 (𝝎𝑖 ,𝝎𝑜 )⟨𝒏,𝝎𝑖 ⟩ d𝝎𝑖 . (8)

To compute𝑄 (𝒙), we create a beam from the shading point 𝒙 to the

area light sources (see the purple beam frustum on the wall in Fig. 1).

We use Algo. 1 to find the visible regions representing the area lights.

As mentioned in §4.1, we find the corresponding polygons in 3D

by the inverse perspective projection and project them onto the

unit sphere centered at 𝒙 , resulting in a set of spherical polygons

{𝑄𝑘 }𝑚𝑘=1. Then, we can rewrite the shading integral in Eq. (8) as

𝐼 =

𝑚∑
𝑘=1

𝐿𝑒

∫
𝑄𝑘

𝑓𝑟 (𝝎𝑖 ,𝝎𝑜 )⟨𝒏,𝝎𝑖 ⟩ d𝝎𝑖︸                            ︷︷                            ︸
=: 𝐼𝑘

. (9)

The integrals over spherical polygons 𝐼𝑘 can be approximated

analytically using Linearly Transformed Cosines (LTCs) [Heitz et al.

2016]. We fit the cosine-weighted BRDF (the integrand of 𝐼𝑘 ) by

an LTC with the transformation matrix𝑀 . According to the work

of Baum et al. [1989] and Heitz et al. [2016], the integral 𝐼𝑘 has an

analytic solution:

𝐼𝑘 = 𝐸 (𝑄𝑘 ) =
1

2𝜋

𝑁∑
𝑗=1

arccos(⟨𝒒 𝑗 , 𝒒 𝑗+1⟩)
〈

𝒒 𝑗 × 𝒒 𝑗+1
∥𝒒 𝑗 × 𝒒 𝑗+1∥

, �̂�

〉
, (10)

where 𝐸 is the irradiance of the polygon𝑄𝑘 = 𝑀−1𝑄𝑘 , 𝒒 𝑗 is the 𝑗-th

vertex
3
of the polygon 𝑄𝑘 , and �̂� = (0, 0, 1). Combining Eqs. (9, 10),

shading from area lights can be evaluated analytically.

So far, our focus has been on the analytic evaluation of the 2D

shading integral at a single point 𝒙 . However, computing image

pixel values requires another 2D integral over all the shading points

inside a pixel, which makes the problem region-to-region. We use a

practical hybrid approach (§3) to compute the 4D region-to-region

integral for direct illumination (Fig. 8) and have more discussions

about this hybrid method in Appendix A.

5.3 Anti-Aliased Shadows from Point Lights
Beside direct illumination from area lights, which can be naturally

formulated as a region-to-region problem and be reduced to 2D

point-to-region integrals, several rendering applications such as

anti-aliased shadows from point lights (§5.3) and pure specular

reflection (§5.4) can also benefit from this formulation. The shading

of a polygonal surface patch that is seen through a pixel and is lit

by a point light can be formulated as a 2D integral:

𝐼 =

∫
P
𝑊 (𝒙) 𝑓𝑟 (𝝎𝑖 ,𝝎𝑜 )𝐿𝑖 (𝒙,𝝎𝑖 )⟨𝒏(𝒙),𝝎𝑖 ⟩𝑉 (𝒙,𝝎𝑖 ) d𝒙 . (11)

We follow the notation convention in Eqs. (1, 2). Note that the

light direction 𝝎𝑖 = (𝒙𝑙 − 𝒙)/∥𝒙𝑙 − 𝒙 ∥ depends on both the point

light position 𝒙𝑙 and the shading position 𝒙 . Assuming the pixel

2
We omit the shading point 𝒙 in the integrand since it is fixed.

3
We define 𝒒𝑁 +1 = 𝒒1 .
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(a) Ours

Ref.
16K spp

32 min

Eq. time
200 spp

20 sec

(b) Path tracing

(c) PT reference (d) Ours (e) PT equal time

Fig. 8. Comparisons of shading from area lights using the Living Room
scene. (a) Image rendered with our method. (b) Split image rendered with
path tracing (having only direct illumination): (left) reference, (right) equal
time. Image insets are shown in (c–e).

footprint is small enough compared to the size of the scene, we can

approximate Eq. (11) by splitting the integral into two parts:

𝐼 ≈
∫
P
𝑊 (𝒙) 𝑓𝑟 (𝝎𝑖 ,𝝎𝑜 )𝐿𝑖 (𝒙,𝝎𝑖 )⟨𝒏(𝒙),𝝎𝑖 ⟩ d𝒙︸                                                   ︷︷                                                   ︸

=: 𝐼unshadow

·
∫
P
𝑉 (𝒙,𝝎𝑖 ) d𝒙︸             ︷︷             ︸
=: 𝐼vis

.

(12)

The first integral represents the unshadowed contribution, where

the integrand terms vary smoothly. It usually can be evaluated easily

by taking one or a few samples on the pixel footprint. To compute

the visibility integral in the second part, we trace a narrow beam

from the light that encloses the patch, and compute the regions

that are visible to the point light 𝑄 (P) = {𝒙 |𝑉 (𝒙,𝝎𝑖 ) = 1} by our

vectorization algorithm. Therefore, the second visibility integral

becomes the area of the visible polygons,

𝐼vis =

∫
𝑄 (P)

d𝒙, (13)

which has analytic solutions given polygon vertices.

