
Lightweight Neural Basis Functions for All-Frequency Shading
Supplemental Material

1 DISCUSSION ON BASIS FUNCTIONS
Basis functions are pervasively applied in rendering because of their
compact representation and convenient computational properties.
However, different type of basis functions has their advantages
and limitations. In this section, We evaluate the pros and cons of
commonly used basis functions including spherical harmonics (SH),
wavelets and spherical Gaussians (SG).

Spherical harmonics (SH) are a set of orthonormal basis functions
𝑌𝑙𝑚 (𝝎) with degree 𝑙 = 0, 1, 2, . . . and order𝑚 = −𝑙,−𝑙 + 1, . . . , 𝑙 .
Therefore, the spherical harmonics up to degree 𝑙 have (𝑙 + 1)2 ba-
sis functions in total. Besides orthonormality, spherical harmonics
have other good mathematical properties such as rotational invari-
ance. However, the biggest problem of SH is their low-frequency
nature. Even with hundreds of SH basis functions, we can only
represent a relatively low-frequency spherical signal, which makes
SH not suitable to preserve sharp details or represent highly glossy
materials.

Wavelets are also a group of orthonormal basis functions. They
work by performing a 2D wavelet transform from a given function
(usually an image) to a set of coefficients. The wavelet transforms
itself does not perform any compression, because the number of
the resulting coefficients is no less than the number of pixels in
the original image. But the coefficients can then be non-linearly
thresholded, discarding those close to zero. In this way, with the
storage of 0.5%-10% of the resulting coefficients, wavelets are able to
faithfully represent a 2D function while keeping its high-frequency
details.

However, the non-linearity of wavelets brings about the incon-
venience. For the multiple products operation using wavelets, since
the positions of the non-zero entries can differ per input function,
it is generally not possible to quickly carry out the resulting prod-
uct in wavelet form. In fact, even for the triple product integral of
three wavelet-represented functions, considerable efforts [Ng et al.
2004; Sun and Mukherjee 2006] have to be made for reasonably
fast performance, and are still limited to a specific kind of wavelets
(Haar wavelets).

The biggest issue of the wavelets is that they do not support
efficient rotation. When a function (usually spherical) is rotated, it
is difficult to simply perform a rotation on the non-zero coefficients.
Instead, the entire function must be first recovered, then rotated,
reprojected, and thresholded again. Efforts have been devoted to al-
leviate the rotation issue [Wang et al. 2006], but the time complexity
is still high, diluting the practicality of wavelet basis functions.

Note specifically that the percentage of coefficients kept in the
non-linear wavelet transform is significantly different from the ac-
tual compression rate, since the coefficients must be sparsely stored
together with their indices. Therefore, without any further quanti-
zation, the storage of wavelet coefficients should at least be doubled

(which is used throughout this paper) from the number of coef-
ficients, if not tripled for 2D images with 2D indices. For a fair
comparison, in terms of storage, we also do not use any quanti-
zation, such as float32 to float16 compression (we only use it for
faster inference), and simply count the number of coefficients.

Spherical Gaussians (SG) are a widely used type of Spherical
Radial Basis Functions (SRBF). They are simple extensions of the
Gaussian Mixture Model (GMM) onto the surface of a unit sphere.
It is generally believed that spherical Gaussians are able to repre-
sent all frequency contents with very few number of basis func-
tions. However, they are not suitable to represent complex shapes
of 2D visibility functions. Moreover, the spherical Gaussians are
usually optimized via the Expectation-Maximization (EM) process,
and therefore not temporally stable and non-linear. And spherical
Gaussians are not orthonormal, indicating not only an 𝑂 (𝑛2) DPI
performance, where 𝑛 is the number of selected basis functions, but
also a squared number of resulting spherical Gaussians, making
TPI and multiple product integrals even more difficult. For this
reason, we compare our method against SG, but mainly focus on
the wavelets.

Similar to the wavelet case, the number of SGs is not the actual
storage. Each SG at least requires 4 floating numbers to specify its
2D center, 1D bandwidth and 1D amplitude, assuming it is isotropic.

2 NEURAL NETWORK DESIGNS
2.1 Representation Network
Our representation network is analogous to the autoencoder used
in image compression [Agustsson et al. 2019]. We choose the octa-
hedron parameterization [Clarberg 2008] instead of the commonly
used cube maps or sphere maps, since the octahedron parameteri-
zation needs only one image, and ensures equal solid angle of all
pixels. Given a 2D spherical function as input, the encoder can com-
press it into a low-dimensional latent vector that can be converted
back to the original function via the decoder. However, we do not
need to decode the latent vector back to the original function. That
said, we just use our representation network to encode 2D spheri-
cal functions into latent vectors as a preprocessing step. Only the
encoded low-dimensional latent vectors, rather than the expensive
decoder, are used during rendering. Since the autoencoder is mainly
used in the offline preprocess, we can make it sophisticated enough
for capturing high-frequency and local details in given functions.

