
A Study of Devirtualization Techniques
for a Java™ Just-In-Time Compiler

Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Komatsu, Toshio Nakatani
IBM Research, Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-8502, Japan

ishizaki@trl.ibm.co.jp

ABSTRACT
Many devirtualization techniques have been proposed to reduce
the runtime overhead of dynamic method calls for various object-
oriented languages, however, most of them are less effective or
cannot be applied for Java in a straightforward manner. This is
partly because Java is a statically-typed language and thus trans-
forming a dynamic call to a static one does not make a tangible
performance gain (owing to the low overhead of accessing the
method table) unless it is inlined, and partly because the dynamic
class loading feature of Java prohibits the whole program analysis
and optimizations from being applied.
We propose a new technique called direct devirtualization with
the code patching mechanism. For a given dynamic call site, our
compiler first determines whether the call can be devirtualized, by
analyzing the current class hierarchy. When the call is devirtualiz-
able and the target method is suitably sized, the compiler gener-
ates the inlined code of the method, together with the backup code
of making the dynamic call. Only the inlined code is actually exe-
cuted until our assumption about the devirtualization becomes
invalidated, at which time the compiler performs code patching to
make the backup code executed subsequently. Since the new
technique prevents some code motions across the merge point
between the inlined code and the backup code, we have further-
more implemented recently-known analysis techniques, such as
type analysis and preexistence analysis, which allow the backup
code to be completely eliminated. We made various experiments
using 16 real programs to understand the effectiveness and charac-
teristics of the devirtualization techniques in our Java Just-In-
Time (JIT) compiler. In summary, we reduced the number of dy-
namic calls by ranging from 8.9% to 97.3% (the average of
40.2%), and we improved the execution performance by ranging
from -1% to 133% (with the geometric mean of 16%).

1. Introduction
Many devirtualization techniques [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
have been proposed to reduce the overhead of dynamic method
calls for various object-oriented languages. In general, a guard test
is generated to test the receiver of the class (called class test) [1, 2,
3] or the method (called method test) [11] to ensure that it is valid

to make a direct call to the corresponding target method. We call
this approach guarded devirtualization. In dynamically-typed
object-oriented languages such as Self [4], guarded devirtualiza-
tion is extremely effective because of the high overhead of a dy-
namic method call. In statically-typed object-oriented language
like Java [12], guarded devirtualization is less effective because of
the low overhead of dynamic method call due to the fact that it
can be translated into a few load operations followed by an indi-
rect jump operation. In order to boost the performance with a dy-
namic method call, the method call must be inlined as much as
possible after the guard test is eliminated.
To devirtualize a dynamic method call without generating a guard
test (we call this approach direct devirtualization), the whole pro-
gram analysis and optimizations [5, 6, 7, 8, 9] have been proposed
in the context of static compilers. However, they are based on the
closed-world assumption, in which no dynamic class loading is
allowed. Therefore, these techniques cannot be directly applicable
to Java. Dynamic recompilation can be used to make direct devir-
tualization possible in the non-closed world assumption, but it
involves a complicated mechanism called on-stack replacement
[13].
We propose a new technique called direct devirtualization with
the code patching mechanism (the code patching mechanism or
code patch in short) [10]. For a given dynamic call site, our com-
piler first determines whether the call can be devirtualized, by
analyzing the current class hierarchy. When the call is devirtualiz-
able and the target method is suitably sized, the compiler gener-
ates the inlined code of the method, together with the backup code
(also called backup path) of making the dynamic call. Only the
inlined code is actually executed until our assumption about the
devirtualization becomes invalidated, at which time the compiler
performs code patching to make the backup code executed subse-
quently. Since the new technique prevents some code motions
across the merge point between the inlined code and the backup
code, we have furthermore implemented recently-known analysis
techniques, such as type analysis [14, 15, 16, 17] and preexistence
analysis [11], which allow the backup code to be completely
eliminated.
We made various experiments using 16 real programs to under-
stand the effectiveness and characteristics of the devirtualization
techniques in our Java Just-In-Time (JIT) compiler. In summary,
we reduced the number of dynamic calls by ranging from 8.9% to
97.3% (the average of 40.2%), and we improved the execution
performance by ranging from -1% to 133% (with the geometric
mean of 16%).
This paper makes the following contributions:
z A new devirtualization technique called direct devirtualiza-

tion with the code patching mechanism, which is much sim-
pler to implement and has less overhead to execute than a re-

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

OOPSLA ‘00, 10/00 Minneapolis, MN, USA
© 2000 ACM ISBN 1-58113-200-x/00/0010...$5.00

294

compilation approach with on-stack replacement. We elimi-
nate the backup path by type analysis and preexistence analy-
sis. We also optimize the inlined code by inserting compensa-
tion code in the backup path if it is not eliminated.

z Evaluation of various devirtualization techniques imple-
mented in our Java JIT compiler, including direct devirtuali-
zations (the code patching mechanism, type analysis, and
preexistence) and guarded devirtualizations (class test and
method test).

The rest of the paper is structured as follows. Section 2 discusses
related work. Section 3 describes our devirtualization techniques
that implemented in our Java JIT compiler. Section 4 gives ex-
perimental results with statistics and performance results on a set
of real programs. Finally, Section 5 outlines our conclusions.

2. Related Work
Devirtualization techniques are important to improve the perform-
ance in object-oriented languages. Therefore, many devirtualiza-
tion techniques have been proposed.
An inline cache technique was developed to speed up dynamic
method calls. An inline cache records the class of the last receiver
object at the call site, and jumps directly to the method for that
class. A stub validates that the dynamic type of the receiver
matches the expected type. If this test fails, a normal method
lookup makes a dynamic method call and stores the class of the
current receiver to the call site cache. Hölzle extended the tech-
nique to a polymorphic case of inline caches [18]. Type prediction
[2, 3] and method test [11] have also been proposed. Type predic-
tion and method test predict the type of a frequently-called object
at compile time. A polymorphic inline cache, type prediction, and
method test introduce new runtime tests, since these techniques
take the cache approach with memory references. According to
the results of simple experiments [19], type prediction without
inlining, even with 100% accuracy of the predictions, cannot
outperform direct devirtualization of dynamic method calls
without inlining. Type prediction with inlining must achieve
approximately 90% accuracy to outperform direct devirtualization
without inlining. Finally, no known technique can outperform
direct devirtualization with inlining. Lee et al. implemented both
monomorphic and polymorphic inline caches in a Java Virtual
Machine [20]. The experimental results did not achieve as good a
speedup as in dynamically-typed object-oriented languages such
as Self. In implementations of Java, the cost of dynamic method
calls is not so different from that of using polymorphic inline
caches, type prediction, and method test. In statically-typed ob-
ject-oriented languages, guarded devirtualization is effective in
enabling inline methods with dynamic calls to expand the intra-
procedure optimization scope of a compiler.
Several systems directly devirtualize dynamic method calls, by
allowing them to be inlined or implemented by direct method
calls. Dean et al. used a class hierarchy analysis to devirtualize
dynamic method calls [5]. Class hierarchy analysis determines
when the static type of a receiver implies that an invoked method
has only a single implementation in the set of classes used in a
whole program. Fernandez [6] proposed a link-time optimization
system. Bacon and Sweeney [7], Tip and Palsberg [8], and Vijay
et al. [9] proposed more precise static analysis. All these tech-
niques statically devirtualize dynamic method calls based on a
closed-world assumption. Since Java supports dynamic class load-
ing, these techniques cannot be used in a straightforward manner.
This is why we propose direct devirtualization with the code
patching mechanism [10]. Flow-sensitive type analysis [14, 15, 16,

17] attempts to tighten the static type constraints on the receiver
expressions. It increases the opportunities for direct devirtualiza-
tion to determine whether a call site has a single implementation.
It can also directly devirtualize a dynamic method call without a
backup path.
Several languages, such as C++, Dylan, and Java, have a linguistic
mechanism that allows users to declare a class sealed, so that it is
prohibited to subclass any new class from it. However, sealed
methods are not common in the Java Core libraries such as
java.util.Vector. Most of the methods in this class are not
sealed in Java 2.
The Self system performs extensive inlining of dynamic method
calls [13], whose correctness is ensured by the on-stack replace-
ment mechanism. In the compiled code, there are deoptimization
points at which the original state of the method’s variables can be
recovered from the optimized state. When a compilation assump-
tion is violated by dynamic class loading, the Self system recovers
the original state at a deoptimization point and recompiles the
method. Such a system introduces several concerns. In the Self
implementation, the compiler produces numerous data structures
called scope descriptors for deoptimization. Deoptimization points
also introduce inefficiency into the generated code to storing extra
data in memory to recover the original context. The compiler can-
not reorder instructions over a deoptimization point. It is also
difficult to replace methods on stacks in the multi-threaded run-
time environment. The Java HotSpot compiler [21] adopts a re-
compilation approach using on-stack replacement. We did not
explore this approach because of the complexity of its implemen-
tation. Preexistence analysis [11] is an approach to prevent on-
stack replacement by determining whether direct devirtualization
can be performed based on the analysis of the receiver expres-
sions. We adopted it to increase the opportunity for compiler op-
timizations by eliminating backup paths.