Fig. 9. Illustration of pure specular reflection. We first trace a primary beam
(the orange one) through a pixel and compute all the visible polygons using
our vectorization method. For the polygons that correspond to diffuse or
glossy surfaces (covered by the unfilled orange beam), we evaluate the shad-
ing as described in §5.2 and §5.3. For each of the remaining polygons with a
pure specular material (covered by the filled orange beam), we construct a
reflected beam (the red one) by mirroring the beam origin and setting the
specular polygon as the near-clipping plane.

In practice, instead of computing the visible polygons 𝑄 (P) for
each pixel footprint, we precompute a vectorized shadow map that

records all visible polygons from all directions as viewed from

the light position. For example, if we parameterize our vectorized

shadow map as a cube map, we trace six beams and store all the

visible polygons accordingly. For each pixel footprint, we query the

vectorized shadow map and compute 𝐼vis by finding its intersection

area with the visible polygons. This significantly saves beam tracing

time during rendering at the cost of extra storage for vectorized

shadow maps.

5.4 Pure Specular Reflection
Our method can compute reflection from pure specular surfaces in

a similar way to the original beam tracing [Heckbert and Hanrahan

1984]. The key operation is constructing the reflected beams dur-

ing tracing, illustrated in Fig. 9. Initially, we trace a primary beam

through a pixel and compute all the visible polygons within the

beam using our vectorization method (§4). For the polygons with

diffuse or glossy materials, we evaluate the shading as described

in §5.2 and §5.3. For each of the remaining polygons with a pure

specular material, we construct a reflected beam by mirroring the

beam origin and setting the specular polygon as the near-clipping

plane. We keep tracing reflected beams until there are no pure spec-

ular surfaces inside or reaching a maximum bounce count. Since we

explicitly handle the Dirac delta BRDFs by tracing reflected beams,

the equation of the final pixel color can be reduced to Eqs. (9, 12)

and be computed analytically.

5.5 Differentiable Rendering
The accurate anti-aliased rendering applications are straightforward

byproducts that benefit from our vectorization algorithm. But the

most significant application of our method is to directly enable

noise-free differentiable rendering with minimal extra effort. We

can consider the rendering process as computing a radiometric

measurement function 𝐼 (𝜃 ) that maps from the scene parameters𝜃 =

{𝜃1, 𝜃2, . . . , 𝜃𝑀 } including all the geometry, material and lighting
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Fig. 10. Comparison of derivative computations of various differentiable rendering methods for the tree scene on top w.r.t the tree rotation around the up
axis, the pufferball scene in the middle w.r.t. the object moving vertically downward, and the Cow scene at bottom w.r.t. the BSDF roughness increasing. The
scene configurations are shown as the top-right insets in column (a). Our method is noise-free and produces accurate results, indistinguishable from the
finite difference reference. In contrast, path-space differentiable rendering and edge sampling are noisy at equal time, and even path-space differentiable
rendering with an order of magnitude more samples/time has residual noise (edge sampling would need about two orders of magnitude more samples to
produce comparable results).

configurations onto the pixel value. In differentiable rendering, the

main goal is to evaluate the derivatives of the pixel values with

respect to scene parameters such as object positions and material

roughness, i.e. 𝜕𝐼/𝜕𝜃 𝑗 .
The biggest problems for differentiable rendering are geometric

discontinuities. This is because the Monte Carlo rendering process

is essentially generating point samples of the integrand, i.e., estimat-

ing the integral in Eq. (8). Differentiating this integral will introduce

an additional boundary integral due to the geometric discontinuities.

For this reason, most state-of-the-art work on differentiable render-

ing focuses on how to accurately handle the discontinuities. They

either introduced expensive unbiased estimates of the boundary

integrals [Li et al. 2018; Zhang et al. 2019, 2020], or used a biased

reparameterization technique to avoid the expensive boundary inte-

gral computation [Loubet et al. 2019].

In contrast, with our vectorization method, the scene derivatives

can be computed directly using automatic differentiation (AD), even

for the difficult cases involving point lights and pure specular sur-

faces. We first demonstrate how to differentiate the shading from

area lights (§5.2). The shading integral can be approximated analyti-

cally using LTCs (combining Eqs. (9, 10)):

𝐼 = 𝐿𝑒

𝑚∑
𝑘=1

𝐸 (𝑀−1𝑄𝑘 ), (14)

where 𝐿 is the light radiance, 𝐸 is the analytic irradiance function

of a polygon, 𝑀 is the transformation matrix for LTCs, and 𝑄𝑘

is the spherical polygon corresponding to the visible area lights.

Given the analytic expression, differentiating 𝐼 is straightforward by

using the chain rule. The derivative evaluation can be easily done

via automatic differentiation. The derivative results are accurate,

though with a very small deviation caused by the usage of fixed-

point numbers (§4.3) and the LTC approximation (§5.2).

Extending our vectorization method to support differentiable ren-

dering requires minimal effort. For the variables in Algo. 1, we only

need to replace their regular data types (32-bit integer or float) by the

data types that support automatic differentiation, which keep track

of not only the original values but also the derivatives with respect

to certain scene parameters. For example, we want to compute the

derivatives with respect to geometric parameters such as the posi-

tion of an object. Initially, we know the derivatives (local velocities)

on the mesh vertices. After running our vectorization algorithm

with AD, the derivatives are propagated to the visible spherical poly-

gons so we have 𝜕𝑄𝑘/𝜕𝜃 . Finally, evaluating Eq. (14) using AD gives

our goal 𝜕𝐼/𝜕𝜃 , as the derivatives will be updated automatically. We

show the derivative images with respect to geometric parameters

in Figs. 1, 7, 10 (top and middle rows).

