
Timing Analysis of Keystrokes and Timing 
Attacks on SSH

Dawn Xiaodong Song, David Wagner, Xuqing Tian

Published on Usenix Sec'01



Secure Shell

$ ssh xxx@192.168.48.215
xxx@192.168.48.215’s password:



Secure Shell

$ ssh xxx@192.168.48.215
xxx@192.168.48.215’s password:

- MitM
- Fake SSH client
- Key logger
- Eyes behind you
- …?



Introduction

•How does SSH work?

SSH over TCP



Introduction

•How does SSH work?
• A TCP-based protocol
• Low-latency real-time interaction by sending packets 

immediately
keystrokes
screen content updates
mouse moves



Weakness of SSH

•Packets are padded only to an eight-byte boundary
• Attacker can estimate the approximate length of the original data

•Every keystrokes is sent immediately in a separate 
packet
• Attacker can learn the exact length of user’s passwords

• And the precise inter-keystroke timing, which can be used to crack 
the password



Eavesdropping SSH



Eavesdropping SSH

• The pattern forms a signature

• The following information is leaked
• The exact length of the password
• Precise inter-keystroke timing of the password
• …without breaking the crypto!



Eavesdropping SSH… Nested



Eavesdropping SSH… keystroke intervals

• Used to de-anonymize users by previous researchers

• Further, different password combinations require different 
time (intervals) when typing
• With a carefully-designed statistical analysis, revealing 

information from intervals is possible



Inter-keystroke Timing Analysis

•Data Collection
• Not possible to gather real passwords due to security and 

priority reasons
• Approach 1: pick a random password and ask a user to 

type
• Not necessary as only key pairs are needed

• People tends to type passwords in group of 3-4 characters, which distorts 
the statistics

• Approach 2: pick key pairs for user to type
• We really only need key pairs!



Analysis of Inter-keystroke Timing



Grouping Key-pairs

• A-L

• A-9

• Z-Q

• J-H

• K-8



Analysis of Inter-Keystroke Timing



Analysis of Inter-Keystroke Timing

• The latency between the two key 
strokes of a given key pair forms 
a Gaussian-like distribution

• Estimated information gain 
available from latency 
information is about 1.2 bits per 
characteristic pair
• significant compared to the 0.6-1.3 

bits per character entropy of written 
English 



Inferring Character Sequences

• Markov Model
• The output (y) is only determined by the current state
• State transitions with a probability
• The current state is observable



Inferring Character Sequences

• Hidden Markov Model
• States are *not* observable!
• … but (some) outputs are observable, with probability 

distribution, we can infer the information about prior paths



Inferring Character Sequences

• Hidden Markov Model
• Hidden state: each key-pair
• Output observation: interval between keystrokes



Inferring Character Sequences

• N-Viterbi Algorithm
• Given output y, the sequence of latencies, infers the top N 

possible character sequence
• Calculate the possibility that a sequence will yield the output 
y



Inferring Character Sequences

Probability that the real character pair appears within the n most-likely key-pairs

The middle curve: success rate is 90% when n=70



A POC System: Herbivore

• Targeted for nested-SSH

• Herbivore

• Wait for packets correspond to 
passwords

• Measures the inter-arrival times

• Using n-Viterbi algorithm to 
generate list of candidate 
passwords



A POC System: Herbivore

• Percentage of the password 
space tried by Herbivore

• On average, only needs to 
test 1/50 times as many 
passwords as brute-force 
search

• Problem

• Herbivore is trained by 
the frequencies of the 
user at first, which is not 
feasible in reality



Password Inference for Multiple Users

• Observations

• Inferring is more effectively if trained by the same user

• Distances between the typing statistics of two users can vary significantly

• Training data from one user can be applied to infer password of another 
user



Countermeasures

• Send dummy packets when users are typing password
• Signature attack will fail

• Inter-keystroke timing information is still available to the user

• For every keystroke, delay random time before sending out the 
packet
• Randomize the timing information of the keystrokes

• Won’t work if the attacker can monitor the user login many times and 
compute the average of the latencies

• Send packets at constant rate
• Breaks the responsiveness



Countermeasures

• Use a different keyboard layout

• Enable certificate-only login

• Type slowly



Contributions

•Show that minor weaknesses can have serious 
security impacts

•Showcase the possibility to infer key sequences 
from information leaked by keystroke intervals



In Reality…

•Sample sizes are really small…

•The attack is impossible to carry on due to network 
latency variations [1]

•No such attack has been found in the wild

•SSH is *not* defending against such attacks

[1] http://www.cs.virginia.edu/~evans/cs588-fall2001/projects/reports/team4.pdf




