
A Study of Devirtualization Techniques 
for a Java™ Just-In-Time Compiler 

Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Komatsu, Toshio Nakatani 
IBM Research, Tokyo Research Laboratory 

1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-8502, Japan 

ishizaki@trl.ibm.co.jp  
 
 

ABSTRACT 
Many devirtualization techniques have been proposed to reduce 
the runtime overhead of dynamic method calls for various object-
oriented languages, however, most of them are less effective or 
cannot be applied for Java in a straightforward manner. This is 
partly because Java is a statically-typed language and thus trans-
forming a dynamic call to a static one does not make a tangible 
performance gain (owing to the low overhead of accessing the 
method table) unless it is inlined, and partly because the dynamic 
class loading feature of Java prohibits the whole program analysis 
and optimizations from being applied. 
We propose a new technique called direct devirtualization with 
the code patching mechanism. For a given dynamic call site, our 
compiler first determines whether the call can be devirtualized, by 
analyzing the current class hierarchy. When the call is devirtualiz-
able and the target method is suitably sized, the compiler gener-
ates the inlined code of the method, together with the backup code 
of making the dynamic call. Only the inlined code is actually exe-
cuted until our assumption about the devirtualization becomes 
invalidated, at which time the compiler performs code patching to 
make the backup code executed subsequently. Since the new 
technique prevents some code motions across the merge point 
between the inlined code and the backup code, we have further-
more implemented recently-known analysis techniques, such as 
type analysis and preexistence analysis, which allow the backup 
code to be completely eliminated. We made various experiments 
using 16 real programs to understand the effectiveness and charac-
teristics of the devirtualization techniques in our Java Just-In-
Time (JIT) compiler. In summary, we reduced the number of dy-
namic calls by ranging from 8.9% to 97.3% (the average of 
40.2%), and we improved the execution performance by ranging 
from -1% to 133% (with the geometric mean of 16%). 

1. Introduction 
Many devirtualization techniques [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] 
have been proposed to reduce the overhead of dynamic method 
calls for various object-oriented languages. In general, a guard test 
is generated to test the receiver of the class (called class test) [1, 2, 
3] or the method (called method test) [11] to ensure that it is valid 

to make a direct call to the corresponding target method. We call 
this approach guarded devirtualization. In dynamically-typed 
object-oriented languages such as Self [4], guarded devirtualiza-
tion is extremely effective because of the high overhead of a dy-
namic method call. In statically-typed object-oriented language 
like Java [12], guarded devirtualization is less effective because of 
the low overhead of dynamic method call due to the fact that it 
can be translated into a few load operations followed by an indi-
rect jump operation. In order to boost the performance with a dy-
namic method call, the method call must be inlined as much as 
possible after the guard test is eliminated. 
To devirtualize a dynamic method call without generating a guard 
test (we call this approach direct devirtualization), the whole pro-
gram analysis and optimizations [5, 6, 7, 8, 9] have been proposed 
in the context of static compilers. However, they are based on the 
closed-world assumption, in which no dynamic class loading is 
allowed. Therefore, these techniques cannot be directly applicable 
to Java. Dynamic recompilation can be used to make direct devir-
tualization possible in the non-closed world assumption, but it 
involves a complicated mechanism called on-stack replacement 
[13]. 
We propose a new technique called direct devirtualization with 
the code patching mechanism (the code patching mechanism or 
code patch in short) [10]. For a given dynamic call site, our com-
piler first determines whether the call can be devirtualized, by 
analyzing the current class hierarchy. When the call is devirtualiz-
able and the target method is suitably sized, the compiler gener-
ates the inlined code of the method, together with the backup code 
(also called backup path) of making the dynamic call. Only the 
inlined code is actually executed until our assumption about the 
devirtualization becomes invalidated, at which time the compiler 
performs code patching to make the backup code executed subse-
quently. Since the new technique prevents some code motions 
across the merge point between the inlined code and the backup 
code, we have furthermore implemented recently-known analysis 
techniques, such as type analysis [14, 15, 16, 17] and preexistence 
analysis [11], which allow the backup code to be completely 
eliminated. 
We made various experiments using 16 real programs to under-
stand the effectiveness and characteristics of the devirtualization 
techniques in our Java Just-In-Time (JIT) compiler. In summary, 
we reduced the number of dynamic calls by ranging from 8.9% to 
97.3% (the average of 40.2%), and we improved the execution 
performance by ranging from -1% to 133% (with the geometric 
mean of 16%). 
This paper makes the following contributions: 
z A new devirtualization technique called direct devirtualiza-

tion with the code patching mechanism, which is much sim-
pler to implement and has less overhead to execute than a re-
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compilation approach with on-stack replacement. We elimi-
nate the backup path by type analysis and preexistence analy-
sis. We also optimize the inlined code by inserting compensa-
tion code in the backup path if it is not eliminated. 

z Evaluation of various devirtualization techniques imple-
mented in our Java JIT compiler, including direct devirtuali-
zations (the code patching mechanism, type analysis, and 
preexistence) and guarded devirtualizations (class test and 
method test). 

The rest of the paper is structured as follows. Section 2 discusses 
related work. Section 3 describes our devirtualization techniques 
that implemented in our Java JIT compiler. Section 4 gives ex-
perimental results with statistics and performance results on a set 
of real programs. Finally, Section 5 outlines our conclusions. 

2. Related Work 
Devirtualization techniques are important to improve the perform-
ance in object-oriented languages. Therefore, many devirtualiza-
tion techniques have been proposed. 
An inline cache technique was developed to speed up dynamic 
method calls. An inline cache records the class of the last receiver 
object at the call site, and jumps directly to the method for that 
class. A stub validates that the dynamic type of the receiver 
matches the expected type. If this test fails, a normal method 
lookup makes a dynamic method call and stores the class of the 
current receiver to the call site cache. Hölzle extended the tech-
nique to a polymorphic case of inline caches [18]. Type prediction 
[2, 3] and method test [11] have also been proposed. Type predic-
tion and method test predict the type of a frequently-called object 
at compile time. A polymorphic inline cache, type prediction, and 
method test introduce new runtime tests, since these techniques 
take the cache approach with memory references. According to 
the results of simple experiments [19], type prediction without 
inlining, even with 100% accuracy of the predictions, cannot 
outperform direct devirtualization of dynamic method calls 
without inlining. Type prediction with inlining must achieve 
approximately 90% accuracy to outperform direct devirtualization 
without inlining. Finally, no known technique can outperform 
direct devirtualization with inlining. Lee et al. implemented both 
monomorphic and polymorphic inline caches in a Java Virtual 
Machine [20]. The experimental results did not achieve as good a 
speedup as in dynamically-typed object-oriented languages such 
as Self. In implementations of Java, the cost of dynamic method 
calls is not so different from that of using polymorphic inline 
caches, type prediction, and method test. In statically-typed ob-
ject-oriented languages, guarded devirtualization is effective in 
enabling inline methods with dynamic calls to expand the intra-
procedure optimization scope of a compiler. 
Several systems directly devirtualize dynamic method calls, by 
allowing them to be inlined or implemented by direct method 
calls. Dean et al. used a class hierarchy analysis to devirtualize 
dynamic method calls [5]. Class hierarchy analysis determines 
when the static type of a receiver implies that an invoked method 
has only a single implementation in the set of classes used in a 
whole program. Fernandez [6] proposed a link-time optimization 
system. Bacon and Sweeney [7], Tip and Palsberg [8], and Vijay 
et al. [9] proposed more precise static analysis. All these tech-
niques statically devirtualize dynamic method calls based on a 
closed-world assumption. Since Java supports dynamic class load-
ing, these techniques cannot be used in a straightforward manner. 
This is why we propose direct devirtualization with the code 
patching mechanism [10]. Flow-sensitive type analysis [14, 15, 16, 