Thanks to the simplicity of our analytic expression (Eq. (14)),

derivativeswith respect to the lighting and geometric parameters are

convenient to compute. However, it is not obvious how to compute
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the derivative with respect to the material roughness 𝑟 . Note that

the LTC transformation matrix𝑀 is tabulated and precomputed by

a set of roughness values in [0, 1]. 4 For an arbitrary roughness 𝑟

that falls into the interval [𝑟0, 𝑟1], we linearly interpolate the LTC

transformation matrix as

𝑀 (𝑟 ) = 𝑟 − 𝑟0

𝑟1 − 𝑟0
𝑀 (𝑟1) +

𝑟1 − 𝑟

𝑟1 − 𝑟0
𝑀 (𝑟0), (15)

which leads to

𝜕𝑀 (𝑟 )
𝜕𝑟

=
𝑀 (𝑟1) −𝑀 (𝑟0)

𝑟1 − 𝑟0
. (16)

Therefore, we can have 𝜕𝐼/𝜕𝑟 by computing Eq. (14) using AD with

Eq. (16) as the initial derivative. We show the derivative images with

respect to the surface roughness in Fig. 10 (bottom row).

Furthermore, existing differentiable rendering techniques usually

assume that there are no point lights and pure specular surfaces in

the scenes, because they introduce additional discontinuities due to

the Dirac delta functions. It requires special treatments to handle

zero-measure light sources and BRDFs in differentiable rendering

(computing additional integrals on the discontinuous boundaries

caused by the Dirac delta functions), and is too complicated to sam-

ple and evaluate efficiently. However, our method can still handle

these cases naturally. In terms of differentiating the shading of point

lights (§5.3) in Eq. (12), it is straightforward to compute 𝜕𝐼vis/𝜕𝜃
with automatic differentiation, since 𝐼vis is an analytic equation. For

the first integral 𝐼
unshadow

on the RHS, we can differentiate it as

𝜕𝐼
unshadow

𝜕𝜃
=

∫
P

𝜕[𝑊 (𝒙) 𝑓𝑟 (𝝎𝑖 ,𝝎𝑜 )𝐿𝑖 (𝒙,𝝎𝑖 )⟨𝒏(𝒙),𝝎𝑖 ⟩]
𝜕𝜃

d𝒙, (17)

because the integrand of 𝐼
unshadow

is continuous in the integration

domain P. Therefore, we can estimate 𝜕𝐼
unshadow

/𝜕𝜃 along with

𝐼
unshadow

by applying AD to the integrand function. Finally, differ-

entiating the rendering result with pure specular reflection (§5.4) is

also straightforward because we can reduce it to differentiating the

analytic shading equations from area lights or point lights, which

has just been discussed above. We show the derivative images with

point lights and pure specular surfaces in Figs. 11 and 12, respec-

tively.

6 RESULTS
In this section, we provide rendering results and detailed compar-

isons. We implement our algorithm in the Mitsuba renderer [Jakob

2010], and compare our vectorization algorithm against path tracing

for performance validation. For differentiation, we compare with

the edge sampling method [Li et al. 2018] and the path-space dif-

ferentiable rendering method [Zhang et al. 2020].
5
All timings are

measured on an 8-core Intel i9-9900K CPU, hyperthreaded to 16

threads, with 32 GB of main memory. Unless otherwise specified,

all timings correspond to 720P renderings for rectangular images

and 512 × 512 resolution for square images.

In Table 1, we report the complexity of each scene, along with

the number of variables to differentiate and the rendering time w/

and w/o gradients using automatic differentiation.

4
It is also tabulated in another dimension, the cosine value 𝜃𝑜 between the view

direction and the normal. We do not discuss it here because it is not relevant.

5
We do not compare to the reparameterization method [Loubet et al. 2019] since

it uses a biased estimator for visibility derivatives. The code of concurrent work by

Bangaru et al. [2020] is not available yet.

Table 1. Scene Configuration.6

Scene #Tris #Lights #Vars Time w/ & w/o AD
Kaleidoscope 174 1 1 3.6 / 2.4 sec

Displacement 174 3 162 7.6 / 0.5 sec

Cow 23k 3 1 3.8 / 2.1 sec

Tree 24k 1 1 7.0 / 5.8 sec

Dining Room 270k 3 1 58 / 44 sec

Gears 290k 1 15 10.1 / 2.9 sec

Living Room 786k 3 1 31 / 24 sec

Dragon 832k 1 4 13 / 6.1 sec

Pufferball 1.06m 3 1 630 / 520 sec

Hairball 2.88m 0 1 90 / 80 sec

Shading from area lights. In Figs. 1 and 8, we show the direct

illumination of the Dining Room scene and the Living room scene,

respectively. Both scenes are illuminated with 3 area lights. These

scenes are challenging in the complex visibilities for soft shadows,

as seen from each shading point to the area lights. We apply our

hybrid method to handle the primary visibility and soft shadows

simultaneously. We trace a beam towards each pixel in the image

plane to find primary visibility, then we trace multiple beams from

the coverage of each pixel in the scene towards each of the area

lights.