3. Devirtualization of Dynamic Method Calls
We present an overview of our devirtualization approach. First,
the compiler performs flow-sensitive type analysis and preexis-
tence analysis to directly devirtualize call sites without backup
paths that introduce constraints on compiler optimizations such as
code motion. The preexistence analysis also guarantees that the
situations requiring on-stack replacement cannot occur. Next, the
compiler performs dynamic class hierarchy analysis to directly
devirtualize the dynamic method calls. It can detect when a call
site has a single implementation at compile time and inline the
callee code without any guard tests. However, Java allows new
classes to be loaded during the execution of a program, and there-
fore the compiler has to prepare the original dynamic method call
to allow for execution where the assumption of a single imple-
mentation is violated. Finally, if the compiler knows a call site has
multiple implementations, it devirtualizes a dynamic method call
with a guard test. It inlines the selected dynamic method call with
a class test verifying that the receiver is of the proper class, or it
inlines a dynamic method call with a method test verifying that
the receiver has the proper method.
In the rest of this section, we describe devirtualization techniques
for the optimization of dynamic method calls: the code patching
mechanism, flow-sensitive type analysis, preexistence analysis,
class test, and method test.

3.1 Code Patching Mechanism
Class hierarchy analysis (CHA) [5, 6] determines a set of possible
targets of a dynamic method call by combining the static type of
an object with the class hierarchy of the whole program. If it can

295

be determined that there is no overridden method, the dynamic
method call can be replaced with inlined code or with a direct
method call by direct devirtualization at compile time, and the
method can be executed without method lookup. Previously, di-
rect devirtualization with CHA has been investigated and imple-
mented for languages limited to static class loading, in which the
class hierarchy does not change during the execution of the pro-
gram. However, Java supports dynamic class loading, which al-
lows the class hierarchy to change during the execution of a pro-
gram. Recompilation with on-stack replacement was the only an
approach to allow a compiler to invalidate the devirtualized
method while there is an active context on stacks. However, the
implementation is very difficult because it requires replacing
methods and context on stacks.
We have designed the code patching mechanism in order to di-
rectly devirtualize dynamic method calls with dynamic class load-
ing [10]. If a caller site has a single implementation, the compiler
generates the inlined code of the target method and the original
dynamic method call at compilation time. The compiler can also
turn dynamic method calls into direct method calls for non-inlined
methods. If runtime class loading overrides a method that was
previously not overridden, the inlined code sequence for a specific
implementation must be replaced with the original dynamic
method call. This is done by rewriting the first instruction in the
inlined code sequence. We show the generated code for an inlined
method in Example 1 using the PowerPC instruction set. The gen-
erated code using direct devirtualization has no overhead at execu-
tion time because there are no tests requiring memory access in
the method tests and class tests. This mechanism also has lower
overhead and implementation costs than a recompilation approach
with on-stack replacement. Further, when the compiler generates
the native code, it places the inlined code in the fall through path
in Example 1. Since it knows the inlined code is executed very
frequently, this improves the efficiency of the instruction cache.
Java provides interfaces for the provision of multiple inheritances.
The compiler also optimizes an interface method call by replacing
it with inlined code. If CHA finds that only one class implements
an interface class, a virtual method call with a single method
lookup can be generated by using the implementation class as a
static type. Furthermore, if the target method is not overridden
anywhere in the implementation class hierarchy, the code can be

inlined instead of using the interface method call by using direct
devirtualization. As a result, the generated code using the
PowerPC instruction set is shown in Example 2. When the method
is overridden in the implementation class hierarchy, the code
patching mechanism cancels the direct devirtualization to execute
the virtual method call. In addition, when non-subclass of the
implementation class implements the interface class, the code
patching mechanism cancels direct devirtualization to execute the
original interface method call. The right column in Example 2
shows the latter case. This optimization is much more efficient
than a naive implementation of an interface call, which requires
executing a loop to search for an implementation class.
We have implemented the code patching mechanism using CHA
for supporting dynamic class loading as follows. When the new
class is loaded at runtime, the runtime routine refers to an internal
data structure that represents whether or not each associated
method is overridden. Furthermore, if a class implements an inter-
face class, the compiler also counts the number of implementation
classes of the interface class in order to devirtualize interface
method calls. The compiler checks whether a caller site has a sin-
gle implementation when it attempts to inline a dynamic method
call. The result (whether or not the method has only a single im-
plementation) is checked on demand, when the first check is is-
sued, and the result is then stored in the result cache. When the
native code is generated for the inlined code, the top address of
the inlined code sequence is also recorded in the result cache for
the call site. When the compiler next checks the implementation
of the same method, the result is returned from the result cache
immediately, and the new code address is also recorded in the
result cache.
When the method is not yet overridden in the left column in
Example 1, the inlined code is executed and the italicized code
sequence for the dynamic method call is not executed at all. When
the method is overridden because of dynamic class loading, the
internal structures are updated appropriately. If the method related
to the result cache is overridden, the class loader uses the result
cache to find the address that should be replaced with a b (branch)
instruction to the dynamic method call. This effectively undoes
the direct devirtualization, and the inlined code becomes inacces-
sible. Consequently, the code sequence for the dynamic method
call will be executed correctly.

Before overriding the method After overriding the method
// top word of inlined code b original_call // static jmp
// the rest of inlined code // the rest of inlined code

after_inline: after_inline:
: :

original_call: original_call:
lwz r1, (obj) lwz r1, (obj) // load class pointer
lwz r2, offset(r1) lwz r2, offset(r1) // load method pointer
lwz r3, offset(r2) lwz r3, offset(r2) // load code address
mtctr r3 mtctr r3
blr ctr blr ctr // dynamic method call
b after_inline b after_inline

Example 1: Inlining of a dynamic method call (invokevirtual)

296

Since Java is an explicitly multi-threaded language, the invalida-
tion of the old code sequence must be thread-safe. On the
PowerPC RISC architecture, since the memory system guarantees
atomicity only for full word instructions, we implemented this
atomic updating by rewriting only one full word instruction, the
branch instruction. Furthermore, on a processor with split caches
for instruction and data, both the data and instruction caches
should be flushed. This ensures synchronization between the in-
struction and data caches. In addition, any instruction prefetch
buffer must be flushed [22]. This ensures that any pending instruc-
tions fetched from the instruction cache are ignored and the up-
dated instruction will be executed. On the IA32 architecture, the
memory system guarantees atomicity for a single write to memory
aligned on a boundary of its length within a cache line [23], and
the write instruction invalidates the instruction prefetch queue.
Since the length of each instruction varies, the length of the re-
write target must be same as that of the new instruction to ensure
the validity of the instruction sequence. If the length of a new
branch instruction is two bytes, the compiler for the IA32 archi-
tecture generates the first instruction whose length is two bytes or
over in the inlined code sequence, by means of padding using a
special addressing mode. The new branch instruction is written by
a single write to memory to ensure the atomicity. If the length of
the branch instruction is five bytes, we replace the first two bytes
of the first instruction in the inlined code sequence with spinning
jump by a single memory write not using xchg instructions. Then,
the rest three bytes of the first instruction are updated. Finally, the
first two bytes of the branch instruction are written by a single
memory write [24].
Going beyond our previous method [10], from the viewpoint of
compiler optimizations, we now use an explicit intermediate
representation of a branch affected by the code patching
mechanism. This increases the opportunities for compiler
optimizations. On the other hand, the branch may prevent the
compiler from performing optimizations using dataflow analysis,
because the generated intermediate representation includes a
backup path (the original method call) as a kill pointi due to its
side effect. Scalar replacement of instance variables and code
motion may also be restricted. We illustrate these problems in
Example 3. A compiler translated a source program in Example 3
a) into a RISC-like intermediate representation in Example 3 b).
Here, some instructions related to a loop exit are omitted for
simplicity. In the example, the getfield bytecode instructions
i If an instruction redefines a value, it is said to kill the definition,

which means the collected information on the variable cannot be
preserved before and after that point.

ple, the getfield bytecode instructions are split into null-
check instructions that are the potentially excepting instructions
(PEI) in the bold font and getfield instructions that are simple
loads from a heap memory. At the end of basic block (BB) 3,
there are two branches for direct devirtualization. One is a branch
to BB3, which is a primary execution path. The other is a branch
to BB5, which is a backup path.
In the Example 3 b), the compiler performs optimizations [25] as
follows:

1. The compiler can perform nullcheck optimizations. It moves
‘nullcheck LO0’ out of BB3 and BB5 in the loop to BB1.
Then, the compiler eliminates ‘nullcheck LO0’ in BB 4
since ‘nullcheck LO0’ instruction in BB 1 dominates it.

