# Timing Analysis of Keystrokes and Timing Attacks on SSH

Dawn Xiaodong Song, David Wagner, Xuqing Tian Published on Usenix Sec'01



#### Secure Shell

\$ ssh xxx@192.168.48.215 xxx@192.168.48.215's password:



#### Secure Shell

\$ ssh xxx@192.168.48.215 xxx@192.168.48.215's password:

- MitM
- Fake SSH client
- Key logger
- Eyes behind you
- ...?



#### Introduction

• How does SSH work?



SSH over TCP





#### Introduction

- How does SSH work?
  - A TCP-based protocol
  - Low-latency real-time interaction by sending packets immediately keystrokes screen content updates mouse moves



# Weakness of SSH

- Packets are padded only to an eight-byte boundary
  - Attacker can estimate the approximate length of the original data
- Every keystrokes is sent immediately in a separate packet
  - Attacker can learn the exact length of user's passwords
  - And the precise inter-keystroke timing, which can be used to crack the password



# Eavesdropping SSH





# Eavesdropping SSH



- The pattern forms a signature
- The following information is leaked
  - The exact length of the password
  - Precise inter-keystroke timing of the password
  - ...without breaking the crypto!



## Eavesdropping SSH... Nested





# Eavesdropping SSH... keystroke intervals

• Used to de-anonymize users by previous researchers

- Further, different password combinations require different time (intervals) when typing
  - With a carefully-designed statistical analysis, revealing information from intervals is possible



# Inter-keystroke Timing Analysis

- Data Collection
  - Not possible to gather real passwords due to security and priority reasons
  - Approach 1: pick a random password and ask a user to type
    - Not necessary as only key pairs are needed
    - People tends to type passwords in group of 3-4 characters, which distorts the statistics
  - Approach 2: pick key pairs for user to type
    - We really only need **key pairs**!



## Analysis of Inter-keystroke Timing





**Grouping Key-pairs** 

- A-L
- A-9
- Z-Q
- J-H
- K-8





#### Analysis of Inter-Keystroke Timing

Histogram of the latency of character pairs



S

# Analysis of Inter-Keystroke Timing



- The latency between the two key strokes of a given key pair forms a Gaussian-like distribution
- Estimated information gain available from latency information is about 1.2 bits per characteristic pair
  - significant compared to the 0.6-1.3 bits per character entropy of written English





- Markov Model
  - The output (y) is only determined by the current state
  - State transitions with a probability
  - The current state is observable





- Hidden Markov Model
  - States are \*not\* observable!
  - ... but (some) outputs are observable, with probability distribution, we can infer the information about prior paths





- Hidden Markov Model
  - Hidden state: each key-pair
  - Output observation: interval between keystrokes





- N-Viterbi Algorithm
  - Given output y, the sequence of latencies, infers the top N possible character sequence
  - Calculate the possibility that a sequence will yield the output y





Probability that the real character pair appears within the n most-likely key-pairs The middle curve: success rate is 90% when n=70



# A POC System: Herbivore



- Targeted for nested-SSH
- Herbivore
  - Wait for packets correspond to passwords
  - Measures the inter-arrival times
  - Using n-Viterbi algorithm to generate list of candidate passwords



# A POC System: Herbivore



- Percentage of the password space tried by Herbivore
  - On average, only needs to test 1/50 times as many passwords as brute-force search
- Problem
  - Herbivore is trained by the frequencies of the user at first, which is not feasible in reality



## Password Inference for Multiple Users

| Training | Test   | Test Cases |            |            |            |            |  |  |  |  |  |  |  |  |  |
|----------|--------|------------|------------|------------|------------|------------|--|--|--|--|--|--|--|--|--|
| Set      | Set    | Password 1 | Password 2 | Password 3 | Password 4 | Password 5 |  |  |  |  |  |  |  |  |  |
| User 1   | User 1 | 15.6%      | 0.7%       | 2.0%       | 1.3%       | 1.6%       |  |  |  |  |  |  |  |  |  |
| User 1   | User 2 | 62.3%      | 15.2%      | 7.0%       | 14.8%      | 0.3%       |  |  |  |  |  |  |  |  |  |
| User 1   | User 3 | 6.4%       | N/A        | 1.8%       | 3.1%       | 4.2%       |  |  |  |  |  |  |  |  |  |
| User 1   | User 4 | 1.9%       | 31.4%      | 1.1%       | 0.1%       | 28.8%      |  |  |  |  |  |  |  |  |  |
| User 2   | User 1 | 4.9%       | 1.3%       | 1.6%       | 12.3%      | 3.1%       |  |  |  |  |  |  |  |  |  |
| User 2   | User 2 | 30.8%      | 15.0%      | 2.8%       | 3.7%       | 2.9%       |  |  |  |  |  |  |  |  |  |
| User 2   | User 3 | 4.7%       | N/A        | 5.3%       | 6.7%       | 38.4%      |  |  |  |  |  |  |  |  |  |
| User 2   | User 4 | 0.7%       | 16.8%      | 3.9%       | 0.6%       | 5.4%       |  |  |  |  |  |  |  |  |  |

#### Observations

- Inferring is more effectively if trained by the same user
- Distances between the typing statistics of two users can vary significantly
- Training data from one user can be applied to infer password of another user



#### Countermeasures

- Send dummy packets when users are typing password
  - Signature attack will fail
  - Inter-keystroke timing information is still available to the user
- For every keystroke, delay random time before sending out the packet
  - Randomize the timing information of the keystrokes
  - Won't work if the attacker can monitor the user login many times and compute the average of the latencies
- Send packets at constant rate
  - Breaks the responsiveness



#### Countermeasures

• Use a different keyboard layout

| ~`          | !<br>1     |          | @<br>2 | ÷      | #<br>3 |   | \$<br>4 | 9   | %<br>5 | 6 |   | 8<br>7 | L. | * | } | (<br>9 |   | ) | )    | }<br>[ |   |            |   | <b>↓</b><br>Bad | ckspace |
|-------------|------------|----------|--------|--------|--------|---|---------|-----|--------|---|---|--------|----|---|---|--------|---|---|------|--------|---|------------|---|-----------------|---------|
| Tab 💆       |            |          |        | <<br>, |        | > |         | P   |        | ( | F | •      | (  | G | C |        | F | 2 | I    | -      | ? | )          | = | +               |         |
| Caps Lock A |            | 0        | ) E    |        |        | U |         | I   | D      |   |   | н      |    | Т |   | Ν      |   | S |      | -      |   | Enter      |   |                 |         |
| Shift<br>슈  | Shift<br>슈 |          | ,      | Q      |        | J |         | K X |        | Χ | В |        |    | М | 1 | N      |   | V |      | Ζ      | : | Shift<br>슈 |   |                 |         |
| Ctrl        |            | Wi<br>Ke | n<br>y | Alt    |        |   |         |     |        |   |   |        |    |   |   |        |   | A | lt G | r      | ľ | Win<br>Key | I | Menu            | Ctrl    |

- Enable certificate-only login
- Type slowly



#### Contributions

Show that minor weaknesses can have serious security impacts

• Showcase the possibility to infer key sequences from information leaked by keystroke intervals



#### In Reality...

- Sample sizes are really small...
- The attack is impossible to carry on due to network latency variations [1]
- No such attack has been found in the wild
- SSH is \*not\* defending against such attacks