As we can tell from the insets comparing with path tracing, our

method produces noise-free soft shadows correctly. Also note that

both scenes contain hundreds of thousands of triangles. To our

knowledge, this level of complexity for hidden surface removal has

never been practically dealt with previously, in either the Computer

Graphics or the Computational Geometry communities. In contrast,

our vectorization handles the soft shadows from these scenes not

only robustly but also efficiently. We show the performance of

our method with a detailed break down of the time spent in each

step in Table 2. As can be observed, the shadow computation takes

up most of the computation time. This is reasonable because the

beams toward area lights usually subtend much larger solid angles

as compared to beams through pixels.

Shading from point lights. In Fig. 11, we show the direct il-

lumination of the same Dining Room scene, this time illuminated

with 2 point lights. We build a vectorized shadow map for each

light that allows fast visibility query without tracing beams during

rendering. Our method is able to obtain exact, anti-aliased shadows

(see the insets of Fig. 11) without Monte Carlo noise and common

shadow mapping artifacts such as jagged boundary and shadow

acne. Zero-measure light sources are usually not supported by exist-

ing differentiable rendering techniques due to additional integrals

caused by the discontinuous shadow boundaries [Li et al. 2018;

Zhang et al. 2020]. However, it is straightforward for our method to

support point lights via AD. We show two derivative images with

respect to the vertical translation of each point light. We are able

to capture the strong variation around the shadow boundary, as

well as the smooth variation on the lit surfaces. Our results achieve

better quality than the path traced reference using FD, which takes

6
We consider all the emitting faces in the kaleidoscope scene as one area light. We

only compute the primary visibility of the Hairball scene without lighting.
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Ours.

8.9 sec

PT ref.
4096 spp

13 min

Ours.

14.5 sec

FD ref.
4096 spp

26 min

Ours.

14.5 sec

FD ref.
4096 spp

26 min

(a) Rendering (b) Derivative 1 (c) Derivative 2

Fig. 11. Comparisons of shading from point lights using the Dining Room scene. (a) Split image rendered with (left) our method, and (right) path tracing. (b)
Split derivative image w.r.t. the y-coordinate of one light rendered with (left) our method (AD), and (right) path tracing FD. (c) Split derivative image w.r.t. the
y-coordinate of the other light. Our derivative computation is roughly two orders of magnitude faster than the FD reference that uses path tracing.

Table 2. Performance breakdown of the different stages of regular rendering (without AD) by our method.

Scene Total abs. time Primary vis. vect. Shadow vis. vect. BVH traversal Vertex processing Shading Other
Living Room 24.2 sec 12.6% 72.1% 7.4% 4.5% 1.5% 1.9%

Dining Room 44.6 sec 5.3% 76.3% 9.1% 7.4% 0.7% 1.2%

Pufferball 8.37 min 0.1% 87.0% 2.7% 8.7% 0.2% 1.3%

(a) Scene config. (b) Pixel color (c) Derivative

Fig. 12. Rendering of a virtual kaleidoscope that consists of multiple (up to
8) bounces of specular reflection. (a) The camera is placed within a prism of
mirrors, facing the emitting pattern. (b) Image rendered by our method. (c)
Accurate derivatives of the pixel values w.r.t. mirror rotation.

orders of magnitude more time to compute, while still suffering

from Monte Carlo noise and numerical cancellation error.

Pure specular reflection. We demonstrate the ability to com-

pute pure specular reflection (i.e. Dirac delta BRDFs) using a virtual

kaleidoscope scene in Fig. 12. The camera is placed inside a solid

prism of mirror at one end and a textured area light source with

colorful patterns is placed at the other end. The image is rendered

with up to 8 bounces, and most of the pixel colors are computed by

specular reflection. The rendering is perfectly anti-aliased thanks

to our analytic shading formula. Our method also allows accurate

derivative computation of light transport with pure specular reflec-

tion, which is not naturally supported by the existing differentiable

rendering techniques [Li et al. 2018; Zhang et al. 2020]. In Fig. 12

(c), we show the derivative image with respect to the rotation of the

mirror, which effectively captures the edges of the reflected color

patterns from the textured area light.

Analytic Derivatives. To further demonstrate the correctness

and efficiency of our vectorization in terms of differentiable ren-

dering, we introduce two different ways of applying our method

using Automatic Differentiation (AD) and Finite Differences (FD),

respectively. We compare with path traced references using FD, as

well as the state-of-the-art techniques by Li et al. [2018] and Zhang

et al. [2020] (the unidirectional estimator).

In Fig. 10, we use AD to compute the derivative images. We

show the Tree scene as an example of differentiating the rotation

of objects, and further demonstrate the Pufferball scene with object

translation, and the Cow scene with changing roughness of the

BSDF. At equal time, all previous (and concurrent) differentiable

rendering methods still have noise in their gradients. Also note

that, it is theoretically impossible to compare the running times

of other methods at equal quality to ours, since any path traced

results, including the “converged” references, will still be noisy. To

deal with this, we let other methods run for a reasonable amount of

time – an order of magnitude longer than ours – to show that they

still generate visible noise.

It is convenient to directly use our method to get the entire gra-

dients with all derivatives at once with AD, since our method is

always noise-free. It is also straightforward to subtract two differ-

ent rendering results of ours to get noise-free derivatives using FD.