2. The compiler can perform partial redundancy elimination
(PRE) [26]. It performs scalar replacements of the access of
instance variables <x> and <z>. The compiler moves a
getfield instruction for <x> and <z> out of the loop, and
then replaces the reference to variable <x> with a temporary
variable in BB 3. Since the compiler moved the getfield
instruction for <x> and <z> across an invoke instruction
that has side effects, it generates the compensation code for
variable <x> and <z> after the kill point (invoke at BB5).
Though it increases the inefficient code, it does not matter
since it is generated in a backup path where it rarely executes.

Code motion involving PEIs or instructions with side effects is
limited and cannot cross over a kill point. If the ‘nullcheck
LO1’ instruction is moved into BB3, the exception may be
thrown before throwing an exception raised within the method m.
This transformation violates the original semantics of the pro-
gram. Therefore, the compiler cannot move the ‘nullcheck
LO1’ instruction across BB5.
Generating compensation code can reduce the impact of merging
the control flow on compiler optimizations such as scalar re-
placement along a backup path. The compiler could also perform
escape analysis [27, 28] with stack object allocation by generating
the compensation code in backup paths. By flow-sensitive type
analysis and preexistence analysis in Section 3.2 and 3.3, we
eliminate backup paths for devirtualized method calls.

Only one class implements More than one class implements
// top word of inlined code b interface_call // static jmp
// 2nd word of inlined code // 2nd word of inlined code // if implementing method is
// the rest of inlined code // the rest of inlined code // overridden, go to virtual_call

after_inline: after_inline:
: :

virtual_call virtual_call
lwz r1, (obj) lwz r1, (obj) // load class pointer
lwz r2, offset(r1) lwz r2, offset(r1) // load method pointer
lwz r3, offset(r2) lwz r3, offset(r2) // load code address
mtctr r3 mtctr r3
blr ctr blr ctr
b after_inline b after_inline

interface_call: interface_call:
mr r1, <rcv obj reg> mr r1, <rcv obj reg> // move receiver object
blr rt_interface blr rt_interface // call runtime for interface call
b after_inline b after_inline

Example 2: Inlining of a dynamic method call (invokeinterface)

297

3.2 Flow-Sensitive Type Analysis
Flow-sensitive type analysis [14, 15, 16, 17] computes a type for
every object reference point in an entire method. The compiler
computes the dataflow information on static types with signatures
and class instantiations (call to new()) at each object reference
point. The analysis determines the set of classes reachable at each
object reference point.
If the type analysis proves that all class instantiations that reach
the receiver expression of the dynamic method call have the same
definition, this proves that no method override occurs at the call
site. Therefore, the dynamic method call can be directly devirtual-
ized without a backup path. This reduces optimization constraints
in our devirtualization techniques.
Type analysis can also recover missing type information. This loss
can occur while translating source code into bytecode [11] (i.e.
during a compilation by javac or jikes [29] (version 1.06)). We
here explain it using Example 4. The source code of the method

m() indicates that the method call a.equals() invokes the
method equals() in the class A. The javac compiler embeds the
class Object and the method equals() as static types in the
class file. The compiler may recover the more precise type A of
the receiver through an interpretation like the bytecode verifica-
tion process [30]. The missing type information causes the class
hierarchy analysis to fail at the method call a.equals(). With-
out doing type analysis, the compiler checks whether Object.
equals() is a single implementation rather than
A.equals(). This always fails because the method in the class
String that is never invoked by the method call a.equals()
overrides the method equals().
In practice, the missing type information frequently occurs at call
sites involving the methods equals() and hashCode() that
are declared in the class java.lang.Object. Therefore, type
analysis improves the accuracy of class hierarchy analysis.

class Foo {
int x, y, z;
int m() {

return this.z;
}
int caller(Foo a, Foo b) {

do {
i = a.m(); // BB3 and 5
j = a.x; // BB4
k = b.y; // BB4

} while (cond)
return i+j+k;

}
}

nullcheck LO0

getfield LI2=LO0,<z>

nullcheck LO0

invoke LI2=LO0,<m>

nullcheck LO0
getfield LI3=LOO,<x>
nullcheck LO1
getfield LI4=LO1,<y>

b) Before PRE

BB1

BB4

BB3 BB5

nullcheck LO0
getfield LI5=LO0,<z>

getfield LI3=LO0,<x>

move LI2=LI5 invoke LI2=LO0,<m>
getfield LI5=LO0,<z>
getfield LI3=LO0,<x>

c) After PRE

BB1

BB4

BB3 BB5

BB2 BB2

nullcheck LO1
getfield LI4=LO1,<y>

a) Source code

Example 3: Partial redundancy elimination and code motion.

298

The methods hashCode(), toString(), and equals()are
declared in the top-most class java.lang.Object, so they
can be invoked on all objects. These methods are frequently called
with the class java.lang.Object as a static type. The
hashCode() method in several primitive classes such as
java.lang.Integer and java.lang.String overrides
the declaration from the class java.lang.Object. However,
since these implementation are very simple and declared as fi-
nal, if type analysis proves the static type of a dynamic method
call is one of them, the compiler can inline these methods directly.
Unfortunately, since the static type of a dynamic method call to
equals()is frequently java.lang.Object, the compiler
directly devirtualizes the method call using the code patching
mechanism.

3.3 Preexistence Analysis
The concept of preexistence [11] is that if the receiver object for a
method call has been allocated before the invocation of a caller
method, then the method will not be overridden during the execu-
tion of the caller. This property can be used to directly devirtual-
ize a dynamic method call without a backup path. This requires
that the caller method must be recompiled with class hierarchy
analysis at the next invocation in which the target method is over-
ridden. However, it guarantees that such recompilation does not
require on-stack replacement. This reduces the difficulty of the
implementation.
We have implemented invariant argument analysis [11] to check
for the preexistence of a receiver expression. If the receiver ex-
pression of a method call is shown to preexist and CHA shows
that the method call has only a single target at compilation time,
the compiler can directly devirtualize the method call without the
backup path. It has two advantages. One is that it enables code
motion involving potentially excepting instructions or instructions
with side effects. The other is that the result of flow-sensitive type
analysis is more accurate, because the merge point that creates the
union type is removed from the control flow graph. Another solu-
tion for more precise flow-sensitive type analysis is message split-
ting [31]. It may increase the code size significantly because it

requires copying parts of the control flow, and therefore we did
not pursue this alternative.

3.4 Class Tests and Method Tests
In previous research, most systems that use guarded devirtualiza-
tion produced inlined code with a class test verifying that the re-
ceiver has the proper class. The class test [1, 2, 3] imposes a re-
quirement that each object contains a pointer to its class informa-
tion. The method test [11] makes a further assumption that the
class information includes the method information. We show such
code generated at an inlined call site in Example 5 a) and b) that
appeared in [11].
Method test is more accurate than class test. Even when a class
that does not override a method is tested by a class test, if the class
is different from the particular class of the inlined method, the test
fails and a dynamic method call is invoked. In a similar situation
involving method invocation, the method test may succeed and
the inlined code can be executed. Therefore, we have used method
test at call sites that have multiple implementations, along with
class hierarchy analysis at compilation time. The overhead of
method test is slightly greater than that of class test. Our JIT com-
piler explicitly uses two loads to get class information and method
information in the intermediate representation. This allows us to
include these instructions in the scope of optimizations such as
common subexpression elimination and code motion, and this can
hide the overhead of method test.
These techniques also introduce some constraints on compiler
optimizations because they have a merge point of the control flow
on compiler optimizations for any backup path that includes an
original method call. The constraints can be reduced by the same
techniques described in Section 3.1.
We have used a class test for optimizing method calls within the
class itself. If a compiler detects many dynamic calls with the
caller’s object as a receiver, the compiler provides two copies of
the part. A class test with the receiver object is generated to de-
termine which copy is executed. Two versions of the method are
then generated: one for optimized calls within the class itself, and
the other version is for the general case as it appeared in the origi-
nal code, as shown in Example 6.

class Object { boolean equals(Object o) { ... }; }

class String extends Object {
boolean equals(Object o) { ... }; // Overrides equals()

}

class A extends Object { ... } // Does not override equals()

class X {
void m(A a) {

a.equals();
}

}
Example 4: Missing type information at a call site

299

4. Experiments
In this section, we evaluate the characteristics and effectiveness of
the devirtualization techniques in our system. Section 4.1 explains
the system used in our experiments. Section 4.2 gives an overview
of the programs used in our experiments. Section 4.3 shows the
characteristics of the non-devirtualized programs. Section 4.4
shows the results by applying each of devirtualization techniques
cumulatively. Section 4.5 discusses the evaluation of the results.
Section 4.6 shows the performance results.

