
MINIMUM BISECTION IS FIXED PARAMETER TRACTABLE∗

MAREK CYGAN† , DANIEL LOKSHTANOV‡ , MARCIN PILIPCZUK§ , MICHA L

PILIPCZUK¶, AND SAKET SAURABH‖

Abstract. In the classic Minimum Bisection problem we are given as input an undirected graph
G and an integer k. The task is to determine whether there is a partition of V (G) into two parts A
and B such that ||A| − |B|| ≤ 1 and there are at most k edges with one endpoint in A and the other

in B. In this paper we give an algorithm for Minimum Bisection with running time 2O(k3)n3 log3 n.
This is the first fixed parameter tractable algorithm for Minimum Bisection parameterized by k. At
the core of our algorithm lies a new decomposition theorem that states that every graph G can be
decomposed by small separators into parts where each part is “highly connected” in the following
sense: any separator of bounded size can separate only a limited number of vertices from each part of
the decomposition. Our techniques generalize to the weighted setting, where we seek for a bisection
of minimum weight among solutions that contain at most k edges.

Key words. minimum bisection, fixed-parameter tractability, graph decomposition

AMS subject classifications. 68Q25, 68R10, 68W05

1. Introduction. In the Minimum Bisection problem the input is a graph G
on n vertices together with an integer k, and the objective is to find a partition of
the vertex set into two parts A and B such that |A| = bn2 c, |B| = dn2 e, and there
are at most k edges with one endpoint in A and the other endpoint in B. The
problem can be seen as a variant of Minimum Cut, and is one of the classic NP-
complete problems [17]. Minimum Bisection has been studied extensively from the
perspective of approximation algorithms [15, 14, 22, 28], heuristics [6, 8] and average
case complexity [5].

In this paper we consider the complexity of Minimum Bisection when the solution
size k is small relative to the input size n. A näıve brute-force algorithm solves the
problem in time nO(k). Until this work, it was unknown whether there exists a fixed
parameter tractable algorithm, that is an algorithm with running time f(k)nO(1), for
the Minimum Bisection problem. In fact Minimum Bisection was one of very few
remaining classic NP-hard graph problems whose parameterized complexity status
was unresolved. Our main result is the first fixed parameter tractable algorithm for
Minimum Bisection.

Theorem 1. Minimum Bisection admits an 2O(k3)n3 log3 n time algorithm.

Theorem 1 implies that Minimum Bisection can be solved in polynomial time for
k = O(3

√
log n). In fact, our techniques can be generalized to solve the more general

∗A preliminary version of this paper [12] was published in the proceedings of STOC 2014.
Funding: M. Cygan is supported by the Polish National Science Centre, grant n. UMO-

2013/09/B/ST6/03136. D. Lokshtanov is supported by the BeHard grant under the recruitment
programme of the Bergen Research Foundation. The research of Ma. Pilipczuk and Mi. Pilipczuk
leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959. This
work was also done while Ma. Pilipczuk and Mi. Pilipczuk worked at the University of Bergen, Norway.
S. Saurabh is supported by PARAPPROX, ERC starting grant no. 306992.
† Institute of Informatics, University of Warsaw, Poland, cygan@mimuw.edu.pl.
‡ Department of Informatics, University of Bergen, Norway, daniello@ii.uib.no.
§ Institute of Informatics, University of Warsaw, Poland, malcin@mimuw.edu.pl
¶ Institute of Informatics, University of Warsaw, Poland, michal.pilipczuk@mimuw.edu.pl
‖ Institute of Mathematical Sciences, India saket@imsc.res.in, and Department of Informatics,

University of Bergen, Norway, Saket.Saurabh@ii.uib.no.

1

problem where the target |A| is given as input, the edges have non-negative weights,
and the objective is to find, among all partitions of V (G) into A and B such that
A has the prescribed size and there are at most k edges between A and B, such a
partition where the total weight of the edges between A and B is minimized.

Our methods. The crucial technical component of our result is a new graph decom-
position theorem. Roughly speaking, the theorem states that for any k, every graph
G may be decomposed in a tree-like fashion by separators of size 2O(k) such that each
part of the decomposition is “highly connected”. To properly define what we mean
by “highly connected” we need a few definitions. A separation of a graph G is a pair
A,B ⊆ V (G) such that A ∪ B = V (G) and there are no edges between A \ B and
B \A. The order of the separation (A,B) is |A∩B|. A vertex set X ⊆ V (G) is called
(q, k)-unbreakable if every separation (A,B) of order at most k satisfies |(A\B)∩X| ≤ q
or |(B \A) ∩X| ≤ q. The parts of our decomposition will be “highly connected” in
the sense that they are (2O(k), k)-unbreakable. We can now state the decomposition
theorem as follows.

Theorem 2. There is an algorithm that given G and k runs in time 2O(k2)n2m
and outputs a tree decomposition (T, β) of G such that (i) for each a ∈ V (T), β(a) is
(2O(k), k)-unbreakable in G, (ii) for each ab ∈ E(T) we have that |β(a)∩ β(b)| ≤ 2O(k),
and β(a) ∩ β(b) is (2k, k)-unbreakable in G.

Here β(a) denotes the bag at node a ∈ V (T); the completely formal definition of tree
decompositions may be found in the preliminaries. It is not immediately obvious that
a set X which is (q, k)-unbreakable is “highly connected”. To get some intuition it is
helpful to observe that if a set X of size at least 3q is (q, k)-unbreakable then removing
any k vertices from G leaves almost all of X, except for at most q vertices, in the same
connected component. In other words, one cannot separate two large chunks of X with
a small separator. From this perspective Theorem 2 can be seen as an approximate
way to “decompose a graph by k vertex-cuts into it’s k+ 1-connected components” [9],
which is considered an important quest in structural graph theory. The proof strategy
of Theorem 2 is inspired by the recent decomposition theorem of Marx and Grohe [19]
for graphs excluding a topological subgraph. Contrary to the approach of Marx and
Grohe [19], however, the crucial technical tool we use to decompose the graph are the
important separators of Marx [23].

Our algorithm for Minimum Bisection applies Theorem 2 and then proceeds
by performing bottom up dynamic programming on the tree decomposition. The
states in the dynamic program are similar to the states in the dynamic programming
algorithm for Minimum Bisection on graphs of bounded treewidth [20]. Property (ii)
of Theorem 2 ensures that the size of the dynamic programming table is upper bounded
by 2O(k2)nO(1). For graphs of bounded treewidth all bags have small size, making it
easy to compute the dynamic programming table at a node b of the decomposition
tree, if the tables for the children of b have already been computed. In our setting
we do not have any control over the size of the bags, we only know that they are
(2O(k), k)-unbreakable. We show that the sole assumption that the bag at b is (2O(k), k)-
unbreakable is already sufficient to efficiently compute the table at b from the tables
of its children, despite no a priori guarantee on the bag’s size. The essence of this step
is an application of the “randomized contractions” technique [11].

We remark here that the last property of the decomposition of Theorem 2—the one
that asserts that adhesions β(a) ∩ β(b) are (2k, k)-unbreakable in G—is not essential
to establish the fixed-parameter tractability of Minimum Bisection. This high

2

unbreakability of adhesions is used to further limit the number of states of the dynamic
programming, decreasing the dependency on k in the algorithm of Theorem 1 from
double- to single-exponential.

Related work on balanced separations. There are several interesting results
concerning the parameterized complexity of finding balanced separators in graphs.
Marx [23] showed that the the vertex-deletion variant of the bisection problem is
W[1]-hard. In Minimum Vertex Bisection the task is to partition the vertex set
into three parts A, S and B such that |S| ≤ k and |A| = |B|, and there are no edges
between A and B. It is worth mentioning that the hardness result of Marx [23] applies
to the more general problem where |A| is given as input, however the hardness of
Minimum Vertex Bisection easily follows from the results presented in [23].

As the vertex-deletion variant of the bisection problem is W[1]-hard, we should not
expect that our approach would work also in this case. Observe that one can compute
the decomposition of Theorem 2 and define the states of the dynamic programming
over the tree decomposition, as it is done for graphs of bounded treewidth. However,
we are unable to perform the computations needed for one bag of the decomposition in
fixed-parameter tractable time. Moreover, it is not only the artifact of the “randomized
contractions” technique, but the hard instances obtained from the reduction of [23]
are in fact highly unbreakable by our definition, and Theorem 2 would return a trivial
decomposition.

Feige and Mahdian [16] studied cut problems that may be considered as approx-
imation variants of Minimum Bisection and Minimum Vertex Bisection. We
say that a vertex (edge) set S is an α-(edge)-separator if every connected component
of G \ S has at most αn vertices. The main result of Feige and Mahdian [16] is a
randomized algorithm that given an integer k, 2

3 ≤ α < 1 and ε > 0 together with
a graph G which has an α-separator of size at most k, outputs in expected time
2f(ε)knO(1) either an α-separator of size at most k or an (α + ε)-separator of size
strictly less than k. They also give a deterministic algorithm with similar running
time for the edge variant of this problem. To complement this result they show that,
at least for the vertex variant, the exponential running time dependence on 1/ε is
unavoidable. Specifically, they prove that for any α > 1

2 finding an α-separator of
size k is W[1]-hard, and therefore unlikely to admit an algorithm with running time

f(k)nO(1), for any function f . On the other hand, our methods imply a 2O(k3)nO(1/α)

time algorithm for finding an α-edge-separator of size at most k, for any α > 0.
Minimum Bisection on planar graphs was shown to be fixed parameter tractable

by Bui and Peck [7]. It is interesting to note that Minimum Bisection is not known
to be NP-hard on planar graphs, and the complexity of Minimum Bisection on
planar graphs remains a challenging open problem. More recently, van Bevern et
al. [3, 4] used the treewidth reduction technique of Marx et al. [24] to give a fixed
parameter tractable algorithm for Minimum Bisection for the special case when
removing the cut edges leaves a constant number of connected components. Their
algorithm also works for the vertex-deletion variant under the same restrictions. Since
Minimum Vertex Bisection is known to be W[1]-hard, it looks difficult to extend
their methods to give a fixed parameter tractable algorithm for Minimum Bisection
without any restrictions. Thus, Theorem 1 resolves an open problem stated in the
conference version of the work of van Bevern et al. [3] on the existence of such an
algorithm.