Fig. 13 compares our AD and FD approaches. We can see that they

are almost identical. With this observation, it is natural to ask when

we should apply AD and why we cannot always use FD, since it is

even simpler to implement. We have plotted two different curves at

the bottom of Fig. 13, corresponding to the running time of AD and

FD w.r.t. the number of variables to be differentiated. As we can see,

finite differences can give us only one entry of the gradient at a time,

so FD scales linearly with the number of differentiable variables

and the time increases faster. In contrast, AD does have a small

overhead when there is only one variable (canceled out by the fact

that FD needs to render twice), but is more efficient in computing
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Fig. 13. Comparison of derivative computations of the Cow scene by our
analytic AD and FD methods. Top row is AD, and bottom row is FD. Below,
we show a graph of running time versus number of variables for AD and
FD. As expected, FD time increases faster and linearly with the number of
variables, since new function evaluations are required for each variable.

the full gradient as the number of variables increases. Like FD, time

still increases linearly with the number of variables but the slope

is much smaller. It is also worthwhile noting that finite differences

will always introduce some bias with finite steps.

Time and space complexity. In general, it is an extremely dif-

ficult task to analyze the complexity of the hidden surface removal

problem. The upper bound of the time complexity is proven to be

3-SUM hard [Gajentaan and Overmars 1995], which indicates that

the worst case performance can be𝑂 (𝑛2), where 𝑛 is the number of

vertices in the scene.

However, we should emphasize the difference between the worst

case and the common cases in practice. The 𝑂 (𝑛2) worst case only
happens if every pair of triangles intersect, which is far from a prac-

tical setup in Computer Graphics. We should consider the output-

sensitivity of our algorithm by taking the actual number of intersec-

tions into account. In a realistic case, given a triangle to be inserted,

our VBVH allows rapid pruning of disjoint nodes in the tree, and

fast location of a small set of overlapping regions, whose size is

proportional to the area of the triangle being inserted. In Fig. 14,

we run our vectorization using a beam covering the entire Stanford

Table 3. Summary of inverse rendering examples.

Scene #Params Source of params Time per iter.
Tree 1 Transform 8.4 sec

Kaleidoscope 1 Transform 3.6 sec

Dragon 4 Transform+BSDF 11.2 sec

Gears 15 Transform 10.1 sec

Displacement 162 Vertex Position 56.0 sec

dragon model starting from 800K triangles and with subdivision

or simplification to obtain different triangle counts. We plot the

performance of our vectorization w.r.t. the number of triangles. We

see that the complexity is not only far from the theoretical quadratic

bound, but also more efficient than the usually expected 𝑂 (𝑛 log𝑛)
curve. Instead, it is almost linear 𝑂 (𝑛), in fact bounded above by

the red dashed linear curve shown in the plot. In practice, many

triangles are completely blocked by the previously inserted trian-

gles in the vectorization process, thus are rejected at an early stage.

This leads to approximately linear performance, and enables us to

achieve superior performance on complex models with millions of

triangles.
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Fig. 14. Running time for geometric vectoriza-
tion of the Stanford Dragon scene with varying
numbers of triangles. The complexity is essen-
tially linear.

For space complex-

ity, the worst case of

our vectorization is again

𝑂 (𝑛2). However, that
also only happens in

pathological caseswhere

the next inserted tri-

angle always falls in

the newly split regions

from the last step, form-

ing a highly unbal-

anced tree. For a rela-

tively balanced VBVH,

which is the much

more likely case in

practice, the storage is

dominated by the leaf

nodes, and the space

complexity becomes𝑂 (𝑛+𝑘), where𝑘 is the number of edge intersec-

tions. Our vectorization uses convex polygons instead of triangles

as geometric primitives, which reduces the constant factor of the

space complexity. Moreover, as mentioned in §2, our vectorization

can operate in-place, which further prevents unnecessary storage.

The input order of triangles intersecting a beam can be arbitrary.

Similar to ray tracing, it is possible that a ray will intersect all the

triangles from back to front, which will cause a performance degra-

dation. Designing better scene BVHs and using randomized beam

intersecting algorithms will alleviate this problem, but this is or-

thogonal to our vectorization. Note that for a fixed input order of

triangles, our method will always result in a unique VBVH represen-

tation. For different input orders, our vectorizations can be different,

but will always be handled robustly, correctly and accurately.

Inverse Rendering. The goal of inverse rendering is to optimize

scene parameters based on one or more rendered images of the

scene. Given a set of target images and a set of initial parameters,
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Fig. 15. Inverse rendering examples using our analytic gradients. In the tree example, we optimize for the object’s rotation angle around the y axis. In the
kaleidoscope example, we optimize for the mirror’s rotation angle around the z axis. In the displacement example, we optimize for per-vertex displacement
along normal direction. Please refer to the supplementary video for the full sequences. The bottom-right insets in column (c) show (color-mapped) 10× absolute
difference images between our final optimization results and the target images. The graphs (e) and (f) show the image and parameter RMSE as functions of
the number of iterations.

the inverse rendering process automatically optimizes the param-

eters such that the final rendered images match the target images.

Inverse rendering can be implemented by differentiable rendering

techniques that produce gradients, which are necessary for gradient-

based optimization. With the ability to produce noise-free gradients,

our method is not only compatible with first-order optimization

methods, but also enables second-order optimization methods for

the first time. In Fig. 15, we show the image sequences of multiple

inverse rendering examples, as well as the error plots. In the accom-

panying video, the entire sequences will be played in full. At each

iteration, we use the root mean square error (RMSE) to measure

the difference of the currently rendered image and parameters, re-

spectively, against the target image (image RMSE) and the target

parameters used to generate the image (parameter RMSE). Please

refer to Table 3 for a summary of statistics.