4.1 System
Our experiments were performed using a prototype version of the
IBM Developers Kit for AIX, Java Technology Edition, Version
1.3. We have implemented the devirtualization techniques we
described here in our Just-In-Time Compiler [32]. The JIT com-
piler is a highly optimizing compiler that uses a register-based
intermediate representation. Register-based representations pro-
vide greater flexibility for code transformations than stack-based
representations. The JIT compiler performs static method inlining,
devirtualization, dataflow optimizations, loop optimizations, and
low-level optimizations. Dataflow optimizations are copy propa-
gation, constant propagation, dead code elimination, common
subexpression elimination, scalar replacement, and elimination of
redundant exception checks [25]. The loop optimization uses loop
versioning. Low-level optimizations are register allocation, in-
struction scheduling, and shrink wrapping [33].
The JIT compiler inlines methods except when they have excep-
tion handlers or they are larger than the predefined maximum size.
It inlines both static and dynamic method calls for up to four

nested levels in each call hierarchy tree. Here, dynamic method
calls mean virtual and interface method calls. Since the JVM in
the Sun SDK reference implementation must be able to traverse
the original call stack in order to get the caller class at runtime, we
have implemented a subset of the scope descriptor [13] just to
recover the original call stack from the inlined call stack. This
allows the compiler to inline methods extensively. Though the JIT
compiler has a selective compilation mechanism, all the meas-
urements were performed by compiling all methods.
The measurements were performed on an IBM RISC System 6000
Model 7044-170 (containing a 400 MHz POWER3-II with 768
MB of RAM) running AIX 4.3.3.

4.2 Overview of the Programs
Table 1 shows 16 Java programs used to evaluate our devirtualiza-
tion techniques. The programs cover a wide spectrum of pro-
gramming styles and application categories such as computational
benchmarks, transaction processing, a parser, browsers, graphical
applications, a word processor, and a Web server. Note that the
results using SPECjvm98 [34] programs do not follow the official
SPEC rules.

4.3 Characteristics of Method Calls
For each program, Table 2 details the characteristics of both static
and dynamic methods.
The geometric mean of 73.5% (ranging from 33.4% to 99.5%) of
the virtual method calls are monomorphic. The results show gen-
erally higher usages of dynamic monomorphic methods from the
application classes in programs without GUIs (jess, db, javac,
mpegaudio, mtrt, jack, jbb, and XML parser), (compress and
Java Server are exceptions.)

r0 = <receiver object> r0 = <receiver object>
r1 = load(r0 + <offset-of-class-in-object>) r1 = load(r0 + <offset-of-class-in-object>)

r2 = load(r1 + <offset-of-method-in-class>)
if (r1 == <address-of-proper-class>) { if (r2 == <address-of-inlined-method>) {

<inlined code> <inlined code>
} else { } else {

r2 = load(r1 + <offset-of-method-in-class>) call r2
call r2

} }

a) pseudo code of a class test b) pseudo code of a method test

Example 5: Pseudo code for class test and method test [11]

class R { class R {
void bar() {...} void bar() {...}
void foo() { void foo() {

for (...) { if (classtest(this, R)) {
this.bar(); for (...) {
this.bar(); R.bar(); // a direct call

} R.bar(); // a direct call
} }

} } else {
for (...) {

this.bar();
this.bar();

}
}

}
}

a) Original code b) Optimized code with a class test

Example 6: Optimized calls within the class itself

300

Table 1: Descriptions of the programs used in our experiments

Program Description

compress LZW compression and decompression in SPECjvm98. Run the benchmark with size = 100.

jess NASA’s CLIP expert system in SPECjvm98. Run the benchmark with size = 100.

db Search and modify a database in SPECjvm98. Run the benchmark with size = 100.

javac Source to bytecode compiler in SPECjvm98. Run the benchmark with size = 100.

mpegaudio Decompress audio file in SPECjvm98. Run the benchmark with size = 100.

mtrt Multi-threaded image rendering in SPECjvm98. Run the benchmark with size = 100.

jack Parser generator generating itself in SPECjvm98. Run the benchmark with size = 100.

jbb [35] SPECjbb2000 is a transaction processing benchmark. Run the benchmark with the number of warehouses = 1.

XML parser [36] IBM’s XML parser. XML4J version 3.0.1. Run a sample program to parse an XML file.

Java Server [37] Java Server Web Development Kit 1.0.1. Run the Web server and access it while running some servlets.

swing GUI components version 1.1.1 written in pure Java. Run a demo application including many components.

Java2D 2D graphics library. Run a demo application including many components.

jfig [38] A Java version of the xfig drawing program. Version 1.38b. Run the application and open a document.

ICE Browser [39] Simple Internet browser version 5.01. Run the application and open a Web page.

HotJava [40] HotJava browser version 1.1.5. Run the application and open a Web page.

Ichitaro Ark [41] Word processor written in pure Java. Run the application and open a document.

Table 2: Characteristics of static and dynamic method calls
Monomorphic
Virtual Call %

Monomorphic
Interface Call %

Program Static Call Virtual Call

Lib. App.

Interface
Call

Lib. App.

compress 225,975,805 12,039 49.6% 25.0% 446 41.3% 58.7%
jess 78,375,454 36,872,088 0.2% 83.8% 706,505 0.0% 0.7%

db 52,992,991 52,529,114 0.1% 97.1% 14,931,539 0.0% 100.0%

javac 57,019,624 48,408,808 5.1% 62.2% 3,379,096 0.0% 99.8%

mpegaudio 99,702,499 9,853,620 0.2% 33.2% 182,220 0.1% 99.9%

mtrt 17,406,471 269,740,419 0.3% 90.7% 402 46.3% 53.7%

jack 24,400,198 25,219,092 20.3% 59.5% 4,155,315 0.0% 55.0%

jbb 132,586,167 173,403,868 15.9% 80.6% 4,036,513 0.3% 99.6%

XML parser 1,812,996 516,133 2.1% 97.4% 1,217,916 0.1% 99.9%

Java Server 337,899 74,901 67.9% 11.9% 3,118 65.7% 28.8%

swing 3,143,213 1,754,935 57.4% 0.3% 177,638 49.8% 0.1%

Java2D 17,956,992 6,490,662 72.6% 4.1% 1,446,333 49.3% 0.1%

jfig 1,274,203 296,283 67.4% 0.0% 33,006 51.0% 0.5%

ICE Browser 1,732,313 261,235 62.1% 10.3% 47,519 67.8% 10.2%

HotJava 1,882,711 504,321 78.8% 0.0% 55,523 64.2% 0.3%

Ichitaro Ark 4,960,087 2,421,789 23.7% 32.2% 806,600 16.4% 16.4%

geom. mean 73.5% 55.3%

Static Call: The total number of static calls.
Virtual Call: The total number of virtual method calls.
Monomorphic Virtual Call: The percentage of virtual method calls that are performed at monomorphic call sites.
Interface Call: The total number of interface method calls.
Monomorphic Interface Call: The percentage of interface method calls that are performed at monomorphic call sites.
Lib.: The percentage within Java class libraries.
App.: The percentage within the application.

301

The dynamic method calls tend to be monomorphic within the
Java class libraries in programs with GUIs (swing, Java2D, jfig,
ICE Browser, HotJava, and Ichitaro Ark). The results also show
dynamic method calls are surprisingly monomorphic in all of the
programs except mpegaudio. This shows that we have many
opportunities to perform devirtualization. On the other hand, the
program compress is not expected to be much affected by devir-
tualization techniques, since the number of virtual calls is ex-
tremely small. Note that jbb, unlike the other programs, is a
benchmark program to measure the throughput in a constant time.
There are some differences in execution counts among optimiza-
tions within the same program with GUI since we perform the
scenario manually.

4.4 Results of Devirtualization
In this section, we show the results by applying each of four op-
timizations cumulatively. First, we start with guarded devirtualiza-
tion. Second, we add direct devirtualization with the code patch-
ing mechanism. Next, we add type analysis, and finally we in-
clude preexistence analysis.
Figure 1 is a Venn diagram to help clarify some of the relation-
ships among the devirtualization techniques we applied. For ex-
ample, in the lower left quadrant, some of the interface calls for
dynamic methods can use direct devirtualization with backup
paths, and a subset of those calls may also be candidates for direct
devirtualization without backup paths.

