
Handwritten Tamil Recognition using a Convolutional Neural Network

Prashanth Vijayaraghavan
MIT Media Lab
pralav@mit.edu

Misha Sra
MIT Media Lab
sra@mit.edu

Abstract

We classify characters in Tamil, a south Indian language,
using convolutional neural networks (ConvNets) into 35 dif-
ferent classes. ConvNets are biologically inspired neural
networks. Unlike other vision learning approaches where
features are hand designed, ConvNets can automatically
learn a unique set of features in a hierarchical manner. We
augment the ConvNetJS library for learning features by us-
ing stochastic pooling, probabilistic weighted pooling, and
local contrast normalization to establish a new state-of-the-
art of 94.4% accuracy on the IWFHR-10 dataset. Further-
more, we describe the different pooling and normalization
methods we implemented and show how well they work in
our experiments.

1. Introduction
Tamil is one of the oldest languages in the world with

several million speakers in the southern Indian state of
Tamil Nadu and Sri Lanka. Tamil is written in a non-Latin
script and has 156 characters including 12 vowels and 23
consonants (see Figure 1). Compared to Latin character
recognition, isolated Tamil character recognition is a much
harder problem because of the larger category set and poten-
tial confusion due to similarity between handwritten char-
acters. Previous approaches in classifying Tamil charac-
ters have used a variety of hand-crafted features [15] and
template-matching [16]. In contrast, ConvNets learn fea-
tures from pixels all the way to the classifier [14]. The su-
periority of learned features over hand-designed ones was
demonstrated by [12] and also shown by others obtaining
best performance in traffic sign classification using Con-
vNets [14, 3]. The deep learning network structure implic-
itly extracts relevant features, by restricting the weights of
one layer to a local receptive field in the previous layer. By
reducing the spatial resolution of the feature map, a certain
degree of shift and distortion invariance is achieved [5]. The
number of free parameters decreases significantly due to us-
ing the same set of weights for all features in a feature map
[9]. Their ability to exploit the spatially local correlation

Figure 1: 32 ⇥ 32 cropped samples from the classification
task of the IWFHR-10 Tamil character dataset. The dataset
has samples for 156 handwritten characters classes.

has helped in achieving extremely high performance on the
popular MNIST handwritten digits dataset [10]. ConvNets
were also able to achieve a 97.6% facial expression recog-
nition rate on 5,600 still images of more than 10 individuals
[11].

Handwritten character recognition can be online or of-
fline. In this context, online recognition involves conver-
sion of digital pen-tip movements into a list of coordinates,
used as input for the classification system whereas offline
recognition uses images of characters as input. Some of the
earlier works apply shallow learning with hand-designed
features on both online and offline datasets. Examples of
hand-designed features include pixel densities over regions
of image, character curvature, dimensions, and number of
horizontal and vertical lines. Shanthi et al. [15] use pixel
densities over different zones of the image as features for
an SVM classifier. Their system achieved a recognition
rate of 82.04% on a handwritten Tamil character database.
Sureshkumar et. al. [16] use a neural network based algo-

1



Figure 2: An input image (or a feature map) is passed through a non-linear filterbank, followed by tanh activation, local
contrast normalization and spatial pooling/sub-sampling. a) First convolutional layer with 16 filters of size 5 ⇥ 5. b) Max-
pooling layer of size 2⇥2 with stride 2. c) Local response normalization layer with alpha = 0.1 and beta = 0.75. d) Second
convolutional layer with 32 filters of size 5⇥ 5. e) Max-pooling of size 2⇥ 2 with stride 2. f) Third convolutional layer with
32 filters of size 5 ⇥ 5. g) Max-pooling of size 2 ⇥ 2 with stride 2. h) 35-way softmax classification layer. We train using
stochastic gradient descent with an adaptive learning rate.

rithm where features like number of horizontal and vertical
arcs and width and height of each character are extracted
during pre-processing. These features are then passed to
an SVM, a Self Organizing Map, an RCS, a Fuzzy Neu-
ral Network, and a Radial Basis Network. They achieve an
accuracy of 97% on test data but their approach is not in-
variant to deformations or different writing styles as their
algorithms are highly dependent on the form of the char-
acter. Unfortunately, they provide little to no detail on
their dataset. Ramakrishnan et al. [13] derive global fea-
tures from discrete Fourier transform (DFT), discrete co-
sine transform (DCT), wavelet transform to capture overall
information about the data and feed into an SVM with a
radial basis function (RBF) kernel. They obtain 95% ac-
curacy on an online test set. Though there has been a lot
of research in Tamil handwriting recognition, most of it has
been with online datasets [1, 8], or with online and offline
hybrid classifiers, and limited research with offline datasets.
To the best of our knowledge, we have not seen previous
attempts with ConvNets for our particular dataset. We em-
ploy the traditional ConvNet architecture augmented with
different pooling methods and local contrast normalization.
This work is implemented with the open source ConvNetJS
library 1.

