Timing Analysis of Keystrokes and Timing
Attacks on SSH

Dawn Xiaodong Song, David Wagner, Xuging Tian
Published on Usenix Sec'01

Secure Shell

$ ssh xxx@192.168.48.215
XXX@192.168.48.215°s password:

Secure Shell

$ ssh xxx@192.168.48.215
XXX@192.168.48.215°s password:

MitM
Fake SSH client
Key logger

Eyes behind you
- .7

Introduction

e How does SSH work?

a SSH over TCP

Introduction

* How does SSH work?
* A TCP-based protocol

* Low-latency real-time interaction by sending packets
immediately
keystrokes
screen content updates
mouse moves

Weakness of SSH

* Packets are padded only to an eight-byte boundary

 Attacker can estimate the approximate length of the original data

* Every keystrokes is sent immediately in a separate
packet

» Attacker can learn the exact length of user’s passwords

* And the precise inter-keystroke timing, which can be used to crack
the password

Eavesdropping SSH

SSH "Password: " Prompt _ time
Server B 20 20 o8 N

20 20 20 2012020 20/20 20
Client _time
Host A "s" "u" Return "J™u™" "i" "a" Return

Eavesdropping SSH

SSH "Password: " Prompt _ time
Server B 20 20 8 N

20 20 20 201202020/ 20 20
Client _time
Host A "s" "u" Return "J™u™" "i" "a" Return

* The pattern forms a signature

* The following information is leaked
* The exact length of the password
* Precise inter-keystroke timing of the password
e ...without breaking the crypto!

Eavesdropping SSH... Nested

. TN
\&i:lj_e rsary)

Eavesdropping SSH... keystroke intervals

e Used to de-anonymize users by previous researchers

* Further, different password combinations require different
time (intervals) when typing

* With a carefully-designed statistical analysis, revealing
information from intervals is possible

Inter-keystroke Timing Analysis

e Data Collection

* Not possible to gather real passwords due to security and
priority reasons

e Approach 1: pick a random password and ask a user to
type

* Not necessary as only key pairs are needed

* People tends to type passwords in group of 3-4 characters, which distorts
the statistics

* Approach 2: pick key pairs for user to type
* We really only need key pairs!

Analysis of Inter-keystroke Timing

Frequency

0

1
a 100 200 300
Inter-keystroke Timing for v—o (milliseconds)

15 T |

10

Frequency

|:| 1
a 100 200 300

Inter—keystroke Timing for v—b (milliseconds)

Grouping Key-pairs

L
9

o A-
e A

Q
H
-8

7 -
J

K

Analysis of Inter-Keystroke Timing

Ratio of character pairs

Histogram of the latency of character pairs

Two letter keys, alternating hands

Two letters, same finger
A letter and a number, same hand

BAITNEHA

A letter and a number, alternating hands -
Two letters, same hand, different fingers —

N
%
§
§.
§
N

Latency (milliseconds)

]
- S
< 100 100-150 150-200 200-250 250-300 =300

Analysis of Inter-Keystroke Timing

* The latency between the two key
strokes of a given key pair forms
i 1 a Gaussian-like distribution

* Estimated information gain
available from latency
information is about 1.2 bits per
characteristic pair

* significant compared to the 0.6-1.3
bits per character entropy of written
English

1] =0 100 150 200 250 300 350 400
Latency (millis2cond)

(- [
NV

Inferring Character Sequences

t=1 t=2 t=3 t=T

__If-_\-\-\" w__r(ﬂ-_-\'u ------ ‘..r/f_%\‘

) \fl 3/ xil T

l J"\ J“\ /;|\
¢ Y 1 2/ RE, T

* Markov Model

* The output (y) is only determined by the current state
e State transitions with a probability

* The current state is observable

Inferring Character Sequences

t=1 t=2 t=3

Jf'“\l __/“'\

2 \flff

l J"\ -
| } l I\\ o, -\\] }/ |

e Hidden Markov Model
e States are *not* observable!