4.4.1 Guarded Devirtualization
We started by performing guarded devirtualization with class and
method tests together. Table 3 shows the characteristics of pro-
grams with guarded devirtualization. We apply class test only to
method calls within the class itself, as described in Section 3.4.
We omit the characteristics of class test in Table 3, 4, 5, 6, and, 7
because they are not executed so much. We apply method tests to
virtual method calls that have a single or multiple targets at
compilation time only for code that can be inlined. If a method
call has multiple targets, only a method defined in a leaf class is
inlined. We do not apply method test to method calls that are
merely replaced with direct method calls.
We adopted method test for guarded devirtualization, even though
the runtime cost of method test is slightly higher than that of class
test as presented in Section 3.3. In general, this is because the
method test can allow the inlined version of the code to be exe-

cuted more often than the class test can. For example, when we
attempted to apply only the class test to mtrt, the success ratio was
decreased from 100% to 70%. On the other hand, the runtime
overhead can be hidden by using compiler optimizations.
In summary, as in Table 3, the success ratio for the execution of
inlined version varies from 50.7% to 100% (the geometric mean
of 91.7%).

4.4.2 Direct Devirtualization with the Code Patching
Mechanism
For the next tests, we added direct devirtualization with the code
patching mechanism. This is applied to virtual method calls that
have only a single target at compile time and to interface method
calls that are implemented by a single class. We apply this tech-
nique not only to dynamic method calls that can be inlined, but
also to dynamic method calls that can be replaced with direct
method calls.
Table 4 shows the characteristics of these directly devirtualized
programs. Here, the execution frequencies of the inline code at
directly devirtualized call sites vary from 88.8% to 100% (the
geometric mean of 98.1%).

4.4.3 Type Analysis
Next, we added in flow-sensitive type analysis. Table 5 shows the
characteristics of programs using flow-sensitive type analysis. As
is shown in Table 5, the percentages of actually executed inline
code at directly devirtualized call sites vary from 84.1% to 100%
(the geometric mean of 97.3%).

4.4.4 Preexistence Analysis
Finally, we also performed preexistence analysis. Table 6 shows
the characteristics of programs including preexistence analysis. As
is shown in Table 6, the percentages of the inline code actually
executed at the directly devirtualized call sites vary from 81.5% to
100% (the geometric mean of 96.9%).

 Method calls

Class Test

Method Test

Direct Devirtualization with backup paths
(The Codepatching Mechanism)

Direct Devirtualization without backup paths
(Type Analysis)

Virtual Call

Static Call

Dynamic Calls

Devirtualization Techniques

Direct Devirtualization without backup paths
(Preexistence)

Interface Call

Figure 1: Venn diagram of applicable categories of devirtualization techniques

302

Table 3: Characteristics of programs with guarded devirtualization described in Section 3.4
Remaining Virtual Call Remaining Interface Call Method Test Program

Counts Reduction %
(from no devirtualization)

Counts Counts inlined execs

compress 9,967 17.2% 446 2040 97.2%
jess 12,212,470 66.9% 706,505 24,660,863 100.0%

db 46,680,205 11.1% 14,931,539 5,833,525 100.0%

javac 41,274,813 14.7% 3,381,204 7,973,933 90.9%

mpegaudio 6,821,177 30.8% 182,220 3,037,975 99.8%

mtrt 75,811,042 71.9% 402 193,929,371 100.0%

jack 17,683,893 29.9% 4,155,315 7,529,626 100.0%

jbb 30,279,681 N/A 3,973,859 140,157,002 100.0%

XML parser 80,328 84.4% 1,217,916 435,657 100.0%

Java Server 40,952 45.3% 2,960 19,961 99.1%

swing 1,249,252 28.8% 176,796 498,142 86.9%

Java2D 4,813,273 25.8% 1,453,963 2,153,279 50.7%

jfig 205,157 30.3% 33,616 96,697 86.9%

ICE Browser 162,833 37.7% 45,118 93,499 92.0%

HotJava 346,182 31.4% 56,558 108,735 90.2%

Ichitaro Ark 1,558,901 35.6% 594,341 663,773 90.2%

Remaining Virtual Call: The non-devitualized virtual method calls after performing optimizations.
Remaining Interface Call: The non-devitualized interface method calls after performing optimizations.
Counts: The total count of each kind. For example, in compress, the inlined version of the code was executed for 97.2% of all the method tests.
Method Test: The guarded test described in Section 3.4.
Reduction: The percentage difference .with respect to the specified case.
Inlined execs: The percentage of the inlined code actually executed.

Table 4: Characteristics of programs with guarded devirtualization
plus direct devirtualization with the code patching mechanism described in Section 3.1

Remaining Virtual Call Remaining Interface Call Method Test Codepatch Program

Counts Reduction %
(from no
devirtualization)

Counts Reduction %
(from no
devirtualization)

Counts inlined
execs

Counts inlined
execs

Invalidation
sites

compress 9,796 18.6% 443 0.7% 657 91.2% 1,596 97.7% 18
jess 10,790,816 66.9% 701,785 0.0% 10,798 82.9% 26,083,410 100.0% 22

db 46,557,413 11.1% 14,931,536 0.0% 5,082 99.2% 5,951,271 100.0% 18

javac 29,161,105 39.8% 3,379,389 -0.1% 2,157,383 66.0% 18,349,878 99.0% 32

mpegaudio 6,804,623 30.8% 395 99.8% 31,908 82.4% 3,204,602 100.0% 18

mtrt 7,244,261 97.3% 399 0.7% 1,667 95.0% 262,494,525 100.0% 18

jack 16,317,679 35.3% 2,624,376 36.8% 33,849 99.6% 10,925,027 99.4% 22

jbb 18,644,624 N/A 3,771,951 N/A 468,892 100.0% 144,852,219 100.0% 17

XML parser 80,173 84.5% 1,146,448 5.9% 114,407 100.0% 362,940 100.0% 8

Java Server 40,292 46.2% 2,753 11.7% 2,215 92.3% 18,943 99.0% 44

swing 1,251,871 28.7% 164,057 7.6% 222,752 63.3% 373,117 94.2% 199

Java2D 5,038,999 22.4% 1,422,935 1.6% 1504,829 20.0% 1,130,901 88.8% 77

jfig 167,970 43.3% 28,230 14.5% 28,055 57.6% 72,518 99.1% 43

ICE Browser 144,733 44.6% 37,185 15.6% 11,245 47.6% 96,555 99.3% 79

HotJava 316,788 37.2% 47,202 15.0% 19,416 52.5% 111,078 96.5% 158

Ichitaro Ark 1,446,609 40.3% 575,172 28.7% 120,782 38.6% 641,550 97.7% 215

Codepatch: The direct devirtualization with the code patch mechanism described in Section 3.1.
Reduction: The percentage difference .with respect to the specified case.
Inlined execs: The percentage of the inlined code actually executed.
Invalidation sites: The number of call sites where the code patching is performed when a class is loaded and a method is overridden during the execution of a program.

303

Table 5: Characteristics of programs with guarded and direct devirtualizations
plus flow-sensitive type analysis described in Section 3.2

Remaining Virtual Call Method Test Codepatch Program

Counts Reduction %
(from no
devirtualization)

Remaining
Interface
Call Counts inlined

execs
Counts Reduction %

(from direct
devirtualization)

inlined
execs

Invalidation
sites

compress 9,585 20.4% 443 657 91.2% 1,282 20.1% 97.2% 16
jess 7,895,376 78.6% 701,785 10,798 82.9% 24,978,943 4.2% 100.0% 20

db 46,557,233 11.4% 14,931,536 5,082 99.2% 5,950,246 0.0% 100.0% 16

javac 27,540,151 43.1% 3,381,201 2,157,387 66.0% 19,816,214 -1.0% 92.6% 54

mpegaudio 6,804,397 30.9% 395 31,908 82.4% 3,204,247 0.0% 100.0% 16

mtrt 7,244,059 97.3% 399 1,667 95.0% 245,247,103 6.6% 100.0% 16

jack 12,322,620 51.1% 2,624,376 33,849 99.6% 13,443,883 -23.2% 99.5% 20

jbb 19,458,683 N/A 3,950,837 491,829 100.0% 150,415,652 N/A 100.0% 16

XML parser 79,782 84.5% 1,146,448 144,407 100.0% 361,906 0.3% 100.0% 8

Java Server 38,941 48.0% 2,753 2,215 92.3% 16,624 12.4% 98.9% 35

swing 1,209,389 31.1% 163,713 212,813 66.6% 362,306 3.1% 94.0% 210

Java2D 4,802,108 26.0% 1,392,895 1435,134 20.8% 1,110,593 7.0% 84.1% 91

jfig 181,572 38.7% 29,796 28,117 57.3% 68,222 6.1% 99.0% 47

ICE Browser 155,810 40.4% 46,080 15,774 45.0% 92,482 11.8% 98.9% 68

HotJava 333,557 33.9% 47,946 20,206 53.3% 102,599 7.9% 96.2% 157

Ichitaro Ark 1,374,676 43.2% 542,976 102,232 39.2% 576,341 10.4% 97.5% 217

Codepatch: The direct devirtualization with the code patch mechanism described in Section 3.1.
Reduction: The percentage difference .with respect to the specified case.
Inlined execs: The percentage of the inlined code actually executed.
Invalidation sites: The number of call sites where the code patching is performed when a class is loaded and a method is overridden during the execution of a program.