Related work on graph decompositions. The starting point of our decomposition

3

theorem is the “recursive understanding” technique pioneered by Grohe et al. [18],
and later used by Kawarabayashi and Thorup [21] and by Chitnis et al. [11] to
design a number of interesting parameterized algorithms for cut problems. Recursive
understanding can be seen as a reduction from a parameterized problem on general
graphs to the same problem on graphs with a particular structure. Grohe et al. [18]
essentially use recursive understanding to reduce the problem of deciding whether G
contains H as a topological subgraph to the case where G either excludes a clique on
f(|H|) vertices as a minor or contains at most f(|H|) vertices of degree more than
f(|H|), for some function f . Marx and Grohe [19] subsequently showed that any graph
which excludes H as a topological subgraph can be decomposed by small separators,
in a tree-like fashion, into parts such that each part either excludes a clique on f(|H|)
vertices as a minor or contains at most f(|H|) vertices of degree more than f(|H|), for
some function f . Thus, the decomposition theorem of Marx and Grohe [19] can be seen
as a “structural” analogue of the recursive understanding technique for topological
subgraph containment.

Both Kawarabayashi and Thorup [21] and Chitnis et al. [11] apply recursive
understanding to reduce certain parameterized cut problems on general graphs to
essentially the same problem on a graph G where V (G) is (f(k), k)-unbreakable for
some function f . Then they proceed to show that the considered problem becomes
fixed parameter tractable on (f(k), k)-unbreakable graphs. Observe that Minimum
Bisection on (f(k), k)-unbreakable graphs is trivially fixed parameter tractable -
if the number of vertices is more than 2f(k) we can immediately say no, while if
the number of vertices is at most 2f(k), then a brute force algorithm is already
fixed parameter tractable. More importantly, it turns out that even the more general
problem where |A| is given on the input can be solved in fixed parameter tractable time
on (f(k), k)-unbreakable graphs via an application of the “randomized contractions”
technique of Chitnis et al [11]. It is therefore very natural to try to use recursive
understanding in order to reduce Minimum Bisection on general graphs to Minimum
Bisection on (f(k), k)-unbreakable graphs.

Unfortunately, it seems very difficult to pursue this route. In particular, recursive
understanding works by cutting the graph into two parts by a small separator, “under-
standing” the easier of the two parts recursively, and then replacing the“understood”
part by a constant size gadget. For Minimum Bisection it seems unlikely that
the understood part can be emulated by any constant size gadget because of the
balance constraint in the problem definition. Intuitively, we would need to encode the
behaviour of the understood part for every possible cardinality of A, which gives us
amount of information that is not bounded by a function of k. The issue has strong
connections to the fact that the best known algorithm for Minimum Bisection on
graphs of bounded treewidth is at least quadratic [20] rather than linear.

At this point our decomposition theorem comes into play. It precisely allows us to
structurally decompose the graph in a tree-like fashion into (f(k), k)-unbreakable parts,
which provides much more robust foundations for further algorithmic applications.
Thus, essentially our decomposition theorem does the same for cut problems as
the decomposition theorem of Marx and Grohe [19] does for topological subgraph
containment. Notably, the “recursive understanding” step used by Kawarabayashi and
Thorup [21] and Chitnis et al. [11] for their problems could be replaced by dynamic
programming over the tree decomposition given by Theorem 2.

We remark here that it has been essentially known, and observed earlier by
Chitnis, Cygan and Hajiaghayi (private communication), that Minimum Bisection
can be solved in FPT time on sufficiently unbreakable graphs via the “randomized

4

contractions” technique. Furthermore, although our application of this framework to
handle one bag of the decomposition is more technical than in [11], due to the presence
of the information for children bags, it uses no novel tools compared to [11]. Hence,
we emphasize that our main technical contribution is the decomposition theorem
(Theorem 2), with the fixed-parameter algorithm for Minimum Bisection being its
corollary via an involved application of known techniques.

Organisation of the paper. After setting up notation and recalling useful results
on (important) separators in Section 2, we turn our attention to the decomposition
theorem and prove Theorem 2 in Section 3. The algorithm for Minimum Bisection
in the unweighted setting, promised by Theorem 1, is presented in Section 4. We
discuss the weighted extension in Section 5 and how to find an α-edge-separator of
size at most k in Section 6. Section 7 concludes the paper.

2. Preliminaries. We use standard graph notation, see e.g. [13]. We use n and
m to denote cardinalities of the vertex and edge sets, respectively, of a given graph
provided it is clear from the context. We begin with some definitions and known
results on separators and separations in graphs.

Definition 3 (separator). For two sets X,Y ⊆ V (G) a set W ⊆ V (G) is called
an X − Y separator if in G \W no connected component contains a vertex of X and
a vertex of Y at the same time.

Definition 4 (separation). A pair (A,B) where A ∪ B = V (G) is called a
separation if E(A \ B,B \ A) = ∅. The order of a separation (A,B) is defined as
|A ∩B|.

Definition 5 (important separator). An inclusion-wise minimal X − Y sep-
arator W is called an important X − Y separator if there is no X − Y separator W ′

with |W ′| ≤ |W | and RG\W (X \W) (RG\W ′(X \W ′), where RH(A) is the set of
vertices reachable from A in the graph H.

Lemma 6 ([10, 25]). For any two sets S, T ⊆ V (G) there are at most 4k important
S − T separators of size at most k and one can list all of them in O(4kk(n+m)) time.

We proceed to define tree decompositions. For a rooted tree T and a non-root
node t ∈ V (T), by parent(t) we denote the parent of t in the tree T . For two nodes
u, t ∈ T , we say that u is a descendant of t, denoted u � t, if t lies on the unique path
connecting u to the root. Note that every node is thus its own descendant.

Definition 7 (tree decomposition). A tree decomposition of a graph G is a
pair (T, β), where T is a rooted tree and β : V (T)→ 2V (G) is a mapping such that:

• for each node v ∈ V (G) the set {t ∈ V (G) | v ∈ β(t)} induces a nonempty
and connected subtree of T ,
• for each edge e ∈ E(G) there exists t ∈ V (T) such that e ⊆ β(t).

The set β(t) is called the bag at t, while sets β(u) ∩ β(v) for uv ∈ E(T) are called
adhesions . Following the notation from [19], for a tree decomposition (T, β) of a graph
G we define auxiliary mappings σ, γ : V (T)→ 2V (G) as

σ(t) =

{
∅ if t is the root of T

β(t) ∩ β(parent(t)) otherwise

γ(t) =
⋃
u�t

β(u)

5

Finally, we proceed to the definition of unbreakability.

Definition 8 ((q, k)-unbreakable set). Let G be an undirected graph. We say
that a subset of vertices A is (q, k)-unbreakable in G, if for any separation (X,Y)
of order at most k we have |(X \ Y) ∩ A| ≤ q or |(Y \ X) ∩ A| ≤ q. Otherwise A
is (q, k)-breakable, and any separation (X,Y) certifying this is called a witnessing
separation.

Let us repeat the intuition on unbreakable sets from the introduction. If a set X
of size at least 3q is (q, k)-unbreakable then removing any k vertices from G leaves
almost all of X, except for at most q vertices, in the same connected component. In
other words, one cannot separate two large chunks of X with a small separator.

Observe that if a set A is (q, k)-unbreakable in G, then any of its subset A′ ⊆ A is
also (q, k)-unbreakable in G. Moreover, if A is (q, k)-unbreakable in G, then A is also
(q, k)-unbreakable in any supergraph of G. For a small set A it is easy to efficiently
verify whether A is (q, k)-unbreakable in G, or to find a witnessing separation.

Lemma 9. Given a graph G, a set A ⊆ V (G) and an integer q one can check in
O(|A|2q+2k(n+m)) time whether A is (q, k)-unbreakable in G, and if not, then find a
separation (X,Y) of order at most k such that |(X \Y)∩A| > q and |(Y \X)∩A| > q.

Proof. Our algorithm guesses, by trying all possibilities, two disjoint subsets
X0, Y0 ⊆ A of q+1 vertices each. Having fixed X0 and Y0 we may, in O(k(n+m)) time
by applying (k + 1) rounds of the Ford-Fulkerson algorithm, find a minimum X0 − Y0
separator in G, or conclude that its size is larger than k. If a separator Z of size at most
k exists, then obtain a separation (X ′, Y ′) as follows: set X ′ ∩ Y ′ = Z, add connected
components of G\Z intersecting X0 to X ′ \Y ′, add connected components intersecting
Y0 to Y ′ \X ′, and distribute all the other connected component arbitrarily between
X ′ \ Y ′ and Y ′ \X ′. Observe that, since |X ′ ∩ Y ′| ≤ k, |X ′ \ Y ′| ≥ |X0| = q + 1, and
|Y ′ \X ′| ≥ |Y0| = q + 1, the separation (X ′, Y ′) witnesses that A is (q, k)-breakable,
and thus can be output by the algorithm. If none of the pairs (X0, Y0) admits a
X0 − Y0 separator of size at most k, then we conclude that A is (q, k)-unbreakable.

It remains to argue that if A is (q, k)-breakable, then for some pair (X0, Y0) the
minimum X0 − Y0 separator has size at most k. Indeed, let (X,Y) be any separation
of order at most k witnessing that A is (q, k)-breakable, and let X0 ⊆ X \ Y and
Y0 ⊆ Y \X be any subsets of size q + 1. Then X ∩ Y is an X0 − Y0 separator of size
at most k.