17] attempts to tighten the static type constraints on the receiver 
expressions. It increases the opportunities for direct devirtualiza-
tion to determine whether a call site has a single implementation. 
It can also directly devirtualize a dynamic method call without a 
backup path. 
Several languages, such as C++, Dylan, and Java, have a linguistic 
mechanism that allows users to declare a class sealed, so that it is 
prohibited to subclass any new class from it. However, sealed 
methods are not common in the Java Core libraries such as 
java.util.Vector. Most of the methods in this class are not 
sealed in Java 2. 
The Self system performs extensive inlining of dynamic method 
calls [13], whose correctness is ensured by the on-stack replace-
ment mechanism. In the compiled code, there are deoptimization 
points at which the original state of the method’s variables can be 
recovered from the optimized state. When a compilation assump-
tion is violated by dynamic class loading, the Self system recovers 
the original state at a deoptimization point and recompiles the 
method. Such a system introduces several concerns. In the Self 
implementation, the compiler produces numerous data structures 
called scope descriptors for deoptimization. Deoptimization points 
also introduce inefficiency into the generated code to storing extra 
data in memory to recover the original context. The compiler can-
not reorder instructions over a deoptimization point. It is also 
difficult to replace methods on stacks in the multi-threaded run-
time environment. The Java HotSpot compiler [21] adopts a re-
compilation approach using on-stack replacement. We did not 
explore this approach because of the complexity of its implemen-
tation. Preexistence analysis [11] is an approach to prevent on-
stack replacement by determining whether direct devirtualization 
can be performed based on the analysis of the receiver expres-
sions. We adopted it to increase the opportunity for compiler op-
timizations by eliminating backup paths. 

3. Devirtualization of Dynamic Method Calls 
We present an overview of our devirtualization approach. First, 
the compiler performs flow-sensitive type analysis and preexis-
tence analysis to directly devirtualize call sites without backup 
paths that introduce constraints on compiler optimizations such as 
code motion. The preexistence analysis also guarantees that the 
situations requiring on-stack replacement cannot occur. Next, the 
compiler performs dynamic class hierarchy analysis to directly 
devirtualize the dynamic method calls. It can detect when a call 
site has a single implementation at compile time and inline the 
callee code without any guard tests. However, Java allows new 
classes to be loaded during the execution of a program, and there-
fore the compiler has to prepare the original dynamic method call 
to allow for execution where the assumption of a single imple-
mentation is violated. Finally, if the compiler knows a call site has 
multiple implementations, it devirtualizes a dynamic method call 
with a guard test. It inlines the selected dynamic method call with 
a class test verifying that the receiver is of the proper class, or it 
inlines a dynamic method call with a method test verifying that 
the receiver has the proper method. 
In the rest of this section, we describe devirtualization techniques 
for the optimization of dynamic method calls: the code patching 
mechanism, flow-sensitive type analysis, preexistence analysis, 
class test, and method test. 

3.1 Code Patching Mechanism 
Class hierarchy analysis (CHA) [5, 6] determines a set of possible 
targets of a dynamic method call by combining the static type of 
an object with the class hierarchy of the whole program. If it can 
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be determined that there is no overridden method, the dynamic 
method call can be replaced with inlined code or with a direct 
method call by direct devirtualization at compile time, and the 
method can be executed without method lookup. Previously, di-
rect devirtualization with CHA has been investigated and imple-
mented for languages limited to static class loading, in which the 
class hierarchy does not change during the execution of the pro-
gram. However, Java supports dynamic class loading, which al-
lows the class hierarchy to change during the execution of a pro-
gram. Recompilation with on-stack replacement was the only an 
approach to allow a compiler to invalidate the devirtualized 
method while there is an active context on stacks. However, the 
implementation is very difficult because it requires replacing 
methods and context on stacks. 
We have designed the code patching mechanism in order to di-
rectly devirtualize dynamic method calls with dynamic class load-
ing [10]. If a caller site has a single implementation, the compiler 
generates the inlined code of the target method and the original 
dynamic method call at compilation time. The compiler can also 
turn dynamic method calls into direct method calls for non-inlined 
methods. If runtime class loading overrides a method that was 
previously not overridden, the inlined code sequence for a specific 
implementation must be replaced with the original dynamic 
method call. This is done by rewriting the first instruction in the 
inlined code sequence. We show the generated code for an inlined 
method in Example 1 using the PowerPC instruction set. The gen-
erated code using direct devirtualization has no overhead at execu-
tion time because there are no tests requiring memory access in 
the method tests and class tests. This mechanism also has lower 
overhead and implementation costs than a recompilation approach 
with on-stack replacement. Further, when the compiler generates 
the native code, it places the inlined code in the fall through path 
in Example 1. Since it knows the inlined code is executed very 
frequently, this improves the efficiency of the instruction cache. 
Java provides interfaces for the provision of multiple inheritances. 
The compiler also optimizes an interface method call by replacing 
it with inlined code. If CHA finds that only one class implements 
an interface class, a virtual method call with a single method 
lookup can be generated by using the implementation class as a 
static type. Furthermore, if the target method is not overridden 
anywhere in the implementation class hierarchy, the code can be 

inlined instead of using the interface method call by using direct 
devirtualization. As a result, the generated code using the 
PowerPC instruction set is shown in Example 2. When the method 
is overridden in the implementation class hierarchy, the code 
patching mechanism cancels the direct devirtualization to execute 
the virtual method call. In addition, when non-subclass of the 
implementation class implements the interface class, the code 
patching mechanism cancels direct devirtualization to execute the 
original interface method call. The right column in Example 2 
shows the latter case. This optimization is much more efficient 
than a naive implementation of an interface call, which requires 
executing a loop to search for an implementation class. 
We have implemented the code patching mechanism using CHA 
for supporting dynamic class loading as follows. When the new 
class is loaded at runtime, the runtime routine refers to an internal 
data structure that represents whether or not each associated 
method is overridden. Furthermore, if a class implements an inter-
face class, the compiler also counts the number of implementation 
classes of the interface class in order to devirtualize interface 
method calls. The compiler checks whether a caller site has a sin-
gle implementation when it attempts to inline a dynamic method 
call. The result (whether or not the method has only a single im-
plementation) is checked on demand, when the first check is is-
sued, and the result is then stored in the result cache. When the 
native code is generated for the inlined code, the top address of 
the inlined code sequence is also recorded in the result cache for 
the call site. When the compiler next checks the implementation 
of the same method, the result is returned from the result cache 
immediately, and the new code address is also recorded in the 
result cache. 
When the method is not yet overridden in the left column in 
Example 1, the inlined code is executed and the italicized code 
sequence for the dynamic method call is not executed at all. When 
the method is overridden because of dynamic class loading, the 
internal structures are updated appropriately. If the method related 
to the result cache is overridden, the class loader uses the result 
cache to find the address that should be replaced with a b (branch) 
instruction to the dynamic method call. This effectively undoes 
the direct devirtualization, and the inlined code becomes inacces-
sible. Consequently, the code sequence for the dynamic method 
call will be executed correctly. 