2. The Dataset
We train the offline IWFHR-10 Tamil character dataset

from the HP Labs India website 2. The dataset contains
1
http://cs.stanford.edu/people/karpathy/

convnetjs/

2
http://lipitk.sourceforge.net/datasets/

tamilchardata.htm

approximately 500 samples for each of the 156 Tamil char-
acters written by native Tamil writers. The characters are
made available for download as TIFF files. We resize the
original unequally sized rectangular images into 32 ⇥ 32
square images and save them as JPG files. The resized JPG
images are exported and saved as rows in a large CSV file
where the first column of each row is added as the image
class. This is done in MATLAB. A simple Python script
is used to shuffle this large CSV file and split it into two
smaller CSV files, one for the training set and another for
the test set containing approximately 60K and 10K images
each. We read both CSV files into the ConvNetJS library by
implementing a CSV parser using Papaparse 3.

3. Architecture
The input to the convolutional neural network is a 32⇥32

image passed through a stack of different kinds of layers as
follows: n⇥32⇥32�16C5⇥5�P2⇥2�L3⇥3�32C5⇥
5� P2⇥ 2� 32C5⇥ 5� P2⇥ 2� 35N . This represents
a net with n input images of size 32 ⇥ 32, a convolutional
layer with 16 maps and filters of size 5 ⇥ 5, a max-pooling
layer over non-overlapping regions of size 2⇥2, a convolu-
tional layer with 32 maps of size 5⇥5, a max-pooling layer
over non-overlapping regions of size 2⇥ 2 and a fully con-
nected output layer with 35 neurons, one neuron per class
(see Figure 2). We use a non-linear hyperbolic tangent ac-
tivation function, where the output f is a function of input
x such that f(x) = tanh(x) for the convolutional layers,
a linear activation function for the max-pooling layers, and
a softmax activation function for the output layer. We train

3
http://papaparse.com/

2

http://cs.stanford.edu/people/karpathy/convnetjs/
http://cs.stanford.edu/people/karpathy/convnetjs/
http://lipitk.sourceforge.net/datasets/tamilchardata.htm
http://lipitk.sourceforge.net/datasets/tamilchardata.htm
http://papaparse.com/


Figure 3: Example illustrating stochastic pooling. a) Re-
sulting activations within a 3⇥ 3 pooling region. b) Proba-
bilities based on the activations. c) Sampled activation.

using stochastic gradient descent with an adaptive learning
rate[17].

The input layer has N ⇥N neurons corresponding to the
size of the input image. If we use an m ⇥ m filter �, the
output of the convolutional layer will be of size (N �m+
1) ⇥ (N �m + 1). The input at any neuron at a particular
point in time x

l

ij

is the sum of the weighted contributions
from the neurons in the previous layer such that:

x

l

ij

=
m�1X

p

m�1X

q

�

pq

y

(l�1)
(i+p)(j+q) (1)

A non-linear function is then applied element-wise to
each feature map and the resulting activations are passed
to the pooling layer.

y

l

ij

= �(xl

ij

) (2)

The pooling layer (i.e. subsampling) outputs local aver-
ages of the feature maps in the previous convolutional layer
to produce pooled feature maps (of smaller size) as output.
Max-pooling layers take a K⇥K region as input and output
a single value based on the maximum value in that region.
If the input layer is N ⇥ N , the output from the pooling
layers is of size NK ⇥NK since all the K ⇥K blocks are
reduced to a single value. Because pooling is an average
over a local region, the output feature maps are less sensi-
tive to precise locations of features in the image than the
first layer of feature maps. Beyond the conventional deter-
ministic forms of pooling like average and max, Zeiler et al.
[18] introduce stochastic pooling and probabilistic weight-
ing which we implement in the ConvNetJS library for our
experiments.