3. Decomposition. We now restate our decomposition theorem in a slightly
stronger form that will emerge from the proof.

Theorem 10. There is an 2O(k2)n2m time algorithm that, given a connected graph
G together with an integer k, computes a tree decomposition (T, β) of G with at most
n nodes such that the following conditions hold:

(i) for each t ∈ V (T), the graph G[γ(t)]\σ(t) is connected and N(γ(t)\σ(t)) = σ(t),
(ii) for each t ∈ V (T), the set β(t) is (2O(k), k)-unbreakable in G[γ(t)],

(iii) for each non-root t ∈ V (T), we have that |σ(t)| ≤ 2O(k) and σ(t) is (2k, k)-
unbreakable in G[γ(parent(t))].

3.1. Proof overview. We first give an overview of the proof of Theorem 10,
ignoring the requirement that each adhesion is supposed to be (2k, k)-unbreakable. As
discussed in the introduction, this property is only used to improve the running time
of the algorithm, and is not essential to establish fixed-parameter tractability.

We prove the decomposition theorem using a recursive approach, similar to the

6

standard framework used for instance by Robertson and Seymour [29] or by Marx
and Grohe [19]. That is, in the recursive step we are given a graph G together with
a relatively small set S ⊆ V (G) (i.e., of size bounded by 2O(k)), and our goal is to
construct a decomposition of G satisfying the requirements of Theorem 10 with an
additional property that S is contained in the root bag of the decomposition. The
intention is that the recursive step is invoked on some subgraph of the input graph,
and the set S is the adhesion towards the decomposition of the rest of the graph.

Henceforth we focus on one recursive step, and consider three cases. In the base
case, if |S| ≤ 3k, we add an arbitrary vertex to S and repeat. In what follows, we
assume |S| > 3k.

First, assume that S is (2k, k)-breakable in G, and let (X,Y) be a witnessing
separation. We proceed in a standard manner (cf. [29]): we create a root bag
A := S ∪ (X ∩ Y), for each connected component C of G \A recurse on the subgraph
induced by NG[C], where NG(C) is set to be the set S in the recursive call, and glue the
obtained trees as children of the root bag. It is straightforward from the definition of
the witnessing separation that in every recursive call we have |NG(C)| ≤ |S|. Moreover,
clearly |A| ≤ |S|+k and hence A is appropriately unbreakable (recall that |S| ≤ 2O(k)).
Note that so far we have not ensured that the adhesions NG(C) are (2k, k)-unbreakable;
this is achieved by running an additional augmentation procedure.

In the last, much more interesting case the adhesion S turns out to be (2k, k)-
unbreakable. Hence, any separation (X,Y) in G partitions S very unevenly: almost
the entire set S, up to O(k) elements, lies on only one side of the separation. Let us
call this side the “big” side, and the second side the “small” one.

The main idea now is as follows. We would like to partition the graph into a part
that is “well-attached” to S, and a part consisting of vertices that can be separated
from S using a separation of small order (say, easily separable). The unbreakability of
S ensures us that every separation of small order has a well-defined “big” side that
includes almost the whole S, and a well-defined “small” side consisting of vertices that
are separated from almost whole S by this separation. In order to separate all easily
separable vertices at once, we do the following: for each vertex v ∈ V (G), we mark all
important separators of size O(k) between v and S. Then the marked vertices will
separate all “small” sides of separations from the set S, thus effectively separating all
easily separable vertices.

Let B be the set of marked vertices and let A be the set of all vertices of G that
are either in B ∪ S, or are not separated from S by any of the considered important
separators. We observe that the strong structure of important separators—in particular,
the single-exponential bound on the number of important separators for one vertex
v—allows us to argue that each connected component C of G \ A that is separated
by some important separator from S has only bounded number of neighbours in
A. Moreover, the fact that we cut all “small” sides of separations implies that A is
appropriately unbreakable in G. Hence, we may recurse, for each connected component
C of G \A that is separated by some important separator from S, on (NG[C], NG(C)),
and take A as the root bag.

The section is organised as follows. In Section 3.2 we define the notion of chips,
which are parts of the graph cut out by important separators, and provide all the
properties needed later on. In Section 3.3 we also show how to proceed with the case
of S being unbreakable, that is, how to extract the root bag containing S by cutting
away all the chips. In Section 3.4 we perform some technical augmentation to ensure
that the adhesions are (2k, k)-unbreakable. Finally in Section 3.5 we combine the
obtained results and construct the main decomposition of Theorem 10.

7

3.2. Chips. In this subsection we define fragments of the graph which are easy
to chip (i.e. cut out of the graph) from some given set of vertices S, and show their
basic properties.

Definition 11 (chips). For a fixed set of vertices S ⊆ V , a subset C ⊆ V is
called a chip, if
(a) G[C] is connected,
(b) |N(C)| ≤ 3k,
(c) N(C) is an important C − S separator.
Let C be the set of all inclusion-wise maximal chips.

The next lemma is straightforward from the definition of important separators.

Lemma 12. For any nonempty set C ⊆ V (G) such that G[C] is connected, the
following conditions are equivalent.

(i) N(C) is an important C − S separator;
(ii) for any v ∈ C, N(C) is an important v − S separator;

(iii) there exists v ∈ C such that N(C) is an important v − S separator.

Note also that for a connected set of vertices D and any important D−S separator
Z of size at most 3k that is disjoint with D, the set of vertices reachable from D in
G \ Z forms a chip. We now show how to enumerate inclusion-wise maximal chips.

Lemma 13. Given a set S ⊆ V (G) one can compute the set C of all inclusion-wise
maximal chips in time 2O(k)n(n+m). In particular, |C| ≤ 43kn.

Proof. For any v ∈ V , we use Lemma 6 to enumerate the set Zv of all important
v − S separators of size at most 3k. Recall that for any Z ∈ Zv, the set RG\Z(v)
is the vertex set of the connected component of G \ Z containing v. Define Av =
{RG\Z(v) | Z ∈ Zv} and let Cv be the set of inclusion-wise maximal elements of Av.
By Lemma 12 we infer that if some chip C ∈ Av is not inclusion-wise maximal, then
there exists C ′ ∈ Av such that C (C ′. Therefore, we have that C =

⋃
v∈V (G) Cv.

As |Zv| ≤ 43k for any v ∈ V (G), the bound on |C| follows. For each v ∈ V (G),
the sets Zv, Av and Cv can be computed in 2O(k)(n+m) time in a straightforward
manner. The computation of C =

⋃
v∈V (G) Cv in 2O(k)n(n+m) time can be done by

inserting all the elements of
⋃
v∈V (G) Cv into a prefix tree (trie), each in O(n) time,

and ignoring encountered duplicates.

Definition 14 (chips touching). We say that two chips C1, C2 ∈ C, C1 6= C2,
touch each other, denoted C1 ∼ C2, if C1 ∩ C2 6= ∅ or E(C1, C2) 6= ∅.

The following lemma provides an alternative definition of touching that we will
find useful.

Lemma 15. C1 ∈ C touches C2 ∈ C if and only if N(C1) ∩ C2 6= ∅.

Proof. From right to left, if v ∈ N(C1) ∩ C2 then there exists a neighbour u of v
that belongs to C1, and consequently uv ∈ E(C1, C2).

From left to right, first assume C1 ∩ C2 6= ∅. Since C contains only inclusion-wise
maximal chips, we have that C2 \ C1 6= ∅. By property (a) of Definition 11 the graph
G[C2] is connected, hence there is an edge between C2 \ C1 and C1 ∩ C2 inside G[C2].
This proves N(C1) ∩ C2 6= ∅.

In the other case, assume that C1 ∩ C2 = ∅ but there exists uv ∈ E(C1, C2) such
that u ∈ C1 and v ∈ C2. Since C1 ∩ C2 = ∅, it follows that v /∈ C1, and hence
v ∈ N(C1) ∩ C2.

8

The next result provides the most important tool for bounding the size of adhesions
in the constructed decomposition.

Lemma 16. Any chip C ∈ C touches at most 3k · 43k other chips of C.

Proof. Assume that C touches some C ′ ∈ C. By Lemma 15 there exists a vertex
v ∈ N(C) ∩ C ′. Observe that since N(C ′) is an important C ′ − S separator, then
N(C ′) is also an important v − S separator. By Lemma 6 there are at most 43k

important v − S separators of size at most 3k. Since |N(C)| ≤ 3k (by property (b) of
Definition 11), we infer that C touches at most 3k · 43k chips from C.

3.3. Local decomposition. Equipped with basic properties of chips we are
ready to prove the main step of the decomposition part of the paper. In what follows
we show that given a (2k, k)-unbreakable set S of size bounded in k one can find a
(potentially large) unbreakable part A ⊆ V of the graph, such that S ⊆ A and each
connected component of G \A is adjacent to a small number of vertices of A. In what
follows, let us define

η = 3k · (3k · 43k + 1),

τ = (3k)2 · 83k + 2k.

Theorem 17. There is an 2O(k)nm time algorithm that, given a connected graph
G together with an integer k and a (2k, k)-unbreakable set S ⊆ V (G), computes a set
A ⊆ V (G) such that:
(a) S ⊆ A,
(b) for each connected component D of G \A we have |NG(D)| ≤ η,
(c) A is (τ, k)-unbreakable in G, and
(d) if |S| > 3k, G \ S is connected and N(V (G) \ S) = S, then S 6= A.

The remainder of this subsection is devoted to the proof of Theorem 17, which is
broken into a few lemmas.

Let C be the set of inclusion-wise maximal chips, enumerated by Lemma 13. Define
the set A as follows:

A =

(
V (G) \

⋃
C∈C

C

)
∪
⋃
C∈C

N(C).