In the tree example, we optimize the rotation angle of the tree

around y axis. The tree has very complex geometric structures and

casts shadows with high-frequency details. We are able to converge

to the target angle even with a single view that only captures the

shadows. The kaleidoscope example attempts to match the target

pattern that primarily consists of pure specular reflection by rotating

the mirror. The displacement example demonstrates the ability of

our method to handle many parameters. We displace each of the 162

vertices of the sphere along its normal direction to match the desired

shape. All examples use a single view for optimization except the

displacement example, which uses 8 distinct views.

In order to compare the convergence rates using different meth-

ods, we provide two more examples in Fig. 16 and plot their error

curves in Fig. 17. We evaluate the effect of pairing different optimiz-

ers with different differentiable rendering techniques. For optimizers,

Adam [Kingma and Ba 2015] and L-BFGS [Liu and Nocedal 1989]

are used for representing first-order optimizers and second-order

optimizers, respectively. For differentiable rendering techniques,

we compare our method to the state-of-the-art path-space differ-

entiable rendering (PSDR) [Zhang et al. 2020]. In these examples,

both differentiable rendering techniques perform each optimization

iteration in equal time. Each optimizer is configured with the same

set of hyperparameters (e.g. learning rate for Adam, and maximal

line search steps for L-BFGS), regardless of the paired differentiable

rendering technique.

In the dragon example, we jointly optimize the translation (𝑥,𝑦, 𝑧)
of the light source, as well as the roughness of the model. We observe

similar performance between methods that use Adam. However,

our method achieves much faster convergence speed when paired

with L-BFGS. On the other hand, we observe inconsistent behavior

and failure to converge when pairing PSDR with L-BFGS. This is

because quasi-Newton optimizers such as L-BFGS are inherently

noise-sensitive. The noisy gradients produced by Monte Carlo sam-

pling corrupt the Hessian estimation, which causes the optimization

to be trapped in a non-optimum. Although recently some stochastic

quasi-Newton methods were proposed [Byrd et al. 2016; Moritz et al.
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Fig. 16. Comparison of inverse rendering convergence results by different methods. For each example, the initial image (top) and the target image (bottom)
are shown in (a). In columns (b) to (e), we show the optimized results by each method (top), as well as the (color-mapped) 10× absolute difference images
between the optimized results and the target images (bottom). Our method does not suffer from Monte Carlo noise and achieves lower error. Please refer to
the supplementary video for the full optimization sequences, esp. the subtle rotations of the gears.

2016], the area still remains active, and we leave a comprehensive

exploration in this direction as future work.

In the gears example, we optimize the rotation of all gears based

on the shadow cast on the background. While both differentiable

rendering techniques converge with Adam, PSDR struggles to match

the fine-grained shadow silhouette exactly due to Monte Carlo noise.

Our method does not suffer from this problem, and achieves lower

error. When switching to L-BFGS, the convergence of PSDR, again,

is not guaranteed. In contrast, our method leads to consistent and

faster convergence rate than that of the first-order alternatives.

7 DISCUSSION AND ANALYSIS
The hidden surface removal problem is one of the most fundamental

problems in computer graphics. A wide range of existing works have

attempted to solve it analytically. In other words, they are object-
space methods as classified by Sutherland et al. [1974]. We group

these methods into several categories and discuss the relationship

between our method and them.

Theoretical algorithms. The hidden surface removal problem

is of theoretical interest to researchers because a naïve solution runs

in quadratic time which is unacceptable. Various exact algorithms

have been proposed to demonstrate certain algorithmic advantanges,

such as lower complexity bound, or output-sensitivity. The standard

line-sweeping technique can be used to obtain efficient algorithms
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Fig. 17. Image and parameter RMSE as functions of the number of iterations
achieved by different methods. In both examples, ours+L-BFGS leads to
faster convergence rate, while PSDR+L-BFGS fails to converge.

for hidden line and hidden surface removal [Nurmi 1985; Katz et al.

1992; McKenna 1987]. Several exact algorithms [Mulmuley 1989,

1994; Goodrich 1992] rely on the data structure called trapezoidal

map [de Berg et al. 1997], which maintains a planar subdivision

consisting of trapezoidal regions, and allows incremental insertion

of line segments. Sharir and Overmars [1992] derived an output-

sensitive algorithm by merging visibility maps of triangles.

However, these algorithms are categorized by us as “theoretical”

because the discussions are usually limited to theoretical analy-

sis. No implementations or only toy implementations with finite-

precision number types have been reported to our knowledge. They

are challenging, if possible at all, to implement in practice due to

three reasons:

• They assume the real RAM computational model, which can com-

pute with real numbers in infinite precision in constant time

[Shamos 1978]. This is never possible in reality even with the use

of Exact Geometry Computation (not constant time).

• They either fail or require significant overhaul in the presence of

degeneracies, which is unacceptable in most computer graphics

application.

• Some of the algorithms are based on too intricate data structures.

Even if they achieve good theoretical complexity, the high (con-

stant) overhead renders them useless in practice.

In constrast, we demonstrate the practical efficiency and robustness

of our method in numerous applications.