We show the architecture of our representation network in Fig. 1.
Both the encoder and the decoder are fully convolutional neural net-
works (CNN) without skip connections. The encoded latent vector
has a dimension of 3× 8× 8, which has a compression rate of 0.39%
compared to the original function 𝑓 . Note that to guarantee the
latent/coefficients contain all information to recover the input func-
tion, skip connections between the encoder and decoder, usually
seen in U-Nets [Ronneberger et al. 2015], are strictly prohibited.

SIGGRAPH ASIA ’22, December 06–09, 2022, EXCO, Daegu, South Korea

0.39%

Conv (k3s2) LReLU Conv (k1s1) LReLU

(32, 128,128)

(64, 64, 64)(128 32,32)
(256,16,16)(512,8,8)(512,8,8)

Up2x Conv (k3s1) LReLUConv (k1s1) LReLU

(3, 128,128)

(3, 8, 8)
(512,8,8)(512,8,8)(256,16,16)

(128 32,32)(64, 64, 64)

Encoder Decoder

Latent

Residual
 Block

Residual
 Block

(3, 128,128)

Conv (k3s1) LReLU

Figure 1: The structure of our representation (P) network. The encoder transform the original 2D function into latent coefficients,
which only take 0.39% of the original storage. Given the specific latent coefficients, the decoder would be able to approximately
reconstruct the original 2D function.

Fully Connected SinConv (k3s2) LReLU

Latent 1

Latent 2

Fully Connected LReluConv (k3s1) LReLU

(3, 8, 8)

(3, 8, 8)

(256, 1)

Flatten (3, 1)

(128, 1)(128, 1)(128, 1) (128, 1)(128, 1)(6, 8, 8)
(16, 4, 4)

(32, 2, 2)(64, 2, 2)

Figure 2: The DPI network has three convolutional layers
and 6 fully connected layers with sin activation [Sitzmann
et al. 2020] which are helpful to maintain highlights and
high-frequency shadows. It take two latent vectors as input
and perform double project integral on them.

(256, 1)

Flatten (3, 1)

Fully Connected Sin

(128, 1)

Conv (k3s2) LReLU

Latent 1

Latent 2

Latent 3

(128, 1)(128, 1) (128, 1)(128, 1)

Fully Connected LReLU Conv (k3s1) LReLU

(3, 8, 8)

(3, 8, 8)

(3, 8, 8)

(9, 8, 8)
(16, 4, 4)

(32, 2, 2)(64, 2, 2)

Figure 3: The TPI network’s structure is very similar to DPI
network except for the input are three latent vectors. It will
perform triple product integral on these three latent vectors.

2.2 Computation Networks
We design three individual computation networks to support the
operations including double product integral (DPI), triple product
integral (TPI), and rotation (R). In order to achieve fast computation
during rendering, these networks should be as simple as possible
to guarantee real-time performance. Additionally, we enforce the

(256, 1)Flatten

Fully Connected Sin

Latent

(3, 8, 8)

SO(3)

Rotated

(3, 8, 8)
Concat

(201, 1) (256, 1)(256, 1)(256, 1) (256, 1)(192, 1)

(192, 1)

Fully Connected LRelu

(3, 3) latentFlatten

(192, 1)

(9, 1)

Figure 4: The structure of our R network. It consists of 7 fully
connected layers and perform rotation on a latent vectorwith
a specific 𝑆𝑂 (3) rotation matrix.

networks to directly operate on the latent space, i.e., taking the
latent vectors compressed by the encoder as input.

The network structure of DPI and TPI are shown in Fig. 2 and
Fig. 3. They share the same network design, except for the input
layer, which is 2 latent vectors for DPI network and 3 latent vectors
for TPI network. Note that we choose to use convolutional layers
and sine activation functions [Sitzmann et al. 2020] in both DPI
network and TPI network since they provide a better image quality.
Replacing CNNs with fully connected layers will lead to blurry
results.

Our R network is essentially rotating 2D function in the latent
space, and the structure is shown in Fig. 4. It consists of 7 fully con-
nected layers. Instead of taking in three Euler angles or quaternions,
we use continuous rotation representation 𝑆𝑂 (3) as input [Zhou
et al. 2019], because Euler angles and quaternions are not continu-
ous representations for spherical rotations and thus are not suitable
for neural networks to learn.

