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Table 1: Notation used for our BRDF model.

𝜔i/𝜔o incident / outgoing direction
𝜔m macroscopic surface normal
𝜔n yarn normal
𝜔t yarn orientation
ℎ half vector between 𝜔i and 𝜔o
𝐷 (𝜔) directional distribution of microflakes
𝐺 (𝜔i, 𝜔o) shadowing-masking term
𝜎 (𝜔) projected area of microflakes
𝜌 microflake density
𝑇 layer thickness (different from ⊤)
⊤ matrix transpose (different from𝑇 )
𝑘s microflake reflectance
𝑆 3 × 3 matrix for microflake distribution
𝛼 microflake roughness
𝑓r (𝜔i, 𝜔o) BRDF
𝑓 dr (𝜔i, 𝜔o) diffuse term of BRDF
𝑓 sr (𝜔i, 𝜔o) specular term of BRDF

1 WANG’S MICROFLAKE BRDF
Wang’s BRDF [Wang et al. 2022] can be written as:

𝑓r (𝜔i, 𝜔o) =
𝑘s 𝐷 (ℎ) 𝐺 (𝜔i, 𝜔o)
4 cos𝜔i · cos𝜔o

, (1)

where

𝐺 (𝜔i, 𝜔o) =
1 − 𝑒−𝑇𝜌 (Λ(𝜔i)+Λ(𝜔o))

Λ(𝜔i) + Λ(𝜔o)
, (2)

where 𝜔i and 𝜔o represent the incident and outgoing directions, re-
spectively, ℎ is the half vector between incident and outgoing direc-
tions, 𝑇 is the thickness of the homogeneous microflake layer, and
𝜌 represents the microflake density. We define Λ(𝜔) = 𝜎 (𝜔)/cos𝜔 ,
and 𝜎 (𝜔) is defined below. 𝑘s represents the reflectance of a mi-
croflake. Finally,

𝐷 (𝜔) = 1
𝜋𝛼𝑞2

, where 𝑞 = 𝜔⊤𝑆−1𝜔, and 𝜎 (𝜔) =
√
𝜔⊤𝑆𝜔, (3)

where 𝛼 is a roughness parameter, and 𝑆 is a symmetric, positive
definite 3 × 3 matrix. We use the definition 𝑆 = diag(1, 1, 𝛼2) for
∗Corresponding author.

Table 2: Distributions used to sample the parameter space of
our model. The third column notes whether the parameter
has separate versions for weft and warp.U(𝑥,𝑦) represents a
continuous uniform distribution in the interval (𝑥,𝑦). V(𝑋 )
is a discrete uniform random variable on a finite set 𝑋 . Yarn
density is defined in yarns per inch, and converted internally
to actual yarn size.

Parameter Sampling Function weft / warp

yarn pattern W = V({0, 1, 2, 3, 4}) No
yarn density 𝑦 = U(45, 335) Yes
roughness 𝛼 = U(0.1, 1)2 Yes

diffuse albedo 𝑘d = U(0, 1) Yes
specular albedo 𝑘s = (𝑘d)𝑚,𝑚 = U(0, 1) Yes
scaling factor 𝛽 = U(0.1, 2) Yes

blending weight 𝑤 = U(0, 1) No
noise level Q = V({0 − 10}) No
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Figure 1: Comparison with and without added noise for high-
light imperfections.

a microflake oriented along the 𝑧 axis, with roughness 𝛼 . Other
orientations are easily achieved by defining 𝑆 ′ = 𝑅⊤𝑆𝑅 for any 3×3
rotation matrix 𝑅. We always rotate the microflake to be aligned
with the predicted fiber direction.