Before overriding the method After overriding the method
// top word of inlined code b original_call // static jmp
// the rest of inlined code // the rest of inlined code

after_inline: after_inline:
: :

original_call: original_call:
lwz r1, (obj) lwz r1, (obj) // load class pointer
lwz r2, offset(r1) lwz r2, offset(r1) // load method pointer
lwz r3, offset(r2) lwz r3, offset(r2) // load code address
mtctr r3 mtctr r3
blr ctr blr ctr // dynamic method call
b after_inline b after_inline  

Example 1: Inlining of a dynamic method call (invokevirtual) 
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Since Java is an explicitly multi-threaded language, the invalida-
tion of the old code sequence must be thread-safe. On the 
PowerPC RISC architecture, since the memory system guarantees 
atomicity only for full word instructions, we implemented this 
atomic updating by rewriting only one full word instruction, the 
branch instruction. Furthermore, on a processor with split caches 
for instruction and data, both the data and instruction caches 
should be flushed. This ensures synchronization between the in-
struction and data caches. In addition, any instruction prefetch 
buffer must be flushed [22]. This ensures that any pending instruc-
tions fetched from the instruction cache are ignored and the up-
dated instruction will be executed. On the IA32 architecture, the 
memory system guarantees atomicity for a single write to memory 
aligned on a boundary of its length within a cache line [23], and 
the write instruction invalidates the instruction prefetch queue. 
Since the length of each instruction varies, the length of the re-
write target must be same as that of the new instruction to ensure 
the validity of the instruction sequence. If the length of a new 
branch instruction is two bytes, the compiler for the IA32 archi-
tecture generates the first instruction whose length is two bytes or 
over in the inlined code sequence, by means of padding using a 
special addressing mode. The new branch instruction is written by 
a single write to memory to ensure the atomicity. If the length of 
the branch instruction is five bytes, we replace the first two bytes 
of the first instruction in the inlined code sequence with spinning 
jump by a single memory write not using xchg instructions. Then, 
the rest three bytes of the first instruction are updated. Finally, the 
first two bytes of the branch instruction are written by a single 
memory write [24]. 
Going beyond our previous method [10], from the viewpoint of 
compiler optimizations, we now use an explicit intermediate 
representation of a branch affected by the code patching 
mechanism. This increases the opportunities for compiler 
optimizations. On the other hand, the branch may prevent the 
compiler from performing optimizations using dataflow analysis, 
because the generated intermediate representation includes a 
backup path (the original method call) as a kill pointi due to its 
side effect. Scalar replacement of instance variables and code 
motion may also be restricted. We illustrate these problems in 
Example 3. A compiler translated a source program in Example 3 
a) into a RISC-like intermediate representation in Example 3 b). 
Here, some instructions related to a loop exit are omitted for 
simplicity. In the example, the getfield bytecode instructions                                                                  
i If an instruction redefines a value, it is said to kill the definition, 

which means the collected information on the variable cannot be 
preserved before and after that point. 

ple, the getfield bytecode instructions are split into null-
check instructions that are the potentially excepting instructions 
(PEI) in the bold font and getfield instructions that are simple 
loads from a heap memory. At the end of basic block (BB) 3, 
there are two branches for direct devirtualization. One is a branch 
to BB3, which is a primary execution path. The other is a branch 
to BB5, which is a backup path. 
In the Example 3 b), the compiler performs optimizations [25] as 
follows: 

1. The compiler can perform nullcheck optimizations. It moves 
‘nullcheck LO0’ out of BB3 and BB5 in the loop to BB1. 
Then, the compiler eliminates ‘nullcheck LO0’ in BB 4 
since ‘nullcheck LO0’ instruction in BB 1 dominates it.  

2. The compiler can perform partial redundancy elimination 
(PRE) [26]. It performs scalar replacements of the access of 
instance variables <x> and <z>. The compiler moves a 
getfield instruction for <x> and <z> out of the loop, and 
then replaces the reference to variable <x> with a temporary 
variable in BB 3. Since the compiler moved the getfield 
instruction for <x> and <z> across an invoke instruction 
that has side effects, it generates the compensation code for 
variable <x> and  <z> after the kill point (invoke at BB5). 
Though it increases the inefficient code, it does not matter 
since it is generated in a backup path where it rarely executes.  

Code motion involving PEIs or instructions with side effects is 
limited and cannot cross over a kill point. If the ‘nullcheck
LO1’ instruction is moved into BB3, the exception may be 
thrown before throwing an exception raised within the method m. 
This transformation violates the original semantics of the pro-
gram. Therefore, the compiler cannot move the ‘nullcheck
LO1’ instruction across BB5. 
Generating compensation code can reduce the impact of merging 
the control flow on compiler optimizations such as scalar re-
placement along a backup path. The compiler could also perform 
escape analysis [27, 28] with stack object allocation by generating 
the compensation code in backup paths. By flow-sensitive type 
analysis and preexistence analysis in Section 3.2 and 3.3, we 
eliminate backup paths for devirtualized method calls. 
 

Only one class implements More than one class implements
// top word of inlined code b interface_call // static jmp
// 2nd word of inlined code // 2nd word of inlined code // if implementing method is
// the rest of inlined code // the rest of inlined code // overridden, go to virtual_call

after_inline: after_inline:
: :

virtual_call virtual_call
lwz r1, (obj) lwz r1, (obj) // load class pointer
lwz r2, offset(r1) lwz r2, offset(r1) // load method pointer
lwz r3, offset(r2) lwz r3, offset(r2) // load code address
mtctr r3 mtctr r3
blr ctr blr ctr
b after_inline b after_inline

interface_call: interface_call:
mr r1, <rcv obj reg> mr r1, <rcv obj reg> // move receiver object
blr rt_interface blr rt_interface // call runtime for interface call
b after_inline b after_inline

Example 2: Inlining of a dynamic method call (invokeinterface) 
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3.2 Flow-Sensitive Type Analysis 
Flow-sensitive type analysis [14, 15, 16, 17] computes a type for 
every object reference point in an entire method. The compiler 
computes the dataflow information on static types with signatures 
and class instantiations (call to new()) at each object reference 
point. The analysis determines the set of classes reachable at each 
object reference point.  
If the type analysis proves that all class instantiations that reach 
the receiver expression of the dynamic method call have the same 
definition, this proves that no method override occurs at the call 
site. Therefore, the dynamic method call can be directly devirtual-
ized without a backup path. This reduces optimization constraints 
in our devirtualization techniques. 
Type analysis can also recover missing type information. This loss 
can occur while translating source code into bytecode [11] (i.e. 
during a compilation by javac or jikes [29] (version 1.06)). We 
here explain it using Example 4. The source code of the method 

m() indicates that the method call a.equals() invokes the 
method equals() in the class A. The javac compiler embeds the 
class Object and the method equals() as static types in the 
class file. The compiler may recover the more precise type A of 
the receiver through an interpretation like the bytecode verifica-
tion process [30]. The missing type information causes the class 
hierarchy analysis to fail at the method call a.equals(). With-
out doing type analysis, the compiler checks whether Object.
equals() is a single implementation rather than 
A.equals(). This always fails because the method in the class 
String that is never invoked by the method call a.equals() 
overrides the method equals(). 
In practice, the missing type information frequently occurs at call 
sites involving the methods equals() and hashCode() that 
are declared in the class java.lang.Object. Therefore, type 
analysis improves the accuracy of class hierarchy analysis. 

class Foo {
int x, y, z;
int m() {

return this.z;
}
int caller(Foo a, Foo b) {

do {
i = a.m(); // BB3 and 5
j = a.x; // BB4
k = b.y; // BB4

} while (cond)
return i+j+k;

}
}

nullcheck LO0

getfield LI2=LO0,<z>

nullcheck LO0

invoke LI2=LO0,<m>

nullcheck LO0
getfield LI3=LOO,<x>
nullcheck LO1
getfield LI4=LO1,<y>

b) Before PRE

BB1

BB4

BB3 BB5

nullcheck LO0
getfield LI5=LO0,<z>

getfield LI3=LO0,<x>

move LI2=LI5 invoke LI2=LO0,<m>
getfield LI5=LO0,<z>
getfield LI3=LO0,<x>

c) After PRE

BB1

BB4

BB3 BB5

BB2 BB2

nullcheck LO1
getfield LI4=LO1,<y>

a) Source code

Example 3: Partial redundancy elimination and code motion. 
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The methods hashCode(), toString(), and equals()are 
declared in the top-most class java.lang.Object, so they 
can be invoked on all objects. These methods are frequently called 
with the class java.lang.Object as a static type. The 
hashCode() method  in several primitive classes such as 
java.lang.Integer and java.lang.String overrides 
the declaration from the class java.lang.Object. However, 
since these implementation are very simple and declared as fi-
nal, if type analysis proves the static type of a dynamic method 
call is one of them, the compiler can inline these methods directly. 
Unfortunately, since the static type of a dynamic method call to 
equals()is frequently java.lang.Object, the compiler 
directly devirtualizes the method call using the code patching 
mechanism. 