3 IMPLEMENTATION
3.1 Training details
We implemented our networks in PyTorch [Paszke et al. 2017] for
training. We use a desktop with one NVIDIA RTX 3090 GPU. We
use Adam optimizer [Kingma and Ba 2014] with moment param-
eters of 𝛽1 = 0.5, 𝛽2 = 0.999. The initial learning rate is set as

Lightweight Neural Basis Functions for All-Frequency Shading SIGGRAPH ASIA ’22, December 06–09, 2022, EXCO, Daegu, South Korea

Dancing Kittens 0.03334

Wavelet

0.37098

Env.

0.17664

Cosine * Vis.

SG

0.01065

0.28121

Env.

0.20775

Cosine * Vis.

P network
0.00095

DPI
0.00385

0.20419

Env.

0.00863

Cosine * Vis.

GT

Env. Cosine * Vis.

Kitten

Wavelet

0.02826

0.21426

Env.

0.25887

Vis.

0.22377

BRDF

SG

0.04578

0.18697

Env.

0.22911

Vis.

0.05864

BRDF

P network
0.00537

TPI
0.00627

0.08556

Env.

0.01283

Vis.

0.00641

BRDF

GT

Env. Vis. BRDF

Figure 5: Comparison of rendered images using spherical functions compressed and reconstructed with our representation (P)
network, wavelet, and SG at an equal compression rate. Our P network can capture high-frequency details such as shadows
and glossy highlights and produce rendering results close to the ground truth, while wavelet produces flickering colors and
blocky shadows and SG fails to capture the high-frequency visibility and BRDF. Below the rendering results, We also visualize
reconstructed and reference spherical functions (environment lighting, visibility, and BRDF). We provide the DSSIM error of
each result which also indicates that our results achieve the highest quality.

TPI w/o R 0.21272 TPI w/ R 0.21284 TPI w/ R

TPI w/o R

Figure 6: This figure shows the our TPI network’s results of
using latent vectors directly from encoder (left, TPI w/o R)
and using latent vectors from our rotation network (middle,
TPI w/ R) with their DSSIM error (right bottom). The error
map on the right shows their differences against the refer-
ence. Rendering with rotation in the latent space using our
rotation network is accurate and matches the reference well.

10−4, and decay power of 0.95 for every 20 epochs. We train rep-
resentation network jointly with DPI network or TPI network. In
theory, it is feasible to train both DPI network and TPI network at
the same time, but we choose to train either of them. Because they
are designed for different applications. Note that when training
the whole representation network (encoder and decoder), evaluat-
ing LVGG in the decoder branch is very time-consuming and we
found that the representation network will already have a strong
representation ability after just first several epochs. To acceler-
ate training, after jointly training the representation network and

Pi
az
za

0.09559 0.07059 0.06907

C
am

pu
s

0.15605 0.09172 0.05394
SH (DPI) Wavelet TPI w/o R GT

Figure 7: This scene is a sphere with very glossy BRDF. Each
point on the sphere will reflect a tiny area of environment
light. Our TPI fails to reproduce the desired mirror reflection
effect due to information loss from heavy compression. In
this case, SH produces ringing artifacts. While wavelets suc-
cessfully handle the glossy BRDFs, the highly compressed
environment lighting are inevitably blocky.

DPI/TPI network for 20 epochs, we fix the decoder and only train
the encoder and DPI/TPI network. But we resume to train the de-
coder separately (and fix other components) every 20 epoch to
maintain the decoder’s representation ability. After finishing the
training of DPI/TPI network, we fix everything and start to train
the R network individually with environment maps only.

SIGGRAPH ASIA ’22, December 06–09, 2022, EXCO, Daegu, South Korea

Our DPI GT

Our TPI GT

Figure 8: Although our method efficiently supports dynamic
all-frequency shading, our lightweight computation net-
works may still blur/miss some extremely high-frequency
shadows and lights due to the information loss of highly
compressed latent vectors.

In theory, training our networks on large datasets can provide
neural basis functions with good generalizability. However, because
of the high image quality requirement of the rendering task, it is
extremely challenging to generalize a pre-trained set of neural
basis functions to arbitrary scene geometries and environmental
lighting conditions. Therefore, we choose to further improve the
image quality by fine-tuning our pre-trained model on the specific
geometric data. The training time can be considered as part of
the precomputation time. It gives us scene-specific neural basis
functions with better quality. The pre-train step takes 3 days, and
the fine-tuning generally takes about 1 days (e.g., Kitten in Fig. 5),
possibly longer for more complex scene, depending on the specific
geometric data size. Since we did our training with one single RTX
3090 GPU, it is possible to accelerate training multiple times and
reduce the cost of fine-tuning to a few hours by using more GPUs.