In the definition we assume that when C is empty, then A = V (G). See Fig. 1a
for an illustration. The claimed running time of the algorithm follows directly from
Lemma 13.

For property (a), note that no vertex of S is contained in a chip of C, hence
S ⊆ A. We now show property (d). Note that N(V (G) \ S) = S implies S 6= V (G).
Consequently, if C = ∅, property (d) is straightforward. Otherwise, let C ∈ C. Note
that |S| > 3k implies that S \N(C) 6= ∅ and the connectivity of G \ S together with
N(V (G) \ S) = S further implies that N(C) \ S 6= ∅. Consequently, A \ S 6= ∅ and
property (d) is proven.

We now move to the remaining two properties.

Lemma 18. For any connected component D of G \A there exists a chip C1 ∈ C

such that D ⊆ C1.

Proof. Observe that a vertex which is not contained in any chip belongs to the
set A, as it is either contained in N(C) for some C ∈ C or it belongs to V (G) \N [C]
for every C ∈ C. Let D be an arbitrary connected component of G \A and let v ∈ D
be its arbitrary vertex. As v /∈ A, there is a chip Cv ∈ C such that v ∈ Cv. Recall

9

that by its definition the set A contains all the neighbours of all the chips in C, hence
N(Cv) ∩D = ∅ and by the connectivity of G[D] we have D ⊆ Cv.

In the following lemma we show that the set A satisfies property (b) of Theorem 17.

Lemma 19. For any connected component D of G \A it holds that |N(D)| ≤ η.

Proof. Let D be an arbitrary connected component of G \A. By Lemma 18 there
exists C ∈ C such that D ⊆ C. Intuitively each vertex of N(D) belongs to the set
A for one of two reasons: (i) it belongs to N(C), or (ii) it is adjacent to a vertex of
some other chip, which touches C. In both cases we show that there is only a bounded
number of such vertices, which is formalized as follows.

Let v be any vertex of N(D). Clearly v ∈ N [C], hence we either have v ∈ N(C)
or v ∈ C. Suppose v ∈ C. Then, since v ∈ A, by the definition of the set A we have
v ∈ N(C ′) for some C ′ ∈ C, C ′ 6= C. Consequently v ∈ N(C ′) ∩ C, so C ′ touches C
by Lemma 15. We infer that N(D) ⊆ N(C) ∪

⋃
C′∈C,C∼C′ N(C ′). The claimed upper

bound on |N(D)| follows from Lemma 16.

Next, we show that the set A is unbreakable. A short and informal rationale
behind this property is that everything what could be easily cut out of the graph was
already excluded in the definition of A.

Lemma 20. The set A is (τ, k)-unbreakable.

Proof. Assume the contrary, and let (X,Y) be a witnessing separation, i.e. we
have that |X ∩ Y | ≤ k, |(X \ Y) ∩ A| > τ and |(Y \X) ∩ A| > τ . Since S is (2k, k)-
unbreakable, then either |(X \ Y) ∩ S| ≤ 2k or |(Y \X) ∩ S| ≤ 2k. Without loss of
generality we assume that |(X \Y)∩S| ≤ 2k. Let us define a set Q = (X∩Y)∪(X∩S)
and observe that |Q| ≤ 3k.

Note that each connected component of G \Q is either entirely contained in X \Y
or in Y \X (see Fig. 1b). Consider connected components of the graph G \Q that are
contained in X \ Y and observe that they contain at least |((X \ Y)∩A) \S| > τ − 2k
vertices of A in total. Therefore, by grouping the connected components of G \ Q
contained in X \ Y by their neighbourhoods in Q, we infer that there exists a set of
connected components D = {D1, . . . , Dr}, such that ∀1≤i,j≤rNG(Di) = NG(Dj) and∣∣∣∣∣

r⋃
i=1

Di ∩A

∣∣∣∣∣ > τ − 2k

23k
= (3k)2 · 43k .(1)

We now need the following claim.

Claim 21. There is a subset C0 ⊆ C, such that each v ∈
⋃r
i=1Di ∩A belongs to

some chip of C0, and there are at most 3k · 43k chips in C that touch some chip of C0.

Proof. Observe that, for each 1 ≤ i ≤ r, Q is a Di − S separator (see Fig. 1b) of
size at most 3k. Therefore, for each Di there is an important Di − S separator of size
at most 3k disjoint with Di, hence each Di is contained in some chip of C. Consider
two cases.

First, assume that for each 1 ≤ i ≤ r we have Di ∈ C. Define C0 as {D1, . . . , Dr}.
Observe that since components Di have the same neighbourhoods in G, by Lemma 15
each chip of C that touches some chip Di touches also D1. Therefore, by Lemma 16
there are at most 3k · 43k chips in C that touch some chip of C0.

In the second case assume that there exist 1 ≤ i0 ≤ r and a chip C ∈ C such that
Di0 (C. We shall prove that for each 1 ≤ i ≤ r we have Di ⊆ C. Since C is connected
and C \Di0 is non-empty, we have that C ∩N(Di0) 6= ∅. Let C ′ = C ∪

⋃
1≤i≤rDi.

10

S

(a) Construction of the bag A

D1

D2

D3

S

Q

N(Di)

A

(b) Situation in the proof of Claim 21.

Fig. 1: Illustrations of the proof of Theorem 17

Clearly C ′ ∩ S = ∅, and C ′ is connected since each component Di is adjacent to every
vertex of C ∩ N(Di0). Moreover, as each Di has the same neighbourhood in Q we
have |N(C ′)| ≤ |N(C)| ≤ 3k (see Fig. 1b). As C contains only maximal chips we have
C ′ = C and hence

⋃
1≤i≤rDi ⊆ C. Define C0 as {C}. By Lemma 16 a single chip

touches at most 3k · 43k other chips, which finishes the proof of Claim 21.

Let v ∈ A ∩Di for some 1 ≤ i ≤ r. Since v is contained in some C ′ ∈ C0, we have
v /∈ V (G) \ N [C ′]. Consequently, by the definition of the set A there exists a chip
Cv ∈ C such that v ∈ N(Cv). Note that C ′ 6= Cv and N(Cv) ∩ C ′ 6= ∅. Hence, by
Lemma 15, C ′ touches Cv. By Claim 21, there are at most 3k · 43k chips touching a
chip of C0. As each Cv satisfies |N(Cv)| ≤ 3k, we infer that the number of vertices
of A in

⋃
1≤i≤rDi is at most (3k)243k. This contradicts (1) and finishes the proof of

Lemma 20.

Lemma 19 and Lemma 20 ensure properties (b) and (c) of the set A, respectively.
This concludes the proof of Theorem 17.

3.4. Strengthening unbreakability of adhesions. So far Theorem 17 pro-
vides us with a construction of the bag that meets almost all the requirements, apart
from (2k, k)-unbreakability of adhesions. For this reason, in this section we want to
show that the set A from Theorem 17 can be extended to a set A′ in such a way that
for each connected component D of G \A′ the set NG(D) is even (2k, k)-unbreakable.
During this extension we may weaken unbreakability of A′, but if we are careful enough,
then this loss will be limited to a single-exponential function of k. We start with the
following recursive procedure.

Lemma 22. Let G be a graph, and L ⊆ V (G) be a subset of vertices of size at
least 2k + 1. Then one can in O(|L|4k+3kn(n+m)) time find a set L′, L ⊆ L′, such
that |L′ \ L| ≤ (|L| − 2k − 1) · k and for each connected component D of G \ L′, we
have that |NG(D)| ≤ |L| and NG(D) is (2k, k)-unbreakable in G.

Proof. We give a recursive procedure with the following two base cases. If L =
V (G), clearly we may return L′ = L. In the second base case we assume that L
is (2k, k)-unbreakable in G, which can be checked in O(|L|4k+2k(n+m)) time using
Lemma 9. Then for each connected component D of G \ L we have that NG(D) ⊆ L,
and thus |NG(D)| ≤ |L| and NG(D) is also (2k, k)-unbreakable in G. Hence we can

11

set L′ = L, and since |L| ≥ 2k + 1, we have that |L′ \ L| ≤ (|L| − 2k − 1) · k.
Now let us assume that L is (2k, k)-breakable in G, and hence there exists a

separation (X,Y) of G such that |X∩Y | ≤ k, |(X \Y)∩L| > 2k and |(Y \X)∩L| > 2k,
found by the algorithm of Lemma 9. We apply the procedure recursively for the pair
(G1 = G[X], L1 = (X ∩ L) ∪ (X ∩ Y)) and for the pair (G2 = G[Y], L2 = (Y ∩ L) ∪
(X ∩ Y)), to obtain sets L′1 and L′2, respectively. Note here that |L1|, |L2| ≥ 2k + 1
and |L1|, |L2| < |L|, so the sizes of sets L are smaller in the recursive subcalls. Define
L′ = L′1 ∪L′2. Each connected component D of G \L′ is either a connected component
of G1 \ L′1 and is adjacent only to L′1, or is a connected component of G2 \ L′2 and
is adjacent only to L′2. Assume without loss of generality the first case. From the
recursion we infer that |NG1(D)| ≤ |L1| and NG1(D) is (2k, k)-unbreakable in G1,
and since NG1

(D) = NG(D), |L1| < |L|, and G1 is a subgraph of G, it follows that
|NG(D)| ≤ |L| and NG(D) is (2k, k)-unbreakable in G. It remains to argue that the
cardinality of L′ \ L is not too large. Observe that

L′ \ L ⊆ (L′1 \ L1) ∪ (L′2 \ L2) ∪ (X ∩ Y) ;

therefore, by the invariants given by the recursion we have

|L′ \ L| ≤ (|L1| − 2k − 1) · k + (|L2| − 2k − 1) · k + k

= (|L1|+ |L2| − 4k − 1) · k
≤ (|L|+ 2|X ∩ Y | − 4k − 1) · k
≤ (|L| − 2k − 1) · k .