Table 6: Characteristics of programs with guarded and direct devirtualizations and flow-sensitive type analysis
plus preexistence analysis described in Section 3.3

Method Test Codepatch

Program

Remaining
Virtual
Call

Remaining
Interface
Call Counts inlined

execs
Counts Reductions%

(from direct
devirtualization)

inlined
execs

Invalidation
sites

Methods that
must be
recompiled

compress 9,585 443 669 89.5% 1,059 33.7% 97.7% 10 6
jess 7,895,376 701,785 10,822 82.7% 18,261,070 30.0% 100.0% 14 6

db 46,557,233 14,931,536 5,085 99.2% 5,950,061 0.0% 100.0% 10 6

javac 27,704,969 3,379,221 2,461,630 57.9% 18,199,383 8.1% 91.8% 50 10

mpegaudio 6,804,397 395 31,959 82.2% 2,173,264 32.2% 100.0% 10 6

mtrt 7,244,059 399 1,678 94.3% 191,710,141 27.0% 100.0% 10 6

jack 12,322,620 2,624,376 33,887 99.5% 9,314,605 14.8% 99.2% 14 6

jbb 20,658,308 4,213,999 524,173 100.0% 128,558,128 N/A 100.0% 14 2

XML parser 79,782 1,146,448 144,407 100.0% 360,837 0.6% 100.0% 6 2

Java Server 38,949 2,753 2,215 92.3% 12,500 34.3% 98.6% 35 0

swing 1,266,590 163,528 221,685 64.5% 279,771 25.5% 93.6% 180 26

Java2D 4,783,173 1,418,776 1,410,625 21.8% 919,675 25.4% 81.5% 75 16

jfig 165,701 28,043 21,452 50.0% 44,622 38.7% 98.8% 28 13

ICE Browser 136,834 36,675 10,212 46.4% 67,071 30.7% 99.2% 67 2

HotJava 321,514 47,553 16,913 50.0% 72,835 35.8% 94.5% 144 16

Ichitaro Ark 1,451,855 577,285 121,842 39.9% 459,639 28.7% 97.3% 196 22

Codepatch: The direct devirtualization with the code patch mechanism described in Section 3.1.
Reduction: The percentage difference .with respect to the specified case.
Inlined execs: The percentage of the inlined code actually executed.
Invalidation sites: The number of call sites where the code patching is performed when a method is overridden during the execution of a program.
Method that must be recompiled: The number of method recompilation candidates when a class is loaded during the execution of a program and the method is overridden.

304

4.5 Evaluation and Breakdown of the Results
In this section, we discuss a number of observations that can be
made from the above results.
Figure 2 summarizes the breakdown of call sites optimized by
each devirtualization technique on some programs when we ap-
plied all the devirtualization techniques (corresponding to Section
4.4.4). We use “(o)” to denote all optimizations are performed.
All values are given in relative execution counts against the non-
devirtualized version (corresponding to Section 4.3). Table 7 also
shows the effectiveness of devirtualization techniques (in execu-
tion counts) for all the programs excluding jbb. The reason is that
optimizations increase the number of executed instructions and we
cannot show the reductions since this benchmark measures
throughput in a constant time, as we pointed out in Section 4.3.
The results from Table 2 show a trend that dynamic method calls
in programs with GUI (such as AWT and Swing) tend to be
monomorphic within the common class libraries that Java pro-
vides. The programs use extensible and reusable common class
libraries, but they use them monomorphically. This usage pattern
based on the experiments with real Java programs is very encour-
aging. It increases the opportunity for devirtualization.
As is shown in Table 7, we have measured the reduction of dy-
namic method calls ranging from 8.9% to 97.3% (the average of
40.2%). The program where we measured the highest reduction in
virtual method calls is mtrt. Mtrt has a kernel loop in the method
Intersect() in the class spec.benchmarks._205_
raytrace.Octnode. It calls some small methods such as the
methods GetX(), GetY(), and GetZ() in the class spec.
benchmarks._205_raytrace.Point to get instance vari-
ables very frequently. Direct devirtualization with the code patch-
ing mechanism can inline almost all virtual method calls. Fur-
thermore, 24.3% of them can be directly devirtualized without any
backup paths.
In Table 7, the reduction of virtual method calls is also relatively
high in jess. Here, 60% of the method tests are converted to direct
devirtualization. These call sites are in the method CallNode()
in the class spec.benchmarks._202_jess.jess.Node2.
The devirtualization with method inlining can expand the analysis
scope of target methods, and this helps to prove the type of re-
ceiver objects by type analysis. Therefore, type analysis can re-
move the method calls to equals()in the class java.lang
.Object in the most frequently-called method equals() in
the class spec.benchmarks._202_jess.jess.Value.
The method call with the static type java.lang.Object has a
small runtime overhead, since the receiver may have an array
object and the method call has to check whether the object type is
an array. Therefore, type analysis is an effective optimization.

As can be seen from Table 4 and Table 5, type analysis is effec-
tive in reducing the number of virtual method calls (see the col-
umn of Remaining Virtual Call). In the program jess, it reduces
the number of virtual method calls by 43.9%, which are to call
hashCode() in the class java.lang.Object and java.
lang.Integer with a small runtime overhead, as we described
in Section 3.2. For other programs, it also reduces the number of
virtual method calls with a small runtime overhead in javac by
36.3%, in mpegaudio by 11.6%, and in jack by 88.4%. These
method calls are part of the column of Remaining Virtual Call.
As can be seen from Table 4, Table 5, and Table 6, the average of
Codepatch inlined execs decreases from 98.1% to 96.9% with
type analysis and preexistence analysis. This shows that direct
devirtualization without backup paths are actually executed. Table
7 also shows the reduction by the average of 24.3% for Code-
patch inlined execs with type analysis and preexistence analysis.
We cannot measure execution counts of directly devirtualized
sites without backup paths since a highly optimizing compiler
moves or removes individual instructions of devirtualized call
sites freely. The results also show that direct devirtualization by
type analysis and preexistence applies to 24.3% of the direct
devirtualizations with a backup path generated by the code patch-
ing mechanism.
As can be seen from Table 4 and Table 5, when the compiler per-
forms type analysis, the number of Invalidation sites increases in
javac, swing, Java2D, jfig, and Ichitaro Ark. If type analysis
proves that an instance of an array class does not reach a receiver
of a dynamic method call equals() in the class java.
lang.Object, the method call can be directly devirtualized
using the code patching mechanism. The call site will be invali-
dated to execute the dynamic method call when the method is
overridden by class loading. As a result, the number of Invalida-
tion sites increases rather than decreases in comparison to the
case where no type analysis is used. The increase in the column of
Codepatch inlined execs for type analysis also shows this.
In Table 7, the programs where we measured the smallest reduc-
tion made by type analysis and preexistence in Codepatch
inlined execs are db and XML parser. At a few dominant call
sites in db and XML parser, the forms of virtual method invoca-
tions are this.f.m() or arg.f.m(), where this is an ex-
pression of the current instance, arg is an expression of an argu-
ment, and f is a field of that class. In db, since the program as-
signs only to a non-private field f in constructors once, immutable
field analysis [11] can reduce the number of Codepatch inlined
execs.