Weiler-Atherton algorithm.Weiler and Atherton [1977] pro-

pose a hidden surface removal algorithm by recursively subdivding

the image space into polygonal windows. Despite its conceptual

similarity to our method, we make three distinctions between them:

• Weiler-Atherton algorithm requires a fairly complex polygon

intersection algorithm that must be able to handle concave poly-

gons with holes. Our method by-design only needs to process

convex polygons, which allows us to use a much more efficient

intersection algorithm.

• Our strategy of convex partition is necessary to the construc-

tion of VBVH because in this way when a leaf node is split, it

produces no more than 4 new nodes and all of them are also con-

vex. Weiler-Atherton algorithm produces polygons with holes,

whose bounding volumes are meaningless. An arbitrarily complex

splitting strategy must be applied afterwards.

• There is no discussion about numerical robustness of Weiler-

Atherton algorithm. Given its complex nature, it seems difficult

that an implementation with finite-precision number types can

perform robustly when the input is complex, especially when the

intersection algorithm is used in recursive subdivision: an input

polygon of an intermediate step can very well be degenerate or

invalid (e.g. self-intersecting or flipped winding order) due to

numerical error in previous steps. In constrast, we show how our

method can be implemented robustly in §4.3.

Occlusion tree. Another similar method is the occlusion tree

proposed by Bittner et al. [1998; 2002a]. The occluison tree is a BSP

tree that parititions a viewport into a set of visible polygons that are

stored at the leaf nodes. The occlusion tree allows a similar incre-

mental insertion scheme where a new polygon is recursively tested

against the tree and split accordingly. The key difference between

the occlusion tree and our VBVH lies in the methods to partition

space. The occlusion tree partitions space by half-planes induced

by the edges of the polygons, which may lead to a high tree depth

and consequently high traversal cost. Meanwhile, the VBVH does

not suffer from this issue as it groups polygons by bounding boxes.

It remains interesting to compare the culling efficiency by using

half-planes versus bounding boxes in the conext of analytic visibility

computation. Bittner [2002b] has also extended the occlusion tree

to handle region-to-region visibility, which could inspire our future

directions.

Scanline rendering. Early scanline rendering methods [Catmull

1978, 1984] also introduce techniques for analytic hidden surface

removal. Since they are designed for scanline rendering, they take

advantange of the spatial coherence between neighbor pixels (scan-

lines). However, the visible polygon computation within each pixel

usually reduces to brute-force clipping. They are not applicable to

many of our applications other than primary visibility, such as the

analytic computation of soft shadow and its derivative. On the other

hand, it is possible to apply their ideas on top of our method to

potentially speed up the computation of primary visibility.

Potentially Visible Set.Many methods focus on pre-computing

the Potentially Visible Sets (PVSs) of the scene, which describe for

each view cell the set of objects that may be visible [Airey et al.

1990]. The PVSs are then used to accelerate visibility culling or

occlusion culling at rendering. Based on the quality of the PVSs,

the methods can be classified as conservative [Hudson et al. 1997;

Coorg and Teller 1997; Bittner et al. 1998; Chandak et al. 2009],

aggresive [Gotsman et al. 1999; Nirenstein and Blake 2004], or exact

[Nirenstein et al. 2002; Haumont et al. 2005]. Our method is an

onlinemethod that produces exact visibility, without the need of pre-

processing. It is also possible to incorporate their ideas to accelerate

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:18 • Yang Zhou, Lifan Wu, Ravi Ramamoorthi, and Ling-Qi Yan

the rendering of complex scenes, and solve the region-to-region

visibility problem.

Approximate visibility map. One natural idea to improve the

performance of analytic visibility computation is to introduce some

types of approximation. Stewart and Karkanis [1998] describe a

method to compute an approximate visibility map by first construct-

ing a coarse visibility map from rasterization, and then refining

the coarse map to obtain a better approximation. Erickson [2000]

proposes a hybrid image-space/object-space hidden surface removal

method that constructs a sampled visibility map based on trapezoid

decomposition. One serious disadvantage of those approximation

methods in our context is that their result is no longer differentiable

with respect to scene parameters. It could be interesting to explore

approximations that maintain differentiability.

GPU analytic visibility. Despite the prevalence of rasterization
and depth buffering, there are a few attempts to compute analytic vis-

ibility on the GPU [Auzinger et al. 2013a,b]. Auzinger et al. [2013b]

propose an algorithm to compute edge intersections and hidden sur-

face removal in parallel. Their method is able to achieve interactive

performance for relatively simple scenes. While the method exploits

the massive parallel architecture of the GPU, it is also brute-force in

the sense that it is unable to take advantage of more advanced ac-

celeration structures. Nevertheless, we are eager to explore possible

ways to adapt our method to the GPU.

8 LIMITATIONS
Our method is now focused on direct illumination, but can be com-

bined with Monte Carlo techniques to handle more general light

transport phenomena such as global illumination. As a proof of

concept, we demonstrate how to replace the next-event estimation

(NEE) in a path tracer with our vectorization in Appendix B. In the

future, we are enthusiastic to extend our hybrid method to han-

dle general high-dimensional region-to-region integrals in light

transport to enable efficient global illumination.

Asmentioned in §4.1, our geometry vectorization assumes no pen-

etrating triangles. If they do exist, a preprocessing step is required

to split them. We note that all existing differentiable rendering tech-

niques implicitly make the same assumption because otherwise

penetrating triangles introduce new boundary edges that need to be

explicitly handled in the boundary integral calculation to correctly

differentiate visibility [Li et al. 2018; Zhang et al. 2020]. Theoreti-

cally, it is possible to extend our geometry vectorization to handle

penetrating triangles, for example, by computing the intersection

between a 3D triangle and its overlapping 3D visible polygons in-

stead of their 𝑥𝑦 projections. Accordingly, each VBVH node can

store an extra depth slab for quick rejection in the 𝑧 direction.