Let us now bound the running time of the presented recursive procedure. Clearly,
as the size of the set L decreases in the recursive calls, the depth of the recursion is
at most |L|. Moreover, note that any vertex may appear in V (G) \ L in at most one
recursive call (G,L) at any fixed level of the recursion tree. Hence, there are at most
|L|n recursive calls that do not correspond to the first base case, and, consequently, at
most 2|L|n+ 1 recursive calls in total. As each recursive call takes O(|L|4k+2k(n+m))
time, the promised running time bound follows.

We can now proceed to strengthen Theorem 17 by including also the procedure of
Lemma 22. In the following, let

τ ′ = τ +

((
τ + k

2

)
· k + k

)
· kη .

Theorem 23. There is an 2O(k2)nm time algorithm that, given a connected graph
G together with an integer k and a (2k, k)-unbreakable set S, computes a set A′ ⊆ V (G)
such that the following conditions are satisfied:
(a) S ⊆ A′;
(b) for each connected component D of G \A′ the set NG(D) is (2k, k)-unbreakable,

and |NG(D)| ≤ η;
(c) A′ is (τ ′, k)-unbreakable in G; and
(d) if |S| > 3k, G \ S is connected, and N(V (G) \ S) = S, then S 6= A′.

Proof. We start by finding the set A by running the algorithm Theorem 17. Next,
for each connected component D of G \ A using Lemma 9 we check whether N(D)
is (2k, k)-breakable in G. By Theorem 17, the cardinality of N(D) is bounded by

η, hence all tests require total running time O(η4k+2knm) = 2O(k2)nm time. Note

12

that if N(D) is (2k, k)-breakable in G, then in particular |N(D)| > 2k, hence we can
use Lemma 22 for the pair (G[N [D]], LD = N(D)); let L′D be the obtained set. As
|LD| ≤ η, the algorithm of Lemma 22 runs in O(η4k+3k|N [D]|m) time for a fixed
component D, and total time used by calls to Lemma 22 is:∑

D

O(η4k+3k(|D|+ |N(D)|)m) ≤ O(η4k+3km) ·

(∑
D

|D|+
∑
D

η

)
= O(η4k+4knm) = 2O(k2)nm.

In the case when N(D) is (2k, k)-unbreakable, we simply define L′D = LD = N(D).
Define A′ = A∪ (

⋃
D L
′
D), where the union is taken over all the connected components

D of G \A.
Since S ⊆ A ⊆ A′, we have that S ⊆ A′, and, moreover, the property (d) follows

directly from property (d) of Theorem 17. Moreover, as |LD| ≤ η for each connected
component D of G \A, by Lemma 22 for each connected component D′ of G \A′ we
also have |NG(D′)| ≤ η. The fact that NG(D′) is (2k, k)-unbreakable in G follows
directly from Lemma 22. It remains to show that A′ is (τ ′, k)-unbreakable in G.

Consider any separation (X,Y) of G of order at most k. By Theorem 17 the set
A is (τ, k)-unbreakable, hence either |(X \ Y) ∩ A| ≤ τ or |(Y \ X) ∩ A| ≤ τ , and
without loss of generality assume the former. As (X,Y) is an arbitrary separation
of order at most k, to show that A′ is (τ ′, k)-unbreakable it suffices to prove that
|(X \ Y) ∩ (A′ \A)| ≤ (

(
τ+k
2

)
· k + k) · kη.

Note that A′ \ A ⊆
⋃
D L
′
D \ LD. As for each D we have |L′D \ LD| ≤ kη by

Lemma 22, to finish the proof of Theorem 23 we are going to show that there are at
most

(
τ+k
2

)
· k + k connected components D of G \A such that D ∩ (X \ Y) 6= ∅ and

L′D 6= LD. As (X,Y) is of order at most k, there are at most k connected components
D of G\A intersecting X∩Y . Hence we restrict our attention to connected components
D of G \A, such that D ⊆ X \ Y , which in turn implies N(D) ⊆ A ∩X. Recall that
if L′D 6= LD for such a connected component D, then N(D) is (2k, k)-breakable in G,
and hence there exist two vertices va, vb ∈ N(D) ⊆ A ∩X, such that the minimum
vertex cut separating va and vb in G is at most k. However, such a pair of vertices
va, vb may be simultaneously contained in neighbourhoods of at most k connected
components D, since within each component D adjacent both to va and to vb, we can
select a path connecting them so that all the selected paths are pairwise vertex-disjoint.
The theorem follows since |A ∩X| ≤ τ + k.

3.5. Constructing a decomposition. In this subsection we prove our main
decomposition theorem, i.e., Theorem 10. However, for the inductive approach to work
we need a bit stronger statement, where additionally we have a set S ⊆ V (G) that
has to be contained in the root bag of the tree decomposition. Note that Theorem 10
follows from the following by setting S = ∅.

Theorem 24. There is an 2O(k2)n2m time algorithm that, given a connected graph
G together with an integer k and a set S ⊆ V (G) of size at most η such that G \ S is
connected and N(V (G) \ S) = S, computes a tree decomposition (T, β) such that S is
contained in the root bag of the tree decomposition, and the following conditions are
satisfied:

(i) for each t ∈ V (T), the graph G[γ(t)]\σ(t) is connected and N(γ(t)\σ(t)) = σ(t),
(ii) for each t ∈ V (T), the set β(t) is (τ ′, k)-unbreakable in G[γ(t)],

(iii) for each non-root t ∈ V (T), we have that |σ(t)| ≤ η and σ(t) is (2k, k)-unbreakable
in G[γ(parent(t))].

13

(iv) |V (T)| ≤ |V (G) \ S|.

Proof. We provide a recursive procedure that computes the decomposition. The
halting condition of the procedure will be clear from the running time analysis that is
provided at the end of the proof.

If |V (G)| ≤ τ ′, the algorithm creates a single bag containing the entire V (G). It is
straightforward to verify that such a decomposition satisfies all the required properties.
Thus, in the rest of the proof we assume that |V (G)| > τ ′, in particular, |V (G)| > 3k.

Define S′ = S and, if |S| ≤ 3k, add 3k + 1− |S| arbitrary vertices of V (G) \ S to
S′. Note that, as η > 3k, we have 3k < |S′| ≤ η.

We now define a set A′ as follows. First, we verify, using Lemma 9, whether S′ is
(2k, k)-breakable in G or not. If it turns out to be (2k, k)-breakable in G, we apply
Lemma 22 to the pair (G,S′), obtaining a set which we denote by A′. Otherwise, we
can use Theorem 23 on the pair (G,S′) to obtain a set A′. Note that in both cases

S ⊆ S′ ⊆ A′ and all computations so far require 2O(k2)nm time in total.
Regardless of the way the set A′ was obtained, we proceed with it as follows. For

each connected component D of G\A′, we apply the algorithm recursively to the graph
G[N [D]] and SD = N(D). Let us now verify (a) that each SD is (2k, k)-unbreakable
in G, (b) that the assumptions of the theorem are satisfied, and (c) that the recursive
call is applied to a strictly smaller instance in the sense defined below.

For the first two claims, if S′ is (2k, k)-breakable, then Lemma 22 asserts that
|SD| ≤ |S′| ≤ η and SD is (2k, k)-unbreakable in G. Otherwise, property (b) of
Theorem 23 ensures that |SD| ≤ η and SD is (2k, k)-unbreakable in G. The other
assumptions on the set SD required in the recursive calls, namely that G[N [D]] \ SD
is connected and NG[N [D]](N [D] \ SD) = SD, follow directly from the definitions of
these calls.

For the last claim, we show that either N [D] (V (G), or N [D] = V (G) and
D (V (G) \ S. Assume the contrary, which implies that D = V (G) \ S and N(D) =
SD = S = S′ = A′. In particular, as SD is (2k, k)-unbreakable in G, the set A′ was
obtained using Theorem 23. However, as |S′| > 3k, property (d) of Theorem 23 ensures
that S′ (A′, a contradiction.

Let (TD, βD) be the tree decomposition obtained in the recursive call for the pair
(G[N [D]], SD). Construct a tree decomposition (T, β), by creating an auxiliary node
r, which will be the root of T , and attach TD to r, by making the root rD of TD a
child of r in T . Finally, define β =

⋃
D βD and set β(r) = A′. A straightforward check

shows that (T, β) is indeed a valid tree decomposition. We now proceed to verify its
promised properties.

Since S ⊆ S′ ⊆ A′, we have that S is indeed contained in the root bag of
(T, β). For any connected component D of G \ A′, note that γ(rD) = N [D] and
σ(rD) = N(D) = SD. This, together with the assumption about the correctness of the
recursive calls and the fact that each SD has size at most η and is (2k, k)-unbreakable
in G, proves properties (i) and (iii).

If A′ is obtained using Lemma 22, then |A′| ≤ k|S′| ≤ kη < τ ′, hence clearly
A′ = β(r) is (τ ′, k)-unbreakable. In the other case, property (c) of Theorem 23 ensures
the unbreakability promised in property (ii).

It remains to bound the number of bags of (T, β); as each bag is processed in

2O(k2)nm time this would also prove the promised running time bound. Note that by
property (iv) for the recursive calls we have that |V (TD)| ≤ |D| and, consequently,
|V (T)| ≤ |V (G)\A′|+1 = |V (G)\S|+1−|A′\S|. To finish the proof of property (iv) it
suffices to show that S (A′. If S (S′, the claim is straightforward. Otherwise, if S =

14

S′ is (2k, k)-breakable, then the algorithm Lemma 22 cannot return A′ = S′ as G \ S′
is connected and N(V (G) \S′) = S′ is not (2k, k)-unbreakable. Consequently, S′ (A′

in this case. In the remaining case, when S = S′ is (2k, k)-unbreakable, property (d)
of Theorem 23 ensures that S′ (A′. This finishes the proof of Theorem 24.