3.3 Preexistence Analysis 
The concept of preexistence [11] is that if the receiver object for a 
method call has been allocated before the invocation of a caller 
method, then the method will not be overridden during the execu-
tion of the caller. This property can be used to directly devirtual-
ize a dynamic method call without a backup path. This requires 
that the caller method must be recompiled with class hierarchy 
analysis at the next invocation in which the target method is over-
ridden. However, it guarantees that such recompilation does not 
require on-stack replacement. This reduces the difficulty of the 
implementation. 
We have implemented invariant argument analysis [11] to check 
for the preexistence of a receiver expression. If the receiver ex-
pression of a method call is shown to preexist and CHA shows 
that the method call has only a single target at compilation time, 
the compiler can directly devirtualize the method call without the 
backup path. It has two advantages. One is that it enables code 
motion involving potentially excepting instructions or instructions 
with side effects. The other is that the result of flow-sensitive type 
analysis is more accurate, because the merge point that creates the 
union type is removed from the control flow graph. Another solu-
tion for more precise flow-sensitive type analysis is message split-
ting [31]. It may increase the code size significantly because it 

requires copying parts of the control flow, and therefore we did 
not pursue this alternative. 

3.4 Class Tests and Method Tests 
In previous research, most systems that use guarded devirtualiza-
tion produced inlined code with a class test verifying that the re-
ceiver has the proper class. The class test [1, 2, 3] imposes a re-
quirement that each object contains a pointer to its class informa-
tion. The method test [11] makes a further assumption that the 
class information includes the method information. We show such 
code generated at an inlined call site in Example 5 a) and b) that 
appeared in [11]. 
Method test is more accurate than class test. Even when a class 
that does not override a method is tested by a class test, if the class 
is different from the particular class of the inlined method, the test 
fails and a dynamic method call is invoked. In a similar situation 
involving method invocation, the method test may succeed and 
the inlined code can be executed. Therefore, we have used method 
test at call sites that have multiple implementations, along with 
class hierarchy analysis at compilation time. The overhead of 
method test is slightly greater than that of class test. Our JIT com-
piler explicitly uses two loads to get class information and method 
information in the intermediate representation. This allows us to 
include these instructions in the scope of optimizations such as 
common subexpression elimination and code motion, and this can 
hide the overhead of method test. 
These techniques also introduce some constraints on compiler 
optimizations because they have a merge point of the control flow 
on compiler optimizations for any backup path that includes an 
original method call. The constraints can be reduced by the same 
techniques described in Section 3.1. 
We have used a class test for optimizing method calls within the 
class itself. If a compiler detects many dynamic calls with the 
caller’s object as a receiver, the compiler provides two copies of 
the part. A class test with the receiver object is generated to de-
termine which copy is executed. Two versions of the method are 
then generated: one for optimized calls within the class itself, and 
the other version is for the general case as it appeared in the origi-
nal code, as shown in Example 6. 

class Object { boolean equals(Object o) { ... }; }

class String extends Object {
boolean equals(Object o) { ... }; // Overrides equals()

}

class A extends Object { ... } // Does not override equals()

class X {
void m(A a) {

a.equals();
}

}  
Example 4: Missing type information at a call site
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4. Experiments 
In this section, we evaluate the characteristics and effectiveness of 
the devirtualization techniques in our system. Section 4.1 explains 
the system used in our experiments. Section 4.2 gives an overview 
of the programs used in our experiments. Section 4.3 shows the 
characteristics of the non-devirtualized programs. Section 4.4 
shows the results by applying each of devirtualization techniques 
cumulatively. Section 4.5 discusses the evaluation of the results. 
Section 4.6 shows the performance results.  

4.1 System 
Our experiments were performed using a prototype version of the 
IBM Developers Kit for AIX, Java Technology Edition, Version 
1.3. We have implemented the devirtualization techniques we 
described here in our Just-In-Time Compiler [32]. The JIT com-
piler is a highly optimizing compiler that uses a register-based 
intermediate representation. Register-based representations pro-
vide greater flexibility for code transformations than stack-based 
representations. The JIT compiler performs static method inlining, 
devirtualization, dataflow optimizations, loop optimizations, and 
low-level optimizations. Dataflow optimizations are copy propa-
gation, constant propagation, dead code elimination, common 
subexpression elimination, scalar replacement, and elimination of 
redundant exception checks [25]. The loop optimization uses loop 
versioning. Low-level optimizations are register allocation, in-
struction scheduling, and shrink wrapping [33]. 
The JIT compiler inlines methods except when they have excep-
tion handlers or they are larger than the predefined maximum size. 
It inlines both static and dynamic method calls for up to four 

nested levels in each call hierarchy tree. Here, dynamic method 
calls mean virtual and interface method calls. Since the JVM in 
the Sun SDK reference implementation must be able to traverse 
the original call stack in order to get the caller class at runtime, we 
have implemented a subset of the scope descriptor [13] just to 
recover the original call stack from the inlined call stack. This 
allows the compiler to inline methods extensively. Though the JIT 
compiler has a selective compilation mechanism, all the meas-
urements were performed by compiling all methods. 
The measurements were performed on an IBM RISC System 6000 
Model 7044-170 (containing a 400 MHz POWER3-II with 768 
MB of RAM) running AIX 4.3.3. 

4.2 Overview of the Programs 
Table 1 shows 16 Java programs used to evaluate our devirtualiza-
tion techniques. The programs cover a wide spectrum of pro-
gramming styles and application categories such as computational 
benchmarks, transaction processing, a parser, browsers, graphical 
applications, a word processor, and a Web server. Note that the 
results using SPECjvm98 [34] programs do not follow the official 
SPEC rules. 

4.3 Characteristics of Method Calls 
For each program, Table 2 details the characteristics of both static 
and dynamic methods. 
The geometric mean of 73.5% (ranging from 33.4% to 99.5%) of 
the virtual method calls are monomorphic. The results show gen-
erally higher usages of dynamic monomorphic methods from the 
application classes in programs without GUIs (jess, db, javac, 
mpegaudio, mtrt, jack, jbb, and XML parser), (compress and 
Java Server are exceptions.) 

r0 = <receiver object> r0 = <receiver object>
r1 = load(r0 + <offset-of-class-in-object>) r1 = load(r0 + <offset-of-class-in-object>)

r2 = load(r1 + <offset-of-method-in-class>)
if (r1 == <address-of-proper-class>) { if (r2 == <address-of-inlined-method>) {

<inlined code> <inlined code>
} else { } else {

r2 = load(r1 + <offset-of-method-in-class>) call r2
call r2

} }

a) pseudo code of a class test b) pseudo code of a method test
 

Example 5: Pseudo code for class test and method test [11] 

class R { class R {
void bar() {...} void bar() {...}
void foo() { void foo() {

for (...) { if (classtest(this, R)) {
this.bar(); for (...) {
this.bar(); R.bar(); // a direct call

} R.bar(); // a direct call
} }

} } else {
for (...) {

this.bar();
this.bar();

}
}

}
}

a) Original code b) Optimized code with a class test

 
Example 6: Optimized calls within the class itself 
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Table 1: Descriptions of the programs used in our experiments 

Program Description 

compress LZW compression and decompression in SPECjvm98. Run the benchmark with size = 100. 

jess NASA’s CLIP expert system in SPECjvm98. Run the benchmark with size = 100. 

db Search and modify a database in SPECjvm98. Run the benchmark with size = 100. 

javac Source to bytecode compiler in SPECjvm98. Run the benchmark with size = 100. 

mpegaudio Decompress audio file in SPECjvm98. Run the benchmark with size = 100. 

mtrt Multi-threaded image rendering in SPECjvm98. Run the benchmark with size = 100. 

jack Parser generator generating itself in SPECjvm98. Run the benchmark with size = 100. 

jbb [35] SPECjbb2000 is a transaction processing benchmark. Run the benchmark with the number of warehouses = 1. 