2 OUR FULL MODEL
Our fabric shading model includes a specular and a diffuse term:
𝑓r (𝜔i, 𝜔o) = 𝑓 dr (𝜔i, 𝜔o) + 𝑓 sr (𝜔i, 𝜔o), where the specular term is
defined in Eqn. (1) and the diffuse term is defined in Eqn. (1) (main
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Figure 2: Comparison of rendered results when setting weights to different values.
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Figure 3: Our model can handle fabrics with different warp
and weft colors.

paper), resulting in the full model:

𝑓r (𝜔i, 𝜔o) = 𝑈s (𝜉)
𝑘s 𝐷 (ℎ) 𝐺 (𝜔i, 𝜔o)
4 cos𝜔i · cos𝜔o

+𝑤 𝑘d ⟨𝜔i · 𝜔m⟩
𝜋 ⟨𝜔i · 𝜔n⟩

+ (1−𝑤)𝑘d
𝜋
,

(4)
where𝑈s (𝜉) is a unit mean exponential random variable defined on
[0, +∞) to introduce imperfections in the specuar, and is defined
as:

𝑈s (𝜉) = −log(𝑅(𝜉)), (5)

where 𝑅 is a pseudo random number generator (e.g., Tiny Encryp-
tion Algorithm) to generate random numbers defined on (0, 1] with
seed 𝜉 . The seed 𝜉 is set as the product of the yarn segment index
and the noise level 𝑄 . Note that the range of𝑈s (𝜉) is [0, +∞) and
the mean value is 1 to keep the specular term consistent.

We introduce a heightfield scaling factor 𝛽 to adjust the height-
field of yarns, which will affect both the normal (n𝑥 , n𝑦, n𝑧 ) and
orientation (t𝑥 , t𝑦, t𝑧 ). We also introduce some imperfections on
the normal using a random value 𝑈n (𝜉). The disturbed normal is
defined as:

𝜔n = ( 𝛽𝑈n (𝜉)n𝑥
n𝑧

,
𝛽𝑈n (𝜉)n𝑦

n𝑧
, 1),

𝜔n =
𝜔n
| |𝜔n | |

.

(6)

The definition of𝑈n (𝜉) is different from𝑈s (𝜉) and is defined as:

𝑈n (𝜉) =
𝛽 − 0.1𝑄 + 0.15𝑄𝑅(𝐶𝑃 (𝜉))

𝛽
. (7)

𝑄 is the noise level and set as [0, 10]. A larger value of 𝑄 indicates
more noise.𝑅 is the same as in Eqn. (5). 𝑃 is a one-dimensional Perlin
noise function and calculated on the weft and warp separately. 𝐶
is a constant value to scale the Perlin noise and set as 100 in our
implementation. The seed 𝜉 is set as the yarn segment index.

To ensure the scaled normal and orientation are still perpendic-
ular, the orientation after scaling is defined as:

𝛽𝑜 =
−𝜔𝑧

n𝜔
𝑧
t

𝜔𝑥
t 𝜔

𝑥
n + 𝜔

𝑦

t 𝜔
𝑦
n
,

𝜔t = (𝛽𝑜𝜔𝑥
t , 𝛽𝑜𝜔

𝑦

t , 𝜔
𝑧
t ),

𝜔t =
𝜔t
| |𝜔t | |

.

(8)

The 𝜔t is used to compute the matrix 𝑆 in Eqn. (3).
In Fig. 1, we compare our results (with noise and without noise)

with photos. By comparison, we find that the noisy highlights are
more realistic.

We show a comparison between the rendered results when set-
ting weights in the diffuse term to different values in Fig. 2.

3 MORE RESULTS
3.1 Results of our inverse model

Synthetic data. In Fig. 3, we show the results of our inverse model
on synthetic data. Our model is able to support fabrics with different
warp and weft colors.

Real data. In Fig. 4, we provide more and larger results on mea-
sured data than shown in the main paper. Since there are no ground
truth parameters for the measured data, we compare the visual
match between the input image and the rendered image with the
estimated parameters. Our inverse model, including the FabricNet
and the optimization, produces closely matching results to the input
images. The renderings with the draped cloth mesh also show a
plausible appearance.

Novel view. To verify the correctness of our method, we recap-
tured the fabrics at novel view and rendered them in the same
configuration. The comparison results are shown in Fig. 5.

3.2 Comparison with other works
We compare our method with MATch [Shi et al. 2020] and Henzler
et al. [2021]. The input images for both methods were taken with
the same camera (iPhone12) as our approach. The fabric samples
are placed on a flat surface, since these methods only support flat
surfaces. We use the flash as the light source in both methods. The
camera distance for our method and competitor methods is similar,
following a rule: a 10cm × 10cm fabric sample covers the camera
view for all captures.