4. Bisection. In this section we present a dynamic programming algorithm
working over the decomposition given by Theorem 10. When handling one bag of the
decomposition, we essentially follow the approach of the high connectivity phase of
“randomized contractions” [11]. That is, we apply colour-coding in a quite involved
fashion to highlight the solution in a bag, relying heavily on its unbreakability. Then we
analyse the outcome by a technical, but natural knapsack-style dynamic programming.

The section is organized as follows. First, in Section 4.1 we define an abstract
problem which encapsulates the computational task one needs to perform in a single
step of the dynamic programming procedure. Then the overall dynamic procedure is
presented in Section 4.2.

Through this section we mostly ignore the study of factors polynomial in the graph
size in the running time of the algorithm, and we use the O?(·) notation. We do not
optimize the exponent of the polynomial in this dependency for the following reason:
this would add an unnecessary level of technicalities to the description, distracting
the reader from the main points of the reasoning. Perhaps more importantly, it is in
fact less relevant to the main result of this paper—the fixed-parameter tractability of
Minimum Bisection. In Section 4.3 we briefly argue how to obtain the running time
promised in Theorem 1.

4.1. Hypergraph painting. Hypergraph Painting is defined as follows.

Hypergraph Paintinga (HP)
Input: Positive integers k, b, d, a multihypergraph H with hyperedges of size at
most d, a partial function col0 : V (H) 9 {B,W}, and a function fF : {B,W}F ×
{0, . . . , b} → {0, 1, . . . , k,∞} for each F ∈ E(H).
Goal: For each 0 ≤ µ ≤ b, compute the value wµ,

wµ = min
col⊇col0,(aF)F∈E(H)

∑
F∈E(H)

fF (col|F , aF) ,

where the minimum is taken over colourings col : V (H) → {B,W} extending
col0 and partitions of µ into non-negative integers µ =

∑
F∈E(H) aF , and the sum

attains value ∞ whenever its value exceeds k.

aWe are intentionally avoiding the name Hypergraph Colouring, as it has an established,
and different, meaning.

As mentioned before, Hypergraph Painting is an abstraction for one step of
the final dynamic programming for Minimum Bisection, namely processing one bag
of the decomposition. The vertex set V (H) represents the bag itself. The hyperedges
E(H) essentially come from two sources. Firstly, each edge contained in the bag gives
raise to one hyperedge of H of arity 2, with a simple function fF that checks whether
the edge is monochromatic or not. Second, for each subtree attached below the bag,
we add one hyperedge being the corresponding adhesion. The function fF associated
with this hyperedge measures, for each colouring of the adhesion into black and white,
the optimum cost (that is, the number of edges with endpoints receiving different
colors) of extending this colouring into the part of the graph contained in the subtree;

15

the second argument is the requested number of white vertices. Thus, functions fF
for such hyperedges represent precomputed optimum values for subtrees. For the
considered bag, we need to compute optimum values for all possible colourings of the
top adhesion (between the bag and its parent), and hence we need the possibility
of pre-coloring some vertices using the partial function col0. Finally, the variable µ
represents the total number of white vertices that we expect in a sought solution for
the subtree of the decomposition rooted at the currently considered bag. As we need to
be prepared for every possible balance between white and black vertices, this variable
ranges over integers between 0 and some upper bound b, which will usually be the
total number of vertices contained in this subtree of the decomposition.

We denote n = |V (H)| and m = |E(H)| throughout the analysis of the Hyper-
graph Painting problem. We call an instance (k, b, d,H, col0, (fF)F∈E(H)) a q-proper
instance of Hypergraph Painting if the following conditions hold:

• (local unbreakability) for each F ∈ E(H), each colouring col : F → {B,W}
marking more than 3k vertices of each colour, i.e. |col−1(B)|, |col−1(W)| > 3k,
and each 0 ≤ µ ≤ b the value fF (col, µ) equals ∞,

• (connectivity) for each F ∈ E(H), each colouring col : F → {B,W} that is
bichromatic, i.e. |col−1(B)| > 0 and |col−1(W)| > 0, and each 0 ≤ µ ≤ b the
value fF (col, µ) is non-zero,
• (global unbreakability) for each 0 ≤ µ ≤ b such that wµ < ∞ there is a

witnessing colouring col : V (H)→ {B,W}, which colours at most q vertices
with one of the colours, i.e. min(|col−1(B)|, |col−1(W)|) ≤ q.

Note that, by local unbreakability, for proper instances each function fF can be
represented by at most (2

∑3k
i=0 d

i) · (b + 1) ≤ 4(b + 1)d3k values which are smaller
than ∞. Observe, moreover, that these values can be stored in a dictionary data
structure, say a trie, where for a given colouring, the array consisting of values for
all µ ∈ {0, 1, . . . , b} can be accessed in time polynomial in d and k. Then the value
for a particular choice of µ can be accessed in constant time, because we work in the
RAM model. This access time, being polynomial in d and k, will be always dominated
by other factors in the running times of our algorithms, and hence from now on we
ignore it in the running time analysis and treat the access to values of functions fF as
a constant-time operation.

We are going to use the well-established tool of fixed parameter tractability, namely
the colour-coding technique of Alon, Yuster and Zwick [1]. A standard method of
derandomizing the colour-coding technique is to use splitters of Naor et al. [27]. We
present our algorithm already in its derandomized form, and for this reason we use
the following abstraction of splitters.

Lemma 25 (Lemma 1 of [11]). Given a set U of size n and integers 0 ≤
a, b ≤ n, one can in time 2O(min(a,b) log(a+b))n log n construct a family F of at most
2O(min(a,b) log(a+b)) log n subsets of U such that for any sets A,B ⊆ U with A ∩B = ∅,
|A| ≤ a, and |B| ≤ b, there exists a set S ∈ F with A ⊆ S and B ∩ S = ∅.

We will use the following operators in order to make the description of the algorithm
more concise. The first one is often called the min-plus convolution.

Definition 26. For two functions g, h : {0, . . . , b} → {0, 1, . . . , k,∞} we define
functions g ⊕ h,min(g, h) as follows:

(g ⊕ h)(µ) = min
µ1+µ2=µ

g(µ1) + h(µ2) ,

min(g, h)(µ) = min(g(µ), h(µ)),

16

where each integer larger than k is treated as ∞.

Note that these operators are commutative and associative, and that given two
functions g, h one can compute g ⊕ h in O(b2) time, and min(g, h) in O(b) time.

Lemma 27. There is an qO(k) · dO(k2) · |I|O(1)-time algorithm solving the Hy-
pergraph Painting problem for q-proper instances I where q ≥ k. Here, |I|
denotes the total size of the encoding of a q-proper instance I, which is at most
(|V (H)|+ |E(H)| · (b+ 1)(k + 2)dO(k))O(1).

Proof. First, let us fix the value of µ, 0 ≤ µ ≤ b. Our goal is to compute a single
value wµ

1. Throughout the proof we work under the assumption that

wµ <∞ .(2)

More precisely, the algorithm shall produce a number of finite candidates for wµ, each
not smaller than the actual value of wµ. We will argue that under the assumption
wµ <∞, some candidates will be produced and the smallest among them will actually
be equal to wµ. Note that this implies that wµ = ∞ if and only if no candidate is
produced, so if the algorithm failed to find any candidates, then it can safely conclude
that wµ =∞.

By the global unbreakability property, assumption (2) implies that there is a
colouring colopt : V (H)→ {B,W} that witnesses the value wµ and colours at most q
vertices with one of the colours. Without loss of generality let us assume that

|col−1opt(W)| ≤ q ,(3)

as the other case |col−1(B)| ≤ q is symmetric.
Observe that by the local unbreakability property for each F ∈ E(H) there are at

most ` = 4d3k = dO(k) colourings of F that lead to a value of fF which is different than
∞; call such colourings admissible. For each F ∈ E(H) let us order the admissible
bichromatic colourings of F arbitrarily, and for 1 ≤ i ≤ ` let colF,i be the i-th of the
admissible colourings which is bichromatic on F (if the number of such colourings is
smaller than ` we append the sequence with arbitrary bichromatic colourings).

We want to assign each F ∈ E(H) to be in one of the following states:
• F is definitely monochromatic,
• F is either monochromatic, or should be coloured as in colF,i for a fixed

1 ≤ i ≤ `.
Formally, for an assignment p : E(H)→ {0, . . . , `} by p(F) = 0 we express the “defi-
nitely monochromatic” state, and by p(F) = i > 0 we express the “either monochro-
matic or i-th bichromatic colouring” state.

Let EW = {F ∈ E(H) | colopt(F) = {W}} be the multiset of monochromatic
hyperedges of E(H) coloured all white with respect to colopt. Moreover let E0 ⊆ EW

be any spanning forest of the hypergraph (V (H), EW). Here and later, by a spanning
forest of a hypergraph we mean a subhypergraph on the same vertex set which has the
same connected components (treated as subsets of vertices), while the set of hyperedges
is inclusion-wise minimal subject to the first condition. By (3) we have |E0| ≤ q. Let
E1 ⊆ E(H) be the set of hyperedges which are bichromatic with respect to colopt.
Note that by the connectivity property together with (2) we have |E1| ≤ k.

We call an assignment p : E(H)→ {0, . . . , `} good , with respect to colopt, if:

1Actually our algorithm after a minor modification computes all the values wµ at once, however
for the sake of simplicity we focus on a single value of µ, at the cost of higher polynomial factor.

17

• for each F ∈ E1 we have p(F) > 0 and colopt|F = colF,p(F),
• for each F ∈ E0 we have p(F) = 0.