e ... but (some) outputs are observable, with probability

distribution, we can infer the information about prior paths

Inferring Character Sequences

t=1 t=2 t=3

N _Jf'_“\l R
\1 'V 2 \fl,/
I/- r) G}_\ -'/- '—\\I
BV, 2/ 3

* Hidden Markov Model
* Hidden state: each key-pair

* Output observation: interval between keystrokes

Inferring Character Sequences

t=1 t=2 t=3

Jf'“\l __/a'\

) N2

l J"\ -
| } l I\\ o, -\\] }/ |

* N-Viterbi Algorithm

* Given output y, the sequence of latencies, infers the top N

possible character sequence

* Calculate the possibility that a sequence will yield the output

y

;

NV,

Inferring Character Sequences

ProbabliRy of Success ve. Threshald n

Progab ity of Syccess
[=) [=) [=)

n 2 1 1 1 1 1 1
L 20 40 B0 a0 100 120 140
Threshakd n

Probability that the real character pair appears within the n most-likely key-pairs

7
[
Y,

The middle curve: success rate is 90% when n=70

A POC System: Herbivore

* Targeted for nested-SSH

ﬁa 4 B SSH2 '
& 5, * Herbivore
N %, .
*?SH’1<> . * Wait for packets correspond to
N -.1 eavesdrop :a paSSWOrdS
A ‘ ’ c * Measures the inter-arrival times
Herbivore * Using n-Viterbi algorithm to
HMM generate list of candidate
nViterbi
l passwords

Candidate Passwords

Ranking Percertage of e cormect anewer in
I @ =

A POC System: Herbivore

g 5 10

Test Kkumber

* Percentage of the password
space tried by Herbivore

* On average, only needs to
test 1/50 times as many
passwords as brute-force
search

* Problem

* Herbivore is trained by
the frequencies of the
user at first, which is not
feasible in reality

Password Inference for Multiple Users

Training | Test Test Cases

Set Set Password 1 | Password 2 | Password 3 | Password 4 | Password 5
User 1 User 1 15.6% 0.7% 2.0% 1.3% 1.6%
User 1 User 2 062.3% 15.2% 7.0% 14.8% 0.3%
User 1 User 3 6.4% N/A 1.8% 3.1% 4.2%
User 1 User 4 1.9% 31.4% 1.1% 0.1% 28.8%
User 2 User 1 4.9% 1.3% 1.6% 12.3% 3.1%
User 2 User 2 30.8% 15.0% 2.8% 3.7% 2.9%
User 2 User 3 4.7% N/A 5.3% 6.7% 38.4%
User 2 User 4 0.7% 16.8% 3.9% 0.6% 5.4%

e Observations

* Inferring is more effectively if trained by the same user
 Distances between the typing statistics of two users can vary significantly
* Training data from one user can be applied to infer password of another

user

;

[
|

Countermeasures

* Send dummy packets when users are typing password

 Signature attack will fail
* Inter-keystroke timing information is still available to the user

* For every keystroke, delay random time before sending out the
packet
* Randomize the timing information of the keystrokes

* Won't work if the attacker can monitor the user login many times and
compute the average of the latencies

* Send packets at constant rate
* Breaks the responsiveness

Countermeasures

e Use a different keyboard layout

~ | @ [# $ [% [~ & [* [(D [{ |} |«

i 1 2 3 4 5 6 7 9 0 [1 Backspace
— | " < > P Y F G |C R L ? + |

Tab

el : /=]

Caps Lock | A o E U I D H T N S _ Enter

L <

Shift : Q J K X B M W |V Z |[shift

4N : AN

Ctrl ;‘(V;: Alt Alt Gr :'(V:; Menu | Ctrl

* Enable certificate-only login

* Type slowly

Contributions

* Show that minor weaknesses can have serious
security impacts

* Showcase the possibility to infer key sequences
from information leaked by keystroke intervals

In Reality...

e Sample sizes are really small...

* The attack is impossible to carry on due to network
latency variations [1]

* No such attack has been found in the wild

*SSH is *not* defending against such attacks