3.0.1 Stochastic Pooling

In stochastic pooling, a sample activation from the multino-
mial distribution of activations from each pooling region is

selected. More precisely, the probabilities p for every re-
gion R

j

(total regions n

r

) are calculated after normalizing
the activations within the region (see Figure 3).

p

i

=
x

iP
k2Rj

x

k

(3)

Sampling the multinomial distribution based on p to pick
a location t within the pooling region is simply:

s

j

= x

t

; t ⇠ P (p1 · · · pnr ) (4)

3.0.2 Probabilistic Weighting

Probabilities are computed similar to stochastic pooling.
But the activations in each region are weighted by the
probability p

i

and summed. It can be called probabilistic
weighted averaging as it is a variation of the standard aver-
age pooling. Stochastic pooling causes performance degra-
dation during test but probabilistic averaging can boost the
performance when applied during test time.

s

j

=
X

k2Rj

p

i

x

i

(5)

The next pair of convolutional and subsampling layers
work in the same manner. The convolutional layer takes
in the output from the pooling layer as input and extracts
features are that are increasingly invariant to local changes
in the input images. The second convolutional layer has
32 feature maps which increases the feature space but re-
duces the spatial resolution. The last layer is the classifica-
tion layer.

Figure 4: Output from the LRN layer for one character, ro-
tated for display.

3.0.3 Local response normalization

ReLUs have the desirable property that they do not require
input normalization to prevent them from saturating. If at
least some training examples produce a positive input to a
ReLU, learning will happen in that neuron [7]. Even though
we got better results using tanh() over ReLU, we still found
that the following local normalization schemes aided gener-
alization (see Figure 4).

This layer computes the function:

3



Figure 5: Local contrast normalization

f(ux,y

f

) =
u

x,y

f

1 + ↵

N

region

xy

(6)

where u

x,y

f

is the activity of a unit in map f at position
x, y prior to normalization, S is the image size, and N is
the size of the region to use for normalization. The output
dimensionality of this layer is always equal to the input di-
mensionality.

region

xy

=

min(S,x�N/2+N)X

x

0=max(0,x�N/2)

min(S,y�N/2+N)X

y

0=max(0,y�N/2)

(ux

0
,y

0

f

)2)�

(7)
This layer is useful when using neurons with unbounded

activations (e.g. rectified linear neurons) as it permits the
detection of high-frequency features with a big neuron re-
sponse, while damping responses that are uniformly large in
a local neighborhood. It is a type of regularizer that encour-
ages “competition” for big activities among nearby groups
of neurons 4.

3.0.4 Local contrast normalization

Local contrast Normalization (LCN) can be either subtrac-
tive or divisive. Subtractive LCN subtracts from every value
in the feature a gaussian weighted average of its neighbors.
Divisive LCN divides every value in a layer by the standard
deviation of its neighbors over space and over all feature
maps. The mean and variance of an image around a local
neighborhood are made consistent (see Figure 5)and that is
useful for correcting non-uniform illumination or shading
artifacts 5.

We implement this layer to compute the LCN function:
4
https://code.google.com/p/cuda-convnet/wiki/

LayerParams

5
http://bigwww.epfl.ch/sage/soft/

localnormalization/

f(ux,y

f

) =
u

x,y

f

1 + ↵

N

region

xy

(8)

where mx

0
,y

0

f

here is the mean of all ux,y

f

in the 2D neigh-
borhood defined by the summation bounds below.

region

xy

=

min(S,x�N/2+N)X

x

0=max(0,x�N/2)

min(S,y�N/2+N)X

y

0=max(0,y�N/2)

(ux

0
,y

0

f

�m

x

0
,y

0

f

)2)�

(9)
This layer is similar to the response normalization layer

except we compute the variance of activities in each neigh-
borhood, rather than just the sum of squares (correlation).

Figure 6: The first two images are perfectly classified with
high confidence scores despite existence of similar charac-
ters shown as second best predictions for each image.

4. Experiments
ConvNets have a large set of hyper-parameters and find-

ing the perfect configuration for each dataset is a challenge.
We explored different configurations of the network and at-
tempted to optimize the parameters based on the validation
set accuracy. For our recognition task, we focus on 35 Tamil
characters that include all vowels and consonants with a
dataset of 18,535 images.

4.1. Data Preparation
The IWFHR-10 classification dataset contains randomly

sized images. After resizing all images to 32 samples, we
split the dataset is into three subsets: train set, validation

4

https://code.google.com/p/cuda-convnet/wiki/LayerParams
https://code.google.com/p/cuda-convnet/wiki/LayerParams
http://bigwww.epfl.ch/sage/soft/localnormalization/
http://bigwww.epfl.ch/sage/soft/localnormalization/


Figure 7: Pairs of similar looking characters in the Tamil
dataset.