XML parser [36] IBM’s XML parser. XML4J version 3.0.1. Run a sample program to parse an XML file. 

Java Server [37] Java Server Web Development Kit 1.0.1. Run the Web server and access it while running some servlets. 

swing GUI components version 1.1.1 written in pure Java. Run a demo application including many components. 

Java2D 2D graphics library. Run a demo application including many components. 

jfig [38] A Java version of the xfig drawing program. Version 1.38b. Run the application and open a document. 

ICE Browser [39] Simple Internet browser version 5.01. Run the application and open a Web page. 

HotJava [40] HotJava browser version 1.1.5. Run the application and open a Web page. 

Ichitaro Ark [41] Word processor written in pure Java. Run the application and open a document. 

 
 
 

Table 2: Characteristics of static and dynamic method calls 
Monomorphic 
Virtual Call % 

Monomorphic 
Interface Call % 

Program Static Call Virtual Call 

Lib. App. 

Interface 
Call 

Lib. App. 

compress 225,975,805 12,039 49.6% 25.0% 446 41.3% 58.7% 
jess 78,375,454 36,872,088 0.2% 83.8% 706,505 0.0% 0.7% 

db 52,992,991 52,529,114 0.1% 97.1% 14,931,539 0.0% 100.0% 

javac 57,019,624 48,408,808 5.1% 62.2% 3,379,096 0.0% 99.8% 

mpegaudio 99,702,499 9,853,620 0.2% 33.2% 182,220 0.1% 99.9% 

mtrt 17,406,471 269,740,419 0.3% 90.7% 402 46.3% 53.7% 

jack 24,400,198 25,219,092 20.3% 59.5% 4,155,315 0.0% 55.0% 

jbb 132,586,167 173,403,868 15.9% 80.6% 4,036,513 0.3% 99.6% 

XML parser 1,812,996 516,133 2.1% 97.4% 1,217,916 0.1% 99.9% 

Java Server 337,899 74,901 67.9% 11.9% 3,118 65.7% 28.8% 

swing 3,143,213 1,754,935 57.4% 0.3% 177,638 49.8% 0.1% 

Java2D 17,956,992 6,490,662 72.6% 4.1% 1,446,333 49.3% 0.1% 

jfig 1,274,203 296,283 67.4% 0.0% 33,006 51.0% 0.5% 

ICE Browser 1,732,313 261,235 62.1% 10.3% 47,519 67.8% 10.2% 

HotJava 1,882,711 504,321 78.8% 0.0% 55,523 64.2% 0.3% 

Ichitaro Ark 4,960,087 2,421,789 23.7% 32.2% 806,600 16.4% 16.4% 

geom. mean   73.5%  55.3% 
 

Static Call: The total number of static calls. 
Virtual Call: The total number of virtual method calls. 
Monomorphic Virtual Call: The percentage of virtual method calls that are performed at monomorphic call sites. 
Interface Call: The total number of interface method calls. 
Monomorphic Interface Call: The percentage of interface method calls that are performed at monomorphic call sites. 
Lib.: The percentage within Java class libraries. 
App.: The percentage within the application. 
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The dynamic method calls tend to be monomorphic within the 
Java class libraries in programs with GUIs (swing, Java2D, jfig, 
ICE Browser, HotJava, and Ichitaro Ark). The results also show 
dynamic method calls are surprisingly monomorphic in all of the 
programs except mpegaudio. This shows that we have many 
opportunities to perform devirtualization. On the other hand, the 
program compress is not expected to be much affected by devir-
tualization techniques, since the number of virtual calls is ex-
tremely small. Note that jbb, unlike the other programs, is a 
benchmark program to measure the throughput in a constant time. 
There are some differences in execution counts among optimiza-
tions within the same program with GUI since we perform the 
scenario manually. 

4.4 Results of Devirtualization 
In this section, we show the results by applying each of four op-
timizations cumulatively. First, we start with guarded devirtualiza-
tion. Second, we add direct devirtualization with the code patch-
ing mechanism. Next, we add type analysis, and finally we in-
clude preexistence analysis. 
Figure 1 is a Venn diagram to help clarify some of the relation-
ships among the devirtualization techniques we applied. For ex-
ample, in the lower left quadrant, some of the interface calls for 
dynamic methods can use direct devirtualization with backup 
paths, and a subset of those calls may also be candidates for direct 
devirtualization without backup paths. 

4.4.1 Guarded Devirtualization 
We started by performing guarded devirtualization with class and 
method tests together. Table 3 shows the characteristics of pro-
grams with guarded devirtualization. We apply class test only to 
method calls within the class itself, as described in Section 3.4. 
We omit the characteristics of class test in Table 3, 4, 5, 6, and, 7 
because they are not executed so much. We apply method tests to 
virtual method calls that have a single or multiple targets at 
compilation time only for code that can be inlined. If a method 
call has multiple targets, only a method defined in a leaf class is 
inlined. We do not apply method test to method calls that are 
merely replaced with direct method calls. 
We adopted method test for guarded devirtualization, even though 
the runtime cost of method test is slightly higher than that of class 
test as presented in Section 3.3. In general, this is because the 
method test can allow the inlined version of the code to be exe-

cuted more often than the class test can. For example, when we 
attempted to apply only the class test to mtrt, the success ratio was 
decreased from 100% to 70%. On the other hand, the runtime 
overhead can be hidden by using compiler optimizations. 
In summary, as in Table 3, the success ratio for the execution of 
inlined version varies from 50.7% to 100% (the geometric mean 
of 91.7%). 

4.4.2 Direct Devirtualization with the Code Patching 
Mechanism 
For the next tests, we added direct devirtualization with the code 
patching mechanism. This is applied to virtual method calls that 
have only a single target at compile time and to interface method 
calls that are implemented by a single class. We apply this tech-
nique not only to dynamic method calls that can be inlined, but 
also to dynamic method calls that can be replaced with direct 
method calls. 
Table 4 shows the characteristics of these directly devirtualized 
programs. Here, the execution frequencies of the inline code at 
directly devirtualized call sites vary from 88.8% to 100% (the 
geometric mean of 98.1%). 

4.4.3 Type Analysis 
Next, we added in flow-sensitive type analysis. Table 5 shows the 
characteristics of programs using flow-sensitive type analysis. As 
is shown in Table 5, the percentages of actually executed inline 
code at directly devirtualized call sites vary from 84.1% to 100% 
(the geometric mean of 97.3%). 