305

0

20

40

60

80

100

jes
s

jes
s(o

)
jav

ac

jav
ac

(o) mtrt

mtrt(
o) jac

k

jac
k(o

)

Ja
va

 Serv
er

Ja
va

 Serv
er(

o)

Swing

Swing
(o)

Ja
va

2D

Ja
va

2D
(o) jfig

jfig
(o)

IC
E Brow

se
r

IC
E Brow

se
r(o

)

HotJ
av

a

HotJ
av

a(o
)

Ich
ita

ro
Ark

Ich
ita

ro
Ark(

o)

programs

ex
ec

ut
io

n
co

un
ts

 %

Preexistence
Type Analysis
Codepatch
Class Test
Method Test
Interface Call
Virtual Call

Figure 2: Breakdown of call sites optimized by each devirtualization technique (in execution counts)

Table 7: Effectiveness of devirtualization techniques (in execution counts)
Reduction %

from no devirtualization
to preexistence

Reduction %
from guarded devirtualization

to preexistence

Reduction %
from codepatch to

 preexistence

Program

Virtual
Call

Interface
Call

Both Method Test
inlined execs

Codepatch
 inlined execs

compress 20.4% 0.7% 19.7% 70.6% 33.7%
jess 78.6% 0.7% 77.1% 100.0% 30.0%

db 11.4% 0.0% 8.9% 99.9% 0.0%

javac 42.8% 0.0% 40.0% 82.1% 8.1%

mpegaudio 30.9% 99.8% 32.2% 99.1% 32.2%

mtrt 97.3% 0.7% 97.3% 100.0% 27.0%

jack 51.1% 36.8% 49.1% 99.6% 14.8%

XML parser 84.5% 5.9% 29.3% 66.9% 0.6%

Java Server 48.0% 11.7% 46.5% 89.8% 34.3%

swing 27.8% 7.9% 26.0% 71.3% 25.5%

Java2D 26.3% 1.9% 21.9% 85.7% 25.4%

jfig 44.1% 15.0% 41.2% 88.9% 38.7%

ICE Browser 47.6% 16.8% 43.2% 94.7% 30.7%

HotJava 36.2% 14.4% 34.1% 92.2% 35.8%

Ichitaro Ark 40.1% 28.4% 37.1% 92.7% 28.7%

average 45.8% 16.0% 40.2% 88.9% 24.3%

306

We were also surprised that the number of interface method calls
is almost unchanged in db. We have investigated the reason by
looking into statistics. The number of interface method calls is
dominated by call sites in the method set_index() in the class
spec.benchmarks._209_db.Database and the method
equals() in the class spec.benchmarks._209_db.
Entry. At these call sites, the interface method calls are used as
shown in Example 7. In JDK 1.1, the method elements() in
the class java.lang.Vector is declared as final. In Java 2,
however, the method is not declared as final. This change
causes the type information to be lost for a receiver expression e
in the method foo().

If the method is declared as final (in the case of JDK 1.1), the
method can be directly inlined and the return type is known as an
inner class. Therefore, type analysis can prove that only the inner
class that is never overridden comes to the receiver expression e
of the interface method call. Based on the results, we can translate
interface method calls into virtual method calls, direct method
calls, or inlined codes. In that case, we could get a huge reduction
of 99% for the interface method calls in db.

On the other hand, if it is not declared as final (in the case of
Java 2), type analysis returns the Enumeration class as an am-
biguous type and the compiler determines the call site is polymor-
phic. Furthermore, the Enumeration class is always imple-
mented by a few classes. Thus, no devirtualization technique can
be applied. In this case, specialization and customization would
not be effective since the receiver expression does not depend on
its arguments. Message splitting [31] could help in this situation.
However, message splitting will increase the code size by dupli-
cating a complete loop structure. In summary, eliminating final
from the method declaration caused a large performance loss.

4.6 Performance Results
We measured the execution time of eight non-interactive pro-
grams (compress, jess, db, javac, mpegaudio, mtrt, jack, and
jbb). The other programs were difficult to measure because of

their interactive nature and dependencies within AWT. Figure 3
shows the performance improvement resulting from the cumula-
tive optimizations. Here, all the measurements are performed by
compiling all methods. All the values are given in relative speed
up against non-devirtualized versions (only with base optimiza-
tions). Each of the bars shows the cumulative effect including
prior optimizations. For each of the bars, the following combina-
tions of techniques are used:
z Base optimizations (not shown in the figure): All optimiza-

tions except the devirtualization techniques that we described
in Section 4.1 are performed (corresponding to Section 4.3)
and static method inlining are performed.
z +Method Test, Class Test: Base optimizations and guarded

devirtualization (i.e. class and method tests) are performed
(corresponding to Section 4.4.1).
z +Codepatch: Base optimizations, guarded devirtualization,

and direct devirtualization with the code patching mechanism
are performed (corresponding to Section 4.4.2).
z +Type Analysis: Base optimizations, guarded devirtualization,

direct devirtualization with the code patching mechanism, and
flow-sensitive type analysis are performed (corresponding to
Section 4.4.3).
z +Preexistence: Base optimizations, guarded devirtualization,

direct devirtualization with code patching mechanism, flow-
sensitive type analysis, and preexistence analysis are
performed (corresponding to Section 4.4.4).

public class Vector {
protected Object elementData[];
protected int elementCount;

public Enumeration elements() { // in JDK 1.1, this method is declared as final
return new Enumeration() {

int count = 0;
public boolean hasMoreElements() { return count < elementCount; }
public Object nextElement() {

synchronized (Vector.this) {
if (count < elementCount) return elementData[count++];

}
throw new NoSuchElementException("Vector Enumeration");

}
}

}
}

class Sample {
Vector v;
Object o[];
void foo() {

int i = 0;
Enumeration e = v.elements();
while (e.hasMoreElements()) // interface method call

o[i++] = e.nextElement(); // interface method call
}

}
Example 7: A sample usage of interface method calls

307

We have measured the speedup of 4% in the geometric mean by
guarded devirtualization with class tests and method tests. Direct
devirtualization with the code patching mechanism improves the
performance by 13% in the geometric mean. It especially im-
proves the performance of mtrt. This is because the program calls
some small methods in a kernel loop very frequently, and almost
all of these method calls can be directly devirtualized by the code
patching mechanism, as we described in Section 4.5. To show the
performance impact of the existence of backup paths, we have
made a small experiment to execute mtrt by eliminating of all
backup paths. Even in the extreme case, the performance of this
version is only 6% faster. The result shows that the overhead of
the existence of backup paths is usually smaller than we thought.
Direct devirtualization with the code patching mechanism also
improves the performance of jess. On this program, almost all the
method tests in the kernel are converted to direct devirtualizations
as we described in Section 4.5.
Type analysis improves the performance of jess, javac,
mpegaudio, and jack. The reason is that these programs include
parsers and expert systems, which manipulate many string objects
using the methods hashCode(), equals(), and
toString(). The reduction of these method calls by type
analysis is high as we described in Section 4.5. Type analysis also
improves the performance of jbb. It is effective with the classes
spec.jbb.JBBmain and spec.jbb.JBButil.
Using all of the optimizations presented in this paper, we have
measured a speedup of 16% in the geometric mean.

5. Conclusions
We have shown that the direct devirtualization with the code
patch mechanism we proposed in this paper can remove almost all
class and method tests generated by guarded devirtualization, and
that it can be applied to a wide range of dynamic method calls.
The runtime overhead of our approach is smaller than that of a
recompilation-based approach. We eliminated the backup path by
type analysis and preexistence analysis. We also optimized the
inlined code by inserting compensation code in the backup path if

it is not eliminated. We evaluated the devirtualization techniques
implemented in our JIT compiler based on various statistics col-
lected by running a set of real programs in various application
categories. We have observed the reduction of dynamic method
calls ranging from 8.9% to 97.3% (the average of 40.2%) by using
these devirtualization techniques. Furthermore, we have shown
that type analysis and preexistence analysis eliminated the backup
path for 24.3% of the directly devirtualized sites that used the
backup path. Overall, we have reported performance improve-
ments ranging from -1% to 133% (with the geometric mean of
16%). We have also pointed out a few problems such as non-
sealed class library and missing type information, which caused
performance degradation in a Java runtime environment.

Acknowledgement
We are grateful to the people in Network Computing Platform at
Tokyo Research Laboratory for implementing our JIT compiler.
We thank Takeshi Ogasawara and Toshio Suganuma for informa-
tion on implementing the code patching mechanism on the IA32
architecture. We also thank Shannon Jacobs for his editorial assis-
tance. We appreciate the insightful comments from the anony-
mous reviewers and the committee members of OOPSLA.

References
[1] Brad Calder and Dirk Grunwald. Reducing Indirect Function

Call Overhead In C++ Programs, In Proceedings of the ACM
SIGPLAN ’94 Symposium on Principles of Programming
Languages, pp. 397-408, 1994

[2] David Grove, Jeffrey Dean, Charles Garrett, and Craig
Chambers. Profile-Guided Receiver Class Prediction, In Pro-
ceedings of the Conference on Object Oriented Programming
Systems, Languages & Applications, OOPSLA ’95, pp. 108-
123, 1995.