Let F be a family constructed by the algorithm of Lemma 25 for the universe
E(H) and integers k, q in time 2O(min(q,k)·log(q+k)) · |E(H)|O(1) = qO(k) · |E(H)|O(1);
the last equality holds due to q ≥ k. By the properties of F there exists S0 ∈ F such
that E1 ⊆ S0 and E0 ∩ S0 = ∅. We iterate through all possible S ∈ F; in one of the
cases we have S = S0.

In the second level of derandomization we use the standard notion of perfect families.
An (N, r)-perfect family is a family of functions from {1, 2, . . . , N} to {1, 2, . . . , r}, such
that for any subset X ⊆ {1, 2, . . . , N} of size r, one of the functions in the family is
injective on X. Naor et al. [27] gave an explicit construction of an (N, r)-perfect family
of size errO(log r) logN using errO(log r)N logN time. We construct a (|S|, k)-perfect
family D of size 2O(k) log |S|. Assuming that we consider the case when S = S0, there
exists a function δ0 ∈ D, δ0 : S0 → {1, . . . , k}, such that δ0 is injective on E1. We
iterate through all possible functions δ ∈ D; provided that S = S0, in one case we
have δ = δ0.

Finally, we guess, by trying all `O(k) = dO(k2) possibilities, a function δ′ : {1, . . . , k} →
{1, . . . , `}. In the case where S = S0 and δ = δ0, for at least one such δ′ we have
that δ′(δ0(F)) = i holds for each F ∈ E1, where colopt|F = colF,i. Consequently, if we
define p : E(H)→ {0, . . . , `} by

p(F) =

{
0 if F /∈ S;

δ′(δ(F)) otherwise,

then in one of the qO(k)·dO(k2)·|E(H)|O(1) cases we will end up having a good assignment
p in hand. The algorithm runs through all possible guesses of the assignment p and
performs the same computations, yielding a candidate for wµ per each guess of p. The
smallest among the candidates is then reported as the final value of wµ. As usual, at
the end of the proof we will argue that not good guesses lead to candidate values not
smaller than wµ, whereas in the good guess we obtain the exact value wµ. Thus, the
returned value will be equal to wµ.

For an assignment p : E(H) → {0, . . . , `} define an auxiliary undirected simple
graph Lp, with a vertex set V (Lp) = V (H). For each hyperedge F ∈ E(H) such that
p(F) = 0 make F a clique in Lp. For each hyperedge F ∈ E(H) such that p(F) = i > 0
make the sets col−1F,i(B), col−1F,i(W) cliques in Lp.

Claim 28. If p is a good assignment, then all the vertices contained in the same
connected component of Lp are coloured with the same colour in colopt.

Proof. Follows directly from the assumption that p is a good assignment and from
the definition of the graph Lp.

Claim 29. Let p be a good assignment. If D is a connected component of Lp
coloured white by colopt, then each hyperedge F ∈ E(H) such that F ∩ D 6= ∅ and
F \D 6= ∅, belongs to E1.

Proof. Assume that F /∈ E1, that is, F is monochromatic in colopt. As F ∩D 6= ∅,
colopt needs to colour all elements of F white, and F ∈ EW. However, since E0 is a
spanning forest of the hypergraph (V (H), EW) and p is a good assignment, all the
elements of F are contained in the same connected component of Lp, and consequently
F ⊆ D.

Let us fix an assignment p; the reader may think of it as an assignment that is

18

intended to be good, but we would also like to reason about it without such supposition.
We exhaustively apply to p the following two cleaning operations; note that we modify
also the graph Lp along with p. Here, we always prefer application of the first operation
to the second; that is, the second is applied only if the first is inapplicable.
(1) If there exists a hyperedge F ∈ E(H) such that F ⊆ D for some connected

component D of Lp and p(F) > 0, then set p(F) = 0.
(2) If there exist a connected component D of Lp and hyperedges F1, F2 (possibly

F1 = F2) such that F1 ∩ D 6= ∅, F2 ∩ D 6= ∅, p(F1) > 0, p(F2) > 0, and
colF1,p(F1)(v1) = W while colF2,p(F2)(v2) = B for some v1, v2 ∈ D (possibly
v1 = v2), then put p(F1) = 0. This is because the guess on colF1,p(F1) is clearly
incorrect.

As in each round the number of hyperedges of E(H) assigned zeros is strictly increasing,
the process finishes in polynomial time. Let us check that the cleaning operations do
not spoil a good assignment.

Claim 30. Provided p is a good assignment, after the application of each cleaning
operation p remains a good assignment.

Proof. Suppose first the first cleaning operation is applied, say to a hyperedge F
and a component D. By Claim 28, all the vertices in D are coloured with the same
colour by colopt, hence in particular all the vertices of F are coloured with the same
colour in colopt and definitely F 6∈ E1. Hence it is safe to set p(F) = 0.

Suppose now the second cleaning operation is applied, say to a component D and
hyperedge F1 and this is witnessed by a hyperedge F2 and vertices v1, v2 ∈ D as in the
formulation of the operation. Since the first cleaning operation could not be applied to
F1 and F2, we have F1 \D 6= ∅ and F2 \D 6= ∅. Recall that colF1,p(F1)(v1) = W and
colF2,p(F1)(v2) = B. We want to show that F1 is monochromatic in colopt. Assume
the contrary, i.e., F1 ∈ E1. Since p was a good assignment (before the operation) we
have colopt|F1 = colF1,p(F1), which together with Claim 28 and colF1,p(F1)(v1) = W
implies that all the vertices of D are coloured white by colopt. However by Claim 29
this means that F2 ∈ E1, and as p is a good assignment this means that colopt colours
all the vertices of D black, a contradiction.

Having applied the cleaning steps exhaustively, we proceed with further analysis.
We call a connected component D of Lp a black component if there exists a hyperedge
F ∈ E(H), such that p(F) = i > 0 and col−1F,i(B) ∩ D 6= ∅. Otherwise we call D a
potentially white component. The next two claims show that these names are in fact
meaningful.

Claim 31. If p is a good assignment, then for any black connected component D
of Lp, colopt colours all vertices of D black.

Proof. Let F be a hyperedge witnessing that D is a black component. Note
that F 6⊆ D, as otherwise the first cleaning operation would be applicable to F . By
Claim 28, colopt colours all vertices of D in the same colour. If this colour is white,
then, by Claim 29, F ∈ E1, and, as p is a good assignment, colF,p(F) = colopt|F .
However, this contradicts the assumption that colF,p(F) colours some vertex of D black,
and, consequently, colopt colours D black.

Claim 32. Suppose p is a good assignment. Let D be a potentially white component
of Lp and let ED ⊆ E(H) be the subset of hyperedges with non-empty intersection
with D. Exactly one of the following conditions holds:

• colopt colours all vertices of D white, and for each hyperedge F ∈ ED either
– F 6⊆ D, p(F) > 0, F ∈ E1, colopt|F = colF,p(F), or

19

– F ⊆ D, p(F) = 0 and colopt colours all vertices of F white;
• colopt colours D and each each hyperedge of ED entirely black.

Proof. Let E′ ⊆ ED be the subset of hyperedges of ED which are not fully
contained in D. By Claim 28, colopt colours D monochromatically.

Assume first that colopt colours all vertices of D white, and consider F ∈ ED.
If F ⊆ D then p(F) = 0 by the application of the first cleaning operation, and
F ∈ EW. If F 6⊆ D then, by Claim 29, F ∈ E1. Since p is good, p(F) > 0 and
colopt|F = colF,p(F).

We are left with the case when colopt colours all vertices of D black. Consider
F ∈ ED. If p(F) = 0 then the assumption that p is good implies that colopt colours
F monochromatically; as F ∩D 6= ∅, the hyperedge F is coloured black by colopt. If
p(F) = i > 0 then, since D is potentially white, colF,i(v) = W 6= colopt(v) for any
v ∈ F ∩D. Consequently, colopt|F 6= colF,i and, since p is good, F /∈ E1. Therefore
colopt colours F monochromatically, and, since F ∩D 6= ∅, it colours F black.

Let Eblack be the set of all hyperedges of E(H) contained in black components of
Lp. The following claim states that we may consider sets Eblack and ED for different
potentially white components D independently.

Claim 33. Every hyperedge F ∈ E(H) belongs to exactly one of the sets: to Eblack
or to one of the sets ED for potentially white connected components D of Lp.

Proof. Assume first that F ⊆ D for some connected component D of Lp. Then
either D is black and F ∈ Eblack, or D is potentially white and F ∈ ED.

Assume now that F is not entirely contained in any connected component of Lp.
By the construction of Lp, we have that p(F) = i > 0 and F intersects exactly
two different components D1, D2 of Lp, such that w.l.o.g. col−1F,i(W) = D1 ∩ F and

col−1F,i(B) = D2 ∩ F . To prove the claim it suffices to show that (a) D1 is potentially
white, and (b) D2 is black, as then F will belong only to ED1

among the sets present
in the statement of the claim. For (a), observe that otherwise the second cleaning
operation would set p(F) = 0, and (b) follows from the definition of being black.

Armed with Claims 31, 32 and 33, we proceed to presenting the algorithm. First,
we need to include the constraints imposed by the colouring col0. To this end, for any
hyperedge F , 0 ≤ µ ≤ b, and any colouring col : F → {B,W} we set

f̂F (col, µ) =

{
∞ if ∃v∈F col(v) 6= col0(v)

fF (col, µ) otherwise.

That is, we set the cost of colouring F with col as ∞ whenever col conflicts with col0
on some vertex.

Now we handle hyperedges contained entirely in black components. For a hyperedge
F ∈ Eblack let f̂ blackF : {0, . . . , b} → {0, 1, . . . , k,∞} be the function

f̂ blackF (µ) = f̂F ({B}F , µ) .