4.4.4 Preexistence Analysis 
Finally, we also performed preexistence analysis. Table 6 shows 
the characteristics of programs including preexistence analysis. As 
is shown in Table 6, the percentages of the inline code actually 
executed at the directly devirtualized call sites vary from 81.5% to 
100% (the geometric mean of 96.9%). 
 
 
 
 
 

 

 Method calls

Class Test

Method Test

Direct Devirtualization with backup paths
(The Codepatching Mechanism)

Direct Devirtualization without backup paths
(Type Analysis)

Virtual Call

Static Call

Dynamic Calls

Devirtualization Techniques

Direct Devirtualization without backup paths
(Preexistence)

Interface Call

 
Figure 1: Venn diagram of applicable categories of devirtualization techniques 
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Table 3: Characteristics of programs with guarded devirtualization described in Section 3.4 
Remaining Virtual Call Remaining Interface Call Method Test Program 

Counts Reduction % 
(from no devirtualization) 

Counts Counts inlined execs 

compress 9,967 17.2% 446 2040 97.2% 
jess 12,212,470 66.9% 706,505 24,660,863 100.0% 

db 46,680,205 11.1% 14,931,539 5,833,525 100.0% 

javac 41,274,813 14.7% 3,381,204 7,973,933 90.9% 

mpegaudio 6,821,177 30.8% 182,220 3,037,975 99.8% 

mtrt 75,811,042 71.9% 402 193,929,371 100.0% 

jack 17,683,893 29.9% 4,155,315 7,529,626 100.0% 

jbb 30,279,681 N/A 3,973,859 140,157,002 100.0% 

XML parser 80,328 84.4% 1,217,916 435,657 100.0% 

Java Server 40,952 45.3% 2,960 19,961 99.1% 

swing 1,249,252 28.8% 176,796 498,142 86.9% 

Java2D 4,813,273 25.8% 1,453,963 2,153,279 50.7% 

jfig 205,157 30.3% 33,616 96,697 86.9% 

ICE Browser 162,833 37.7% 45,118 93,499 92.0% 

HotJava 346,182 31.4% 56,558 108,735 90.2% 

Ichitaro Ark 1,558,901 35.6% 594,341 663,773 90.2% 
 

Remaining Virtual Call: The non-devitualized virtual method calls after performing optimizations. 
Remaining Interface Call: The non-devitualized interface method calls after performing optimizations. 
Counts: The total count of each kind. For example, in compress, the inlined version of the code was executed for 97.2% of all the method tests. 
Method Test: The guarded test described in Section 3.4. 
Reduction: The percentage difference .with respect to the specified case. 
Inlined execs: The percentage of the inlined code actually executed. 

 
 
 

Table 4: Characteristics of programs with guarded devirtualization 
plus direct devirtualization with the code patching mechanism described in Section 3.1 

Remaining Virtual Call Remaining Interface Call Method Test Codepatch Program 

Counts Reduction % 
(from no 
devirtualization) 

Counts Reduction % 
(from no 
devirtualization) 

Counts inlined 
execs 

Counts inlined 
execs 

Invalidation 
sites 

compress 9,796 18.6% 443 0.7% 657 91.2% 1,596 97.7% 18 
jess 10,790,816 66.9% 701,785 0.0% 10,798 82.9% 26,083,410 100.0% 22 

db 46,557,413 11.1% 14,931,536 0.0% 5,082 99.2% 5,951,271 100.0% 18 

javac 29,161,105 39.8% 3,379,389 -0.1% 2,157,383 66.0% 18,349,878 99.0% 32 

mpegaudio 6,804,623 30.8% 395 99.8% 31,908 82.4% 3,204,602 100.0% 18 

mtrt 7,244,261 97.3% 399 0.7% 1,667 95.0% 262,494,525 100.0% 18 

jack 16,317,679 35.3% 2,624,376 36.8% 33,849 99.6% 10,925,027 99.4% 22 

jbb 18,644,624 N/A 3,771,951 N/A 468,892 100.0% 144,852,219 100.0% 17 

XML parser 80,173 84.5% 1,146,448 5.9% 114,407 100.0% 362,940 100.0% 8 

Java Server 40,292 46.2% 2,753 11.7% 2,215 92.3% 18,943 99.0% 44 

swing 1,251,871 28.7% 164,057 7.6% 222,752 63.3% 373,117 94.2% 199 

Java2D 5,038,999 22.4% 1,422,935 1.6% 1504,829 20.0% 1,130,901 88.8% 77 

jfig 167,970 43.3% 28,230 14.5% 28,055 57.6% 72,518 99.1% 43 

ICE Browser 144,733 44.6% 37,185 15.6% 11,245 47.6% 96,555 99.3% 79 

HotJava 316,788 37.2% 47,202 15.0% 19,416 52.5% 111,078 96.5% 158 

Ichitaro Ark 1,446,609 40.3% 575,172 28.7% 120,782 38.6% 641,550 97.7% 215 
 

Codepatch: The direct devirtualization with the code patch mechanism described in Section 3.1. 
Reduction: The percentage difference .with respect to the specified case. 
Inlined execs: The percentage of the inlined code actually executed. 
Invalidation sites: The number of call sites where the code patching is performed when a class is loaded and a method is overridden during the execution of a program. 
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Table 5: Characteristics of programs with guarded and direct devirtualizations 
plus flow-sensitive type analysis described in Section 3.2 

Remaining Virtual Call Method Test Codepatch Program 

Counts Reduction % 
(from no 
devirtualization) 

Remaining 
Interface 
Call Counts inlined 

execs 
Counts Reduction % 

(from direct 
devirtualization) 

inlined 
execs 

Invalidation 
sites 

compress 9,585 20.4% 443 657 91.2% 1,282 20.1% 97.2% 16 
jess 7,895,376 78.6% 701,785 10,798 82.9% 24,978,943 4.2% 100.0% 20 

db 46,557,233 11.4% 14,931,536 5,082 99.2% 5,950,246 0.0% 100.0% 16 

javac 27,540,151 43.1% 3,381,201 2,157,387 66.0% 19,816,214 -1.0% 92.6% 54 

mpegaudio 6,804,397 30.9% 395 31,908 82.4% 3,204,247 0.0% 100.0% 16 

mtrt 7,244,059 97.3% 399 1,667 95.0% 245,247,103 6.6% 100.0% 16 

jack 12,322,620 51.1% 2,624,376 33,849 99.6% 13,443,883 -23.2% 99.5% 20 

jbb 19,458,683 N/A 3,950,837 491,829 100.0% 150,415,652 N/A 100.0% 16 

XML parser 79,782 84.5% 1,146,448 144,407 100.0% 361,906 0.3% 100.0% 8 

Java Server 38,941 48.0% 2,753 2,215 92.3% 16,624 12.4% 98.9% 35 

swing 1,209,389 31.1% 163,713 212,813 66.6% 362,306 3.1% 94.0% 210 

Java2D 4,802,108 26.0% 1,392,895 1435,134 20.8% 1,110,593 7.0% 84.1% 91 

jfig 181,572 38.7% 29,796 28,117 57.3% 68,222 6.1% 99.0% 47 

ICE Browser 155,810 40.4% 46,080 15,774 45.0% 92,482 11.8% 98.9% 68 

HotJava 333,557 33.9% 47,946 20,206 53.3% 102,599 7.9% 96.2% 157 

Ichitaro Ark 1,374,676 43.2% 542,976 102,232 39.2% 576,341 10.4% 97.5% 217 
 

Codepatch: The direct devirtualization with the code patch mechanism described in Section 3.1. 
Reduction: The percentage difference .with respect to the specified case. 
Inlined execs: The percentage of the inlined code actually executed. 
Invalidation sites: The number of call sites where the code patching is performed when a class is loaded and a method is overridden during the execution of a program. 