[3] Gerald Aigner, and Urs Hölzle. Eliminating Virtual Function
Calls in C++ Programs, In Proceedings of the 10th European
Conference on Object-Oriented Programming – ECOOP ’96,

0.9

1

1.1

1.2

1.3

1.4

compress jess db javac mpegaudio mtrt jack jbb

programs

sp
ee

d
up

+Method Test, Class Test
+Codepatch
+Type Analysis
+Preexistence

2.252.272.33

Figure 3: Performance improvement of the non-interactive benchmarks from the non-devirtualized version

308

volume 1098 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 142-166, 1996.

[4] Urs Hölze. Adaptive Optimization For SELF: Reconciling
High Performance With Exploratory Programming, PhD the-
sis, Stanford University, 1994

[5] Jeffery Dean, David Grove, and Craig Chambers. Optimiza-
tion of object-oriented programs using static class hierarchy,
In Proceedings of the 9th European Conference on Object-
Oriented Programming – ECOOP ’95, volume 952 of Lec-
ture Notes in Computer Science, Springer-Verlag, pp. 77-
101, 1995.

[6] Mary F. Fernandez. Simple and Effective Link-Time Optimi-
zation of Modula-3 Programs, In Proceedings of the ACM
SIGPLAN '95 Conference on Programming Language De-
sign and Implementation, pp. 103-115, 1995.

[7] David F. Bacon and Peter F. Sweeny. Fast Static Analysis of
C++ Virtual Function Calls, In Proceedings of the Confer-
ence on Object Oriented Programming Systems, Languages
& Applications, OOPSLA ’96, pp. 324-341, 1996.

[8] Frank Tip and Jens Palsberg. Scalable Propagation-Based
Call Graph Construction Algorithm, In Proceedings of the
Conference on Object Oriented Programming Systems, Lan-
guages & Applications, OOPSLA 2000, 2000.

[9] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa,
Raja Vallėe-Rai, Patrick Lam, Etienne Garnon, and Charles
Godin. Practical Virtual Method Call Resolution for Java, In
Proceedings of the Conference on Object Oriented Pro-
gramming Systems, Languages & Applications, OOPSLA
2000, 2000.

[10] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue,
Mikio Takeuchi, Takeshi Ogasawara, Toshio Suganuma,
Tamiya Onodera, Hideaki Komatsu, and Toshio Nakatani.
Design, Implementation, and Evaluation of Optimizations in
a Just-In-Time Compiler, In ACM 1999 Java Grande Con-
ference, pp.119-128, 1999.

[11] David Detlefs and Ole Agesen. Inlining of Virtual Methods,
In Proceedings of the 13th European Conference on Object-
Oriented Programming – ECOOP ’99, volume 1628 of Lec-
ture Notes in Computer Science, Springer-Verlag, pp. 258-
278, 1999.

[12] James Gosling, Bill Joy, and Guy Steele. The Java Language
Specification, Addison-Wesley, 1996.

[13] Urs Hölzle, Craig Chambers, and David Ungar. Debugging
optimized code with dynamic deoptimization, In Proceedings
of the ACM SIGPLAN ’92 Conference on Programming
Language Design and Implementation, pp. 32-43, 1992.

[14] Jens Palsberg and Michael I. Schwartzbach. Object-Oriented
Type Inference, In Proceedings of the Conference on Object
Oriented Programming Systems, Languages & Applications,
OOPSLA ’91, pp. 146-161, 1991.

[15] Ole Agesen and Urs Hölzle. Type Feedback vs. Concrete
Type Inference: A Comparison of Optimization Techniques
for Object-Oriented Languages, In Proceedings of the Con-
ference on Object Oriented Programming Systems, Lan-
guages & Applications, OOPSLA ’95, pp. 91-107, 1995.

[16] Paul R. Carini, Hirini Srinivasan, and Michael Hind. Flow-

Sensitive Type Analysis for C++, IBM Research Report, RC
20267, 1995

[17] Etienne M. Gagnon, Laurie J. Hendren, and GuillaumeMar-
ceau. Efficient Inference of Static Types for Java Bytecode,
Static Analysis Symposium 2000, 2000

[18] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing
Dynamically-Typed Object-Oriented Languages with
Polymorphic Inline Caches, In Proceedings of the 5th
European Conference on Object-Oriented Programming –
ECOOP ’91, volume 512 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 21-38, 1991.

[19] David F. Bacon. Fast and Effective Optimization of Statically
Typed Object-Oriented Languages, Ph.D. thesis, University
of California at Berkeley, 1997.

[20] Junpyo Lee, Byung-Sun Yang, Suhyun Kim, SeungIl Lee,
Yoo C. Chung, Heungbok Lee, Je Hyung Lee, Soo-Mook
Moon, Kemal Ebcioglu, Erik Altman. Reducing Virtual Call
Overheads in a Java VM Just-In-Time Compiler, The 4th
Annual Workshop on Interaction between Compilers and
Computer Architectures, pp.21-33, 2000

[21] Sun Corp. The Java HotSpot Performance Engine Architec-
ture, Available at
http://java.sun.com/products/hotspot/whitepaper.html.

[22] Bowen Alpern, Mark Charney, Jong-Deok Choi, Anthony
Cocchi, and Derek Lieber. Dynamic Linking on a Shared-
Memory Multiprocessor, The 1999 International Conference
on Parallel Architecture and Compilation Techniques, 1999.

[23] Intel Corp. Intel Architecture Software Developer’s Manual,
order number 243192, 1997.

[24] Michal Cierniak, Guei-Yuan Lueh, and James M. Stichnoth.
Practicing JUDO: Java™ Under Dynamic Optimizations, In
Proceedings of the ACM SIGPLAN '95 Conference on
Programming Language Design and Implementation, pp. 13-
26, 2000.

[25] Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani.
Effective Null Pointer Check Elimination Utilizing Hardware
Trap, To appear in the International Conference on Architec-
tural Support for Programming Language and Operating
Systems, 2000.

[26] Jens Knoop, Ruthing Oliver, and Steffen Bernhard. Lazy
Code Motion, In Proceedings of the ACM SIGPLAN '95 Con-
ference on Programming Language Design and Implementa-
tion, pp. 224-234, 1992.

[27] Jong-Deok Choi, Manish Gupta, Muaricio Serrano, Vug-
ranam C. Sreedhar, and Sam Midkiff. Escape Analysis for
Java, In Proceedings of the Conference on Object Oriented
Programming Systems, Languages & Applications, OOPSLA
’99, pp. 1-19, 1999.

[28] John Whaley and Martin Rinard. Compositional Pointer and
Escape Analysis for Java Programs, In Proceedings of the
Conference on Object Oriented Programming Systems, Lan-
guages & Applications, OOPSLA ’99, pp. 187-206, 1999.

[29] IBM Corp. Jikes, available at
http://oss.software.ibm.com/developerworks/opensource/jike
s/project/index.html.

309

[30] T. Lindholm and F. Yellin. The Java Virtual Machine Speci-

fication, Addison-Wesley, 1996.
[31] Craig Chambers and David Unger. Iterative Type Analysis

and Extended Message Splitting: Optimizing Dynamically-
Typed Object Oriented Programs, In Proceedings of the
ACM SIGPLAN ’90 Conference on Programming Language
Design and Implementation, pp. 150-164, 1990

[32] Toshio Suganuma, Takeshi Ogasawara, Mikio Takeuchi,
Toshiaki Yasue, Motohiro Kawahito, Kazuaki Ishizaki, Hi-
deaki Komatsu, and Toshio Nakatani. Overview of the IBM
Java Just-in-Time Compiler, IBM Systems Journal, Vol. 39,
No. 1, pp.175-193, 2000

[33] Frederick Chow. Minimizing Register Usage Penalty at Pro-
cedure Calls, In Proceedings of the ACM SIGPLAN '95 Con-
ference on Programming Language Design and Implementa-
tion, pp. 85-94, 1988.

[34] Standard Performance Evaluation Corp. SPEC JVM98
Benchmarks, available at http://www.spec.org/osg/jvm98/.

[35] Standard Performance Evaluation Corp. SPECjbb2000
Benchmarks, available at http://www.spec.org/osg/jbb2000/.

[36] IBM Corp. XML Parser for Java, available at
http://alphaworks.ibm.com/tech/xml4j.

[37] Sun Corp. JavaServer™ Web Development Kit (JSWDK)
1.0.1 Reference Implementation, available at
http://java.sun.com/products/jsp/download.html.

[38] Norman Hendrich. jfig, available at http://tech-
www.informatik.uni-hamburg.de/applets/javafig/

[39] ICEsoft. ICE Browser, available at http://www.icesoft.no/
[40] Sun Corp. HotJava™ Browser, available at

http://java.sun.com/products/hotjava/index.html
[41] JUSTSYSTEM Corp. ICHITARO ARK for Java, available at

http://www.justsystem.com/ark/index.html.

310