Our analytic shading from area lights relies on the approxima-

tion using LTCs [Heitz et al. 2016]. LTCs have been shown to be

expressive enough to closely fit a wide range of BRDFs including

anisotropic ones. Although not demonstrated in our applications,

a prefiltering approach is also readily available to support shading

with textured area lights. Therefore, we conclude that our analytic

shading is general for practical usage. While our method can accu-

rately integrate visibility functions and BRDFs, analytic integration

of arbitrary integrands of other types, such as pixel filters, remains

an interesting future directon.

Our method computes specular reflection by recursively spawn-

ing reflected beams for specular faces. This could be impractical

for finely tessellated meshes as the number of beams may increase

exponentially as the tracing proceeds, similar to the original beam

tracing [Heckbert and Hanrahan 1984]. One possible acceleration is

to incorporate the depth-first traversal and the geometry level-of-

detail control introduced in [Liu et al. 2011].

9 CONCLUSION
We have presented a vectorization method for fast, analytic, and

differentiable visibility. For the first time, we have enabled beam

tracing to accurately handle the complex geometries robustly within

its viewport, thanks to our VBVH structure. With our accurate beam

tracing scheme, we can have analytic solutions to the 2D point-to-

region visibility problem, leading to a practical hybrid algorithm

to solve the region-to-region problem in 4D. We demonstrate the

robustness and correctness of our method, and provide efficient

solutions to many rendering applications.

Our beam tracing immediately gives us noise-free results. But

more importantly, it allows us to elegantly compute the visibility

differentiation problem w.r.t. any parameters that were previously

considered difficult, simply using automatic differentiation without

anymodification of our pipeline. Compared to existing differentiable

rendering methods, our method is able to quickly generate noise-

free gradients, which can be easily used in inverse rendering and

enable second-order optimization techniques for the first time.

Although our method currently computes exact visibility, it can

be valuable to study approximate or progressive techniques to in-

crease efficiency while maintaining perceptually satisfactory quality.

Applying frequency analysis in beam tracing could also be explored,

since the beam’s coverage is essentially an accurate version of a ray

differential. Other improvements, such as hardware implementation

and automatic balancing of our VBVH with sub-tree rotations, will

further improve the practicality of our method.
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A HYBRID APPROACH TO REGION-TO-REGION
INTEGRALS

In our hybrid approach to solving 4D region-to-region integrals for

direct illumination, we first sample primary rays adaptively within

a 2D pixel footprint P, then trace beams to compute the other 2D

point-to-region integral analytically. We visualize the sampling rate

of each pixel using our adaptive multi-sampling strategy in Fig. 18,

and show better image quality compared to tracing one beam from

the center of each pixel (i.e., the single-sampling strategy). As we

can see, most pixels do not require multi-sampling, thus leading

to a small performance overhead. With the rapid development of

Temporal Anti-Aliasing (TAA) [Yang et al. 2020], it is arguable that

the temporal reuse strategies may further decrease the number

Hybrid 32 spp Hybrid 16K spp PT ref. 64K spp

Fig. 19. One-bounce global illumination of the Dining Room scene by our
hybrid path tracer. Our method no longer produces noise-free results.

of point-to-region integrals needed to approximate the region-to-

region transport, ideally down to one per pixel.

Alternatively, one can get an unbiased estimate by drawing point

samples in the 4D space using Monte Carlo path tracing. However,

point sampling yields large variance and produces noisy images. Our

method, in contrast, generates noise-free shading and soft shadows

from area lights. We have demonstrated that our hybrid approach

that exploits geometry vectorization leads to better rendering quality

than traditional Monte Carlo path tracing (Figs. 1 and 8). In general,

we can extend our hybrid method to solve integrals with higher

dimensions for handling global illumination, as demonstrated in

Appendix B.

B PRELIMINARY EXPERIMENTS ON ONE-BOUNCE
GLOBAL ILLUMINATION

In order to support global illumination, we have integrated our

geometry vectorization into a standard unidirectional path tracer

to replace the next-event estimation (NEE). Effectively, the hybrid

path tracer computes the 𝑛-D light transport integral by sampling

paths in the first (𝑛 − 2)-D space and computing the last 2D point-

to-region integral analytically. In Fig. 19, we show the one-bounce

global illumination of the Dining Room scene. While our hybrid path

tracer converges to ground truth with enough samples, in general

it is not able to produce noise-free images (see the insets of Fig. 19).

This is because our method currently cannot fully handle the high-

dimensional path integral. The benefit of analytic direct lighting

diminishes as noise is reintroduced by Monte Carlo sampling.

The experimental integration could be improved in several possi-

ble ways. First, currently the result of each analytic direct lighting

computation is only used by one path sample, which seems to be

wasteful given the cost of the computation. It might be worthwhile

to amortize the computation cost by caching. Alternatively, our

vectorization could be used to accelerate other types of visibility

computation. For example, given an incident direction and a glossy

surface, we could trace a beam that encloses the reflection lobe,

which will provide free visibility for all subsequent reflected rays.

We leave those possible improvements for future work.
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