 
 
 

Table 6: Characteristics of programs with guarded and direct devirtualizations and flow-sensitive type analysis 
plus preexistence analysis described in Section 3.3 

Method Test Codepatch 

Program 

Remaining 
Virtual 
Call 

Remaining 
Interface 
Call Counts inlined 

execs 
Counts Reductions% 

(from direct 
devirtualization) 

inlined 
execs 

Invalidation 
sites 

Methods that 
must be 
recompiled 

compress 9,585 443 669 89.5% 1,059 33.7% 97.7% 10 6 
jess 7,895,376 701,785 10,822 82.7% 18,261,070 30.0% 100.0% 14 6 

db 46,557,233 14,931,536 5,085 99.2% 5,950,061 0.0% 100.0% 10 6 

javac 27,704,969 3,379,221 2,461,630 57.9% 18,199,383 8.1% 91.8% 50 10 

mpegaudio 6,804,397 395 31,959 82.2% 2,173,264 32.2% 100.0% 10 6 

mtrt 7,244,059 399 1,678 94.3% 191,710,141 27.0% 100.0% 10 6 

jack 12,322,620 2,624,376 33,887 99.5% 9,314,605 14.8% 99.2% 14 6 

jbb 20,658,308 4,213,999 524,173 100.0% 128,558,128 N/A 100.0% 14 2 

XML parser 79,782 1,146,448 144,407 100.0% 360,837 0.6% 100.0% 6 2 

Java Server 38,949 2,753 2,215 92.3% 12,500 34.3% 98.6% 35 0 

swing 1,266,590 163,528 221,685 64.5% 279,771 25.5% 93.6% 180 26 

Java2D 4,783,173 1,418,776 1,410,625 21.8% 919,675 25.4% 81.5% 75 16 

jfig 165,701 28,043 21,452 50.0% 44,622 38.7% 98.8% 28 13 

ICE Browser 136,834 36,675 10,212 46.4% 67,071 30.7% 99.2% 67 2 

HotJava 321,514 47,553 16,913 50.0% 72,835 35.8% 94.5% 144 16 

Ichitaro Ark 1,451,855 577,285 121,842 39.9% 459,639 28.7% 97.3% 196 22 
 

Codepatch: The direct devirtualization with the code patch mechanism described in Section 3.1. 
Reduction: The percentage difference .with respect to the specified case. 
Inlined execs: The percentage of the inlined code actually executed. 
Invalidation sites: The number of call sites where the code patching is performed when a method is overridden during the execution of a program. 
Method that must be recompiled: The number of method recompilation candidates when a class is loaded during the execution of a program and the method is overridden. 
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4.5 Evaluation and Breakdown of the Results 
In this section, we discuss a number of observations that can be 
made from the above results. 
Figure 2 summarizes the breakdown of call sites optimized by 
each devirtualization technique on some programs when we ap-
plied all the devirtualization techniques (corresponding to Section 
4.4.4). We use “(o)” to denote all optimizations are performed. 
All values are given in relative execution counts against the non-
devirtualized version (corresponding to Section 4.3). Table 7 also 
shows the effectiveness of devirtualization techniques (in execu-
tion counts) for all the programs excluding jbb. The reason is that 
optimizations increase the number of executed instructions and we 
cannot show the reductions since this benchmark measures 
throughput in a constant time, as we pointed out in Section 4.3. 
The results from Table 2 show a trend that dynamic method calls 
in programs with GUI (such as AWT and Swing) tend to be 
monomorphic within the common class libraries that Java pro-
vides. The programs use extensible and reusable common class 
libraries, but they use them monomorphically. This usage pattern 
based on the experiments with real Java programs is very encour-
aging. It increases the opportunity for devirtualization. 
As is shown in Table 7, we have measured the reduction of dy-
namic method calls ranging from 8.9% to 97.3% (the average of 
40.2%). The program where we measured the highest reduction in 
virtual method calls is mtrt. Mtrt has a kernel loop in the method 
Intersect() in the class spec.benchmarks._205_
raytrace.Octnode. It calls some small methods such as the 
methods GetX(), GetY(), and GetZ() in the class spec.
benchmarks._205_raytrace.Point to get instance vari-
ables very frequently. Direct devirtualization with the code patch-
ing mechanism can inline almost all virtual method calls. Fur-
thermore, 24.3% of them can be directly devirtualized without any 
backup paths.  
In Table 7, the reduction of virtual method calls is also relatively 
high in jess. Here, 60% of the method tests are converted to direct 
devirtualization. These call sites are in the method CallNode() 
in the class spec.benchmarks._202_jess.jess.Node2. 
The devirtualization with method inlining can expand the analysis 
scope of target methods, and this helps to prove the type of re-
ceiver objects by type analysis. Therefore, type analysis can re-
move the method calls to equals()in the class java.lang
.Object in the most frequently-called method equals() in 
the class spec.benchmarks._202_jess.jess.Value. 
The method call with the static type java.lang.Object has a 
small runtime overhead, since the receiver may have an array 
object and the method call has to check whether the object type is 
an array. Therefore, type analysis is an effective optimization. 

As can be seen from Table 4 and Table 5, type analysis is effec-
tive in reducing the number of virtual method calls (see the col-
umn of Remaining Virtual Call). In the program jess, it reduces 
the number of virtual method calls by 43.9%, which are to call 
hashCode() in the class java.lang.Object and java.
lang.Integer with a small runtime overhead, as we described 
in Section 3.2. For other programs, it also reduces the number of 
virtual method calls with a small runtime overhead in javac by 
36.3%, in mpegaudio by 11.6%, and in jack by 88.4%. These 
method calls are part of the column of Remaining Virtual Call. 
As can be seen from Table 4, Table 5, and Table 6, the average of 
Codepatch inlined execs decreases from 98.1% to 96.9% with 
type analysis and preexistence analysis. This shows that direct 
devirtualization without backup paths are actually executed. Table 
7 also shows the reduction by the average of 24.3% for Code-
patch inlined execs with type analysis and preexistence analysis. 
We cannot measure execution counts of directly devirtualized 
sites without backup paths since a highly optimizing compiler 
moves or removes individual instructions of devirtualized call 
sites freely. The results also show that direct devirtualization by 
type analysis and preexistence applies to 24.3% of the direct 
devirtualizations with a backup path generated by the code patch-
ing mechanism. 
As can be seen from Table 4 and Table 5, when the compiler per-
forms type analysis, the number of Invalidation sites increases in 
javac, swing, Java2D, jfig, and Ichitaro Ark. If type analysis 
proves that an instance of an array class does not reach a receiver 
of a dynamic method call equals() in the class java.
lang.Object, the method call can be directly devirtualized 
using the code patching mechanism. The call site will be invali-
dated to execute the dynamic method call when the method is 
overridden by class loading. As a result, the number of Invalida-
tion sites increases rather than decreases in comparison to the 
case where no type analysis is used. The increase in the column of  
Codepatch inlined execs for type analysis also shows this. 
In Table 7, the programs where we measured the smallest reduc-
tion made by type analysis and preexistence in Codepatch 
inlined execs are db and XML parser. At a few dominant call 
sites in db and XML parser, the forms of virtual method invoca-
tions are this.f.m() or arg.f.m(), where this is an ex-
pression of the current instance, arg is an expression of an argu-
ment, and f is a field of that class. In db, since the program as-
signs only to a non-private field f in constructors once, immutable 
field analysis [11] can reduce the number of Codepatch inlined 
execs. 
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Figure 2: Breakdown of call sites optimized by each devirtualization technique (in execution counts) 

 
 
 