Comparison with other procedural models. More results to com-
pare our method and MATch [Shi et al. 2020] are provided in Fig. 6.
We also provide all the intermediate results or inputs in Fig. 6, which
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Figure 4: Given an input image captured with our measurement configuration, our inverse model is able to produce closely
matching results. The rendered results on the draped cloth mesh also show a natural appearance.

Measured Rendering Measured Rendering

Figure 5: We captured the fabrics from a novel view and
compared themwith our reconstructed results rendered from
the same view, achieving a similar appearance at a local scale
(we do not attempt tomodel the imperfectmacroscopic shape
of the real cloth).

are not in the main paper. We show the SVBRDF maps and the two
Substance procedural graphs designed for fabrics (fabric suit and
smooth silk), besides the rendered results.

Comparison with a general SVBRDF model. We provide more
results to compare our model and Henzler et al. [2021] in Fig. 7. We
also provide the SVBRDF maps besides the rendered results, which
are not in the main paper.

3.3 Ablation study
Cylinder vs. Plane. In Fig. 8, we show the results using our con-

figuration and using the plane as the setup, we provide structure
similarity index measure (SSIM) to measure the effect of both meth-
ods. Better results can be obtained using our method.

4 DISCUSSION AND LIMITATIONS
Generality. Since we only use local shading in a fixed scene with no
occlusion for inverse rendering, we implemented our differentiable
renderer (like the rest of the solver) in PyTorch. Other frameworks
(e.g., Mitsuba 2 [Nimier-David et al. 2019]) would be feasible as
well.

Scope. Our model only focuses on woven fabrics. However, we
believe that it will inspire more types of fabric capture in the future
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Figure 6: Comparison between our method and MATch [Shi et al. 2020].

Henzler et al. 21 OursInput (measured) SVBRDF maps Henzler et al. 21 Ours

Figure 7: Comparison between our method and a SVBRDF recovery model [Henzler et al. 2021].

and our techniques (geometry and shading component, differen-
tiable rendering, neural initialization) will transfer to these cases.

Expressiveness of the forward model. Our current model does not
consider gaps between yarns, nor yarns with varying thickness,
which are common in linen fabrics as shown in the example in Fig. 9

(Top). These features would be fairly easy to add to our model, and
we leave it for future work. Our model also does not implement
one feature present in Irawan and Marschner’s model [2012]: their
𝜅 parameter can be negative, giving yarns negative curvature and
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Cylinder Plane

Figure 8: Using our cylinder configuration gives better results than the flat plane configuration.

Irawan and Marschner [2012] Ours

Measured Ours

Figure 9: Limitations. Our model does not yet handle fabrics
that have large gaps (top) or with double-highlights (bottom).
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Figure 10: We rotate different angles when placing the fabric
on the cylinder, and calculate the correspondingGrammatrix
loss, the quality of the recovered fabrics will decrease as the
rotation angle increases.

causing the double-highlight appearance, as shown in Fig. 9 (bot-
tom). This feature could also be added in the future. Our model is
at the yarn level, and does not consider flyaway fibers, which could
be modeled as explicit strands.

Axis-aligned patterns and pattern variety. In our geometric model,
we only consider axis-aligned yarns. Our approach will not work
well with input measurements rotated at arbitrary angles. In Fig. 10
in the supplementarymaterial, we show an error curvewith varying
degrees of warp misalignment in the sample. We trained our model
only on three patterns (five with rotations), which are very common
in practice, though other patterns exist and our model could support
them in the future with minor effort.

Domain gap. There is a domain gap between synthetic and real
data. Some domain gap exists partly due to the forward model ca-
pabilities, and partly due to the sampling distribution for synthetic
data. The latter issue is addressed by the optimization step.

Lack of yarn-level displacement. Our current model does not
implement yarn-level displacement, which has a strong effect in
thicker fabrics (e.g., jacquard), nor non-regular thick yarns (e.g.,
linen) where yarn-to-yarn occlusion plays a significant role at fore-
shortening angles. More advanced differentiable rendering could
support these effects.

Lack of transmission. Our model does not consider transmission
effects for now. Since the forward model can be easily extended
to handle transmission, we believe our model will be extensible to
these effects, but will need a modified setup to capture transmission
images.
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