set and test set. Since we are given no information about
how the sampling of these images was done, we shuffle our
datasets before use. We initially experimented with rect-
angular images of size 35 ⇥ 28 selected to maintain the
aspect ratio of most of the sample images in the original
dataset. However, the results were not promising due to
limited training examples. A neural network model for pat-
tern recognition should make predictions that are invariant
to variations of the same class of patterns [4]. This is usu-
ally done by training the neural network using a dataset with
enough variations of the patterns. However, with limited
data, the neural network training can over-fit and hurt the
classification robustness. One way to deal with this prob-
lem is data augmentation where the training set is artifi-
cially augmented by adding samples with transformations
that preserve the class labels. Data augmentation is widely
used in image recognition tasks where transformations have
led to significant improvements in recognition accuracy [4].
To increase the size of our dataset, we first created comple-
mentary images and normalized them to values between 0
and 1 and then applied rotational deformations for improv-
ing spatial invariance resulting in a dataset 70, 524 images.

4.2. Character Recognition

Our initial experiments gave us a 93% training accuracy
while the test accuracy was 89.3%. We explored techniques
to prevent overfitting (see Tables 1 and 2) by applying dif-
ferent regularization methods. In a convolutional neural net-
work there may be many different settings of weights that
can model the training set well, especially with limited la-
beled training data. Each of these weight vectors will make
different predictions on test data and most likely not do as
well as it did on training data because the feature detectors

have been tuned to work well together on the training set but
not on the test set [6]. Dropout is a regularization technique
where on each presentation of each training case, feature
detectors are deleted with probability p and the remaining
weights are trained by backpropagation [2].

Figure 8: The classification function calculates a negative
log likelihood loss and back propagates L1-loss.

For improving generalization, we implement a data aug-
mentation function for our network, where we initially in-
put a 35 ⇥ 28 image and crop a random 31 ⇥ 24 window
from that image before training on it. Similarly, to do pre-
diction, 4 random crops are sampled and the probabilities
across all crops are averaged to produce final predictions 6.
For square input images of size 28 ⇥ 28, the ConvNetJS
library already has a data augmentation implementation as
described above.

We implemented and experimented with the following
generalization techniques:

• Stochastic Pooling during training and testing

• Probabilistic Weighting during training and testing

• Stochastic Pooling during training + Probabilistic
Weighting during testing

• Dropout in a convolutional layer

• Dropout in a fully connected layer

• Data augmentation function

Applying these techniques did not provide a big boost
in performance but we did see marginal increases in com-
parison with configurations without them. With the imple-
mentation of local contrast normalization, the test accuracy
improved to 94.1%. However, the local response normal-
ization outperformed all other configurations and we were
able to achieve a high test accuracy of 94.4% with a training
accuracy of 99%. The effect of local contrast normalization

6
http://cs.stanford.edu/people/karpathy/

convnetjs/

5

http://cs.stanford.edu/people/karpathy/convnetjs/
http://cs.stanford.edu/people/karpathy/convnetjs/


Pooling Activation Classifier Train Acc. Test Acc. Others
Max Tanh Softmax 91% 87.39% NA
Max ReLu Softmax 69% 48.2% NA
Max Tanh SVM 84% 80.4% NA

Stochastic Tanh Softmax 86% 87.72% NA
Stochastic Tanh Softmax 84% 57.92% FC (dropout:0.1)
Stochastic Tanh SVM 80% 65.99% NA

Stochastic+Prob Wt Tanh Softmax 84% 86.5% NA

Table 1: Experiments with 35⇥ 28 images. FC: fully connected layer. Dropout: drop activations with probability 0.1.

Pooling Activation Classifier Train Acc. Test Acc. Others
Max Tanh Softmax 99% 94.4% LRN
Max Tanh Softmax 95% 94.1% LCN
Max Tanh Softmax 97% 93.5% NA
Max Tanh Softmax 93% 89.3% FC (neurons:1024)
Max ReLu Softmax 97% 93.2% NA
Max Tanh SVM 97% 90.3% NA
Max Tanh Softmax 82% 73% FC (dropout:0.2)

Stochastic Tanh Softmax 94% 93.3% NA
Stochastic ReLu Softmax 95% 92.5% NA
Stochastic Tanh SVM 90% 89.6% NA

Stochastic+Prob Wt ReLu Softmax 94% 92.6% NA

Table 2: Experiments with 32⇥ 32 images. FC: fully connected layer. Dropout: drop activations with probability 0.2.

can be seen in Figure 2 with the approximate whitening of
the image. Experiments using Dropout in a convolutional
layer as well as in a fully connected layer led to a surprising
drop in accuracy and we conjectured this was likely due to
a small total number of activations possibly leading to loss
of important activations.