Table 7: Effectiveness of devirtualization techniques (in execution counts) 
Reduction % 

from no devirtualization 
to preexistence 

Reduction % 
from guarded devirtualization 

to preexistence 

Reduction % 
from codepatch to 

 preexistence 

Program 

Virtual 
Call 

Interface 
Call 

Both Method Test 
inlined execs 

Codepatch 
 inlined execs 

compress 20.4% 0.7% 19.7% 70.6% 33.7% 
jess 78.6% 0.7% 77.1% 100.0% 30.0% 

db 11.4% 0.0% 8.9% 99.9% 0.0% 

javac 42.8% 0.0% 40.0% 82.1% 8.1% 

mpegaudio 30.9% 99.8% 32.2% 99.1% 32.2% 

mtrt 97.3% 0.7% 97.3% 100.0% 27.0% 

jack 51.1% 36.8% 49.1% 99.6% 14.8% 

XML parser 84.5% 5.9% 29.3% 66.9% 0.6% 

Java Server 48.0% 11.7% 46.5% 89.8% 34.3% 

swing 27.8% 7.9% 26.0% 71.3% 25.5% 

Java2D 26.3% 1.9% 21.9% 85.7% 25.4% 

jfig 44.1% 15.0% 41.2% 88.9% 38.7% 

ICE Browser 47.6% 16.8% 43.2% 94.7% 30.7% 

HotJava 36.2% 14.4% 34.1% 92.2% 35.8% 

Ichitaro Ark 40.1% 28.4% 37.1% 92.7% 28.7% 

average 45.8% 16.0% 40.2% 88.9% 24.3% 
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We were also surprised that the number of interface method calls 
is almost unchanged in db. We have investigated the reason by 
looking into statistics. The number of interface method calls is 
dominated by call sites in the method set_index() in the class 
spec.benchmarks._209_db.Database and the method 
equals() in the class spec.benchmarks._209_db.
Entry. At these call sites, the interface method calls are used as 
shown in Example 7. In JDK 1.1, the method elements() in 
the class java.lang.Vector is declared as final. In Java 2, 
however, the method is not declared as final. This change 
causes the type information to be lost for a receiver expression e 
in the method foo(). 

If the method is declared as final (in the case of JDK 1.1), the 
method can be directly inlined and the return type is known as an 
inner class. Therefore, type analysis can prove that only the inner 
class that is never overridden comes to the receiver expression e 
of the interface method call. Based on the results, we can translate 
interface method calls into virtual method calls, direct method 
calls, or inlined codes. In that case, we could get a huge reduction 
of 99% for the interface method calls in db. 

On the other hand, if it is not declared as final (in the case of 
Java 2), type analysis returns the Enumeration class as an am-
biguous type and the compiler determines the call site is polymor-
phic. Furthermore, the Enumeration class is always imple-
mented by a few classes. Thus, no devirtualization technique can 
be applied. In this case, specialization and customization would 
not be effective since the receiver expression does not depend on 
its arguments. Message splitting [31] could help in this situation. 
However, message splitting will increase the code size by dupli-
cating a complete loop structure. In summary, eliminating final 
from the method declaration caused a large performance loss. 

4.6 Performance Results 
We measured the execution time of eight non-interactive pro-
grams (compress, jess, db, javac, mpegaudio, mtrt, jack, and 
jbb). The other programs were difficult to measure because of 

their interactive nature and dependencies within AWT. Figure 3 
shows the performance improvement resulting from the cumula-
tive optimizations. Here, all the measurements are performed by 
compiling all methods. All the values are given in relative speed 
up against non-devirtualized versions (only with base optimiza-
tions). Each of the bars shows the cumulative effect including 
prior optimizations. For each of the bars, the following combina-
tions of techniques are used: 
z Base optimizations (not shown in the figure): All optimiza-

tions except the devirtualization techniques that we described 
in Section 4.1 are performed (corresponding to Section 4.3) 
and static method inlining are performed. 
z +Method Test, Class Test: Base optimizations and guarded 

devirtualization (i.e. class and method tests) are performed  
(corresponding to Section 4.4.1). 
z +Codepatch: Base optimizations, guarded devirtualization, 

and direct devirtualization with the code patching mechanism 
are performed  (corresponding to Section 4.4.2). 
z +Type Analysis: Base optimizations, guarded devirtualization, 

direct devirtualization with the code patching mechanism, and 
flow-sensitive type analysis are performed  (corresponding to 
Section 4.4.3). 
z +Preexistence: Base optimizations, guarded devirtualization, 

direct devirtualization with code patching mechanism, flow-
sensitive type analysis, and  preexistence analysis are 
performed  (corresponding to Section 4.4.4). 

 
 
 
 
 
 
 

public class Vector {
protected Object elementData[];
protected int elementCount;

public Enumeration elements() { // in JDK 1.1, this method is declared as final
return new Enumeration() {

int count = 0;
public boolean hasMoreElements() { return count < elementCount; }
public Object nextElement() {

synchronized (Vector.this) {
if (count < elementCount) return elementData[count++];

}
throw new NoSuchElementException("Vector Enumeration");

}
}

}
}

class Sample {
Vector v;
Object o[];
void foo() {

int i = 0;
Enumeration e = v.elements();
while (e.hasMoreElements()) // interface method call

o[i++] = e.nextElement(); // interface method call
}

}  
Example 7: A sample usage of interface method calls 
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We have measured the speedup of 4% in the geometric mean by 
guarded devirtualization with class tests and method tests. Direct 
devirtualization with the code patching mechanism improves the 
performance by 13% in the geometric mean. It especially im-
proves the performance of mtrt. This is because the program calls 
some small methods in a kernel loop very frequently, and almost 
all of these method calls can be directly devirtualized by the code 
patching mechanism, as we described in Section 4.5. To show the 
performance impact of the existence of backup paths, we have 
made a small experiment to execute mtrt by eliminating of all 
backup paths. Even in the extreme case, the performance of this 
version is only 6% faster. The result shows that the overhead of 
the existence of backup paths is usually smaller than we thought. 
Direct devirtualization with the code patching mechanism also 
improves the performance of jess. On this program, almost all the 
method tests in the kernel are converted to direct devirtualizations 
as we described in Section 4.5. 
Type analysis improves the performance of jess, javac, 
mpegaudio, and jack. The reason is that these programs include 
parsers and expert systems, which manipulate many string objects 
using the methods hashCode(), equals(), and 
toString(). The reduction of these method calls by type 
analysis is high as we described in Section 4.5. Type analysis also 
improves the performance of jbb. It is effective with the classes 
spec.jbb.JBBmain and spec.jbb.JBButil. 
Using all of the optimizations presented in this paper, we have 
measured a speedup of 16% in the geometric mean. 

5. Conclusions 
We have shown that the direct devirtualization with the code 
patch mechanism we proposed in this paper can remove almost all 
class and method tests generated by guarded devirtualization, and 
that it can be applied to a wide range of dynamic method calls. 
The runtime overhead of our approach is smaller than that of a 
recompilation-based approach. We eliminated the backup path by 
type analysis and preexistence analysis. We also optimized the 
inlined code by inserting compensation code in the backup path if 

it is not eliminated. We evaluated the devirtualization techniques 
implemented in our JIT compiler based on various statistics col-
lected by running a set of real programs in various application 
categories. We have observed the reduction of dynamic method 
calls ranging from 8.9% to 97.3% (the average of 40.2%) by using 
these devirtualization techniques. Furthermore, we have shown 
that type analysis and preexistence analysis eliminated the backup 
path for 24.3% of the directly devirtualized sites that used the 
backup path. Overall, we have reported performance improve-
ments ranging from -1% to 133% (with the geometric mean of 
16%). We have also pointed out a few problems such as non-
sealed class library and missing type information, which caused 
performance degradation in a Java runtime environment. 
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