3.2 Rendering preparation
For each scene, we run all the 2D spherical functions (environ-
ment lighting, visibilities, BRDFs and transport functions) per-pixel
through the encoder, then the resulting latent vectors are stored as
a multi-channel texture in GPU’s global memory. For those pixels
not covered by any objects, we use another binary texture to mark
them invalid.

4 VALIDATION
4.1 All-frequency capacity
To further study the capacity of our neural basis functions, we show
in Fig. 5 a comparison of rendered images using spherical functions
(including environment lighting, transport function, visibility, and
cosine-weighted BRDF) compressed and reconstructed with our
representation network, wavelet, and SG at an equal compression

Scene Figure #Valid
pixels

#Trained
lighting

DPI
(ms)

TPI
(ms) FPS

Dancing Kittens Fig. 5 316539 10 7.1 N/A 140.8
Kitten Fig. 5 174441 12 N/A 4.5 217.4

Table 1: The scene configurations and performance statistics.
Our runtime performance of each scene meets the real-time
requirements. The running time of the rotation network is
negligible since the rotation is only operated on lighting.

rate. The rendering results are generated by pixel-wised multiplica-
tion and integration of the reconstructed spherical functions. And
the scene statistics are summarized in Table. 1.

Our representation network can capture high-frequency details
such as shadows and glossy highlights and produce rendering re-
sults close to the ray-traced ground truth, while wavelet produces
flickering colors and blocky shadows and SG fails to capture the
high-frequency visibility and BRDF.

4.2 Joint Computation
Despite we design different computation neural networks as sub-
stitution for some mathematical operations, these neural networks
are suppose to act as the general operations of our implicit neural
basis functions. It means, in our case, the latent vectors output from
rotation network are supposed to be usable for other computation
networks. Fig. 6 verifies that our rotation network works well with
computation networks.

5 FAILURE CASE
Because we use short latent vectors to compress 2D spherical func-
tions and render images with lightweight computation neural net-
works, there is inevitable information loss in theory. While these
compressed latent vectors may have little effect on the final ren-
dering results, since they can properly represent the geometric
functions (see the results of P network in Fig. 5). The computation
networks (DPI, TPI, and R networks) produce more noticeable ar-
tifacts such as the blurred high-frequency shadows and missing
specular reflection, as can be seen in Fig. 8 and the supplemental
video.When extremely high-frequency signals are present, overblur
artifacts can also arise, as shown in Fig. 7. This is because we use
lightweight neural networks to perform complex integral computa-
tions. We believe that these artifacts can be better suppressed using
smarter loss functions, advanced architectures, and more data.

REFERENCES
Eirikur Agustsson, Michael Tschannen, Fabian Mentzer, Radu Timofte, and Luc Van

Gool. 2019. Generative adversarial networks for extreme learned image compres-
sion. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
221–231.

Petrik Clarberg. 2008. Fast equal-area mapping of the (hemi) sphere using simd. Journal
of Graphics Tools 13, 3 (2008), 53–68.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
arXiv preprint arXiv:1412.6980 (2014).

Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. 2004. Triple Product Wavelet Inte-
grals for All-Frequency Relighting. ACM Transactions on Graphics (Proceedings of
SIGGRAPH) 23, 3 (2004), 475–485.

Lightweight Neural Basis Functions for All-Frequency Shading SIGGRAPH ASIA ’22, December 06–09, 2022, EXCO, Daegu, South Korea

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-
matic differentiation in PyTorch. (2017).

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference onMedical
image computing and computer-assisted intervention. Springer, 234–241.

Vincent Sitzmann, Julien NP Martel, Alexander W Bergman, David B Lindell, and
Gordon Wetzstein. 2020. Implicit neural representations with periodic activation
functions. arXiv preprint arXiv:2006.09661 (2020).

Weifeng Sun and Amar Mukherjee. 2006. Generalized wavelet product integral for
rendering dynamic glossy objects. Acm Transactions on Graphics 25, 3 (2006),
955–966.

Rui Wang, Ren Ng, David P Luebke, and Greg Humphreys. 2006. Efficient Wavelet
Rotation for Environment Map Rendering.. In Rendering Techniques. 173–182.

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. 2019. On the continuity
of rotation representations in neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 5745–5753.

	1 Discussion on Basis Functions
	2 Neural Network Designs
	2.1 Representation Network
	2.2 Computation Networks

	3 Implementation
	3.1 Training details
	3.2 Rendering preparation

	4 Validation
	4.1 All-frequency capacity
	4.2 Joint Computation

	5 Failure Case
	References