The convolutional neural network architecture was
trained with different set of configurations for rectangular
and square images. The hyperparameters were optimized
based on a validation set of images and results are shown in
Tables 1 and 2.

Figure 8 shows the drop in the classification loss as the
number of training examples increases. Classification loss
came down from approximately 3.39 to 0.08 as the training
progressed. Exploiting the ability of convolutional neural
networks to learn invariances to scale, rotation, and trans-
lation the characters were recognized with high accuracy.
Figure 6 shows the images and the top three predictions of
our classification. The first two images are perfectly clas-
sified with high confidence scores though they have very
similar looking characters as the second best predictions for
each image. In the third image, our ConvNet fails to cor-
rectly classify the character but the confidence score is re-
ally close to the second best guess. We would like to note
that it is difficult even for a human being to distinguish be-
tween these two characters as they are very similar to each

other.

5. Acknowledgements

We would like to thank Professors William Freeman
and Antonio Torralba for giving us the opportunity to learn
about ConvNets through course 6.869. We are also thank-
ful to the course TAs Carl Vondrick and Andrew Owens for
their help and support. Lastly, we would like to thank HP
Labs India for making the dataset available for research.

6. Discussion

Our results show that a convolutional neural network is
capable of achieving record breaking results on the Tamil
dataset using purely supervised learning. It is notable that
our network’s performance degrades if a single convolu-
tional layer is removed and does not improve much with
the addition of another convolutional + pooling layer pair.
To simplify our experiments, we did not use any unsuper-
vised pre-training even though we expect that it will help.
We explored auto encoders but since our system is running
in the browser, we had trouble saving large amounts of data
to file from the browser to be used as input for the ConvNet.

6



References
[1] K. Aparna, V. Subramanian, M. Kasirajan, G. V. Prakash,

V. Chakravarthy, and S. Madhvanath. Online handwriting
recognition for tamil. In Frontiers in Handwriting Recog-
nition, 2004. IWFHR-9 2004. Ninth International Workshop
on, pages 438–443. IEEE, 2004.

[2] P. Baldi and P. J. Sadowski. Understanding dropout. In
Advances in Neural Information Processing Systems, pages
2814–2822, 2013.

[3] D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber. A
committee of neural networks for traffic sign classification.
In Neural Networks (IJCNN), The 2011 International Joint
Conference on, pages 1918–1921. IEEE, 2011.

[4] X. Cui, V. Goel, and B. Kingsbury. Data augmentation for
deep neural network acoustic modeling. In Acoustics, Speech
and Signal Processing (ICASSP), 2014 IEEE International
Conference on, pages 5582–5586. IEEE, 2014.

[5] S. Haykin. Self-organizing maps. Neural networks-A com-
prehensive foundation, 2nd edition, Prentice-Hall, 1999.

[6] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. Improving neural networks by pre-
venting co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[8] R. Kunwar and A. Ramakrishnan. Online handwriting recog-
nition of tamil script using fractal geometry. In Document
Analysis and Recognition (ICDAR), 2011 International Con-
ference on, pages 1389–1393. IEEE, 2011.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[10] Y. LeCun and C. Cortes. The mnist database of handwritten
digits.

[11] M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda. Subject
independent facial expression recognition with robust face
detection using a convolutional neural network. Neural Net-
works, 16(5):555–559, 2003.

[12] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng. Reading digits in natural images with unsupervised fea-
ture learning. In NIPS workshop on deep learning and unsu-
pervised feature learning, volume 2011, page 4, 2011.

[13] A. G. Ramakrishnan and K. B. Urala. Global and local
features for recognition of online handwritten numerals and
tamil characters. In Proceedings of the 4th International
Workshop on Multilingual OCR, MOCR ’13, pages 16:1–
16:5, New York, NY, USA, 2013. ACM.

[14] P. Sermanet and Y. LeCun. Traffic sign recognition with
multi-scale convolutional networks. In Neural Networks
(IJCNN), The 2011 International Joint Conference on, pages
2809–2813. IEEE, 2011.

[15] N. Shanthi and K. Duraiswamy. A novel svm-based hand-
written tamil character recognition system. Pattern Analysis
and Applications, 13(2):173–180, 2010.

[16] C. Sureshkumar and T. Ravichandran. Handwritten tamil
character recognition and conversion using neural network.
Int J Comput Sci Eng, 2(7):2261–67, 2010.

[17] M. D. Zeiler. Adadelta: An adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

[18] M. D. Zeiler and R. Fergus. Stochastic pooling for regular-
ization of deep convolutional neural networks. arXiv preprint
arXiv:1301.3557, 2013.

7