Let t : {0, . . . , b} → {0, 1, . . . , k,∞} be a function such that t(0) = 0 and t(µ) =∞
for µ > 0. For each hyperedge F ∈ Eblack we update the function t by setting
t := t⊕ f̂ blackF . It remains to process all the hyperedges of E(H) \ Eblack.

Consider all the potentially white components D of Lp one by one. Let t1, t2 :
{0, . . . , b} → {0, 1, . . . , k,∞} be functions such that t1(0) = t2(0) = 0 and t1(µ) =
t2(µ) =∞ for µ > 0. We want to make t1 represent the case when all the hyperedges

20

of ED are black, while t2 is to represent the other case of Claim 32. First, for each
hyperedge F ∈ ED set t1 := t1 ⊕ f̂F ({B}F , ·). Moreover, for each hyperedge F ∈ ED
such that p(F) = 0 do t2 := t2 ⊕ f̂F ({W}F , ·), while for each hyperedge F ∈ ED such

that p(F) > 0 set t2 := t2 ⊕ f̂F (colF,p(F), ·). Finally make the update

t := t⊕min(t1, t2) .

This concludes the procedure computing t.
From the way we compute t it easily follows that for each 0 ≤ µ ≤ b, the value

t(µ) is equal to one of the candidate costs considered in the minimum in the definition
of Hypergraph Painting, unless it is equal to ∞. Precisely, we have the following
claim; note that it holds also when p is not necessarily good.

Claim 34. For each 0 ≤ µ ≤ b, there is a colouring col : V (H) → {B,W} and
nonnegative integers (aF)F∈E(H) such that∑

F∈E(H)

aF = µ and t(µ) =
∑

F∈E(H)

f̂F (col|F , aF).

Proof. By the way we construct t via min-plus convolutions, it follows that for
each hyperedge F we can choose a colouring colF : F → {B,W} and a nonnegative
integer aF such that∑

F∈E(H)

aF = µ and t(µ) =
∑

F∈E(H)

f̂F (colF , aF).

Also, the definition of functions taken into the convolution imply that each colouring
colF must satisfy the following:

• If F ∈ Eblack then colF = {B}F .
• If F ∈ ED for some potentially white component D of Lp, then either (a)

colF = {B}F , or (b) if p(F) = 0 then colF = {W}F and if p(F) > 0 then
colF = colF,p(F).

Further, for every potentially white component D either option (a) holds simultaneously
for all hyperedges of ED, or option (b) holds simultaneously for all of them. Note that,
by Claim 33, the cases described above are exclusive and cover all the hyperedges.

We now claim that the colourings colF for F ∈ E(H) are pairwise compatible, i.e.,
no vertex of V (H) is colored white in the coloring of one hyperedge and black in the
coloring of another. Note that this will conclude the proof, as then taking the union of
colourings (colF)F∈E(H) and extending it in any way to vertices not contained in any

hyperedge yields a colouring col : V (H) → {B,W} such that colF = col|F for each
F ∈ E(H). It follows that this colouring satisfies the statement of the claim.

For the sake of contradiction, suppose there is a vertex u ∈ V (H) and two
hyperedges F1, F2, both containing u, such that colF1(u) = W and colF2(u) = B.
Then F1 belongs to ED for some potentially white component D of Lp.

Suppose first that p(F1) = 0. Then F1 is a clique in Lp, hence all the vertices

of F1, in particular u, belong to D. This implies that F2 ∈ ED. Since colF1 colors u
white, the colourings for hyperedges of ED are all chosen according to the option (b)
above. This in particular applies to F2, so since colF2 colors u black, we have that
p(F2) > 0 and colF2 = colF2,p(F2). As colF2,p(F2)(u) = B, the hyperedge F2 witnesses
that D is a black component, contrary to the assumption that it is potentially white.

Suppose now that p(F1) > 0. Since colF1 colors u white, it follows that the
colourings for hyperedges of ED are all chosen according to the option (b) above, and

21

in particular colF1 = colF1,p(F1). In the definition of Lp we have made col−1F1,p(F1)
(W)

and col−1F1,p(F1)
(B) into two cliques that form a partition of F1. Each of these cliques

is either entirely contained in D or entirely disjoint from D, and at least one of
them must be contained in D, because F1 ∈ ED. However, if col−1F1,p(F1)

(B) was
nonempty and contained in D, then F1 would witness that D should be a black
component, contradicting the assumption that it is potentially white. Therefore,
colF1,p(F1) colours F1 ∩D entirely white and F1 \D entirely black, and in particular

u ∈ col−1F1,p(F1)
(W) ⊆ D. Since u ∈ F2, we infer that F2 ∈ ED, so in particular F2

is coloured according to the option (b) above. If we had p(F2) > 0, then F2 would
witness that D should be a black component, contradicting the assumption that it is
potentially white. Otherwise p(F2) = 0 and, according to (b) above, colF2 colours F2

entirely white, a contradiction with colF2(u) = B.

The procedure for computing t that we described above is applied for all the
considered guesses of p, and the value of t(µ) is recorded as a candidate for wµ. Recall
that at the beginning we have assumed that |col−1opt(W)| ≤ q, while there is also the

symmetric case |col−1opt(B)| ≤ q. Therefore, in addition we execute the same algorithm
with the roles of colours swapped, yielding a second family of candidates for wµ.
Finally, we claim that the smallest among the obtained candidates is equal to wµ.
This easily follows from Claims 31, 32, 33, and 34, as explained next.

On one hand, by Claim 34, t(µ) is equal to
∑
F∈E(H) f̂F (col|F , aF) for some

colouring col and nonnegative integers (aF)F∈E(H) that sum up to µ. This cost is ∞
if col does not extend col0, and otherwise it is equal to

∑
F∈E(H) fF (col|F , aF), which

matches the definition of the Hypergraph Painting problem. Since wµ is defined
to be the minimum among all such costs, we infer that each value t(µ) taken as the
candidate for wµ is actually not smaller than wµ, and hence we never report a value
smaller than wµ.

On the other hand, by symmetry suppose that indeed |col−1opt(W)| ≤ q, and
consider the guess when p is good. Then, from Claims 31, 32, and 33 it follows that
some computation path of the presented dynamic programming, that is, a sequence of
choices whether to take the colouring corresponding to t1 or t2 in consecutive steps,
leads to the discovery of colopt. Hence the candidate value found for a good p cannot
be larger than wµ. We conclude that the value reported by the algorithm is neither
larger nor smaller than wµ, so it is equal to wµ.

4.2. Dynamic programming. In this section we show that by constructing a
tree decomposition from Theorem 10 and invoking the algorithm of Lemma 27 one
can solve the Minimum Bisection problem in O?(2O(k3)) time, proving Theorem 1.

Proof of Theorem 1. First note that, without loss of generality, we may focus
on the following variant: the input graph G is required to be connected, and our
goal is to partition V (G) into parts A and B of prescribed size minimizing |E(A,B)|.
The algorithm for the classic Minimum Bisection problem follows from a standard
knapsack-type dynamic programming on connected components of the input graph.

As the input graph is connected, we may use Theorem 10. Let (T, β) be a tree

decomposition constructed by the algorithm of Theorem 10 in O?(2O(k2)) time.
As is usual for tree decompositions, we will use a dynamic programming approach.

For a node t ∈ V (T) of the tree decomposition, an integer µ, 0 ≤ µ ≤ n, and a
colouring col0 : σ(t)→ {B,W} satisfying

min(|col−10 (B)|, |col−10 (W)|) ≤ 3k ,(4)

22

we consider a variable xt,col0,µ.
The variable xt,col0,µ equals the minimum cardinality of a set Z ⊆ E(G[γ(t)]),

such that there exists a colouring col : γ(t)→ {B,W}, where col|σ(t) = col0, no edge
of E(G[γ(t)]) \ Z is incident to two vertices of different colours in col, and the total
number of white vertices equals µ, i.e. |col−1(W)| = µ. Additionally if it is impossible
to find such a colouring col, or the number of edges one needs to include in Z is greater
than k, then we define xt,col0,µ =∞. The fact that we require col0 to satisfy inequality
(4), and we do not browse through all possible colourings col0 of σ(t), will be used to
optimize the running time.

As Theorem 10 upper bounds the cardinality of σ(t) by 2O(k) and of V (T) by n,

the total number of values xt,col0,µ we want to compute is 2O(k2)n2. Note that having
all those values is enough to solve the considered variant of the Minimum Bisection
problem as the minimum possible size of the cut E(A,B) equals xr,∅,a, where r is
the root of (T, β), ∅ plays the role of the single colouring of σ(r) = ∅ and a is the
prescribed size of one part of the partition we are looking for. The value xr,∅,a attains
∞ if any feasible cut E(A,B) is of size larger than k. We will compute the values xt,·,·
in a bottom-up manner, that is our computation is performed for a node t ∈ V (T)
only after all the values xt′,·,· for t′ ≺ t have been already computed.

Consider a fixed t ∈ V (T) and a colouring col0 : σ(t)→ {B,W} satisfying (4). In
what follows we show how to find all the values xt,col0,· by solving a single q-proper
instance of the Hypergraph Painting problem, for an appropriate q. Create an
auxiliary hypergraph H, with a vertex set V (H) = β(t) and the following set of
hyperedges; in the following we use Iverson notation, i.e., [ϕ] is equal to 1 if the
condition ϕ is true and 0 otherwise.
(a) For each vertex v ∈ β(t) add to H a hyperedge F = {v}, and define a function

fF : {B,W}F × {0, . . . , n} → {0, 1, . . . , k,∞}

fF (colF , µ) =

{
0 if µ = [colF (v) = W],

∞ otherwise.

We introduce those hyperedges in order to keep track of the number of white
vertices in β(t).

(b) For each edge uv ∈ E(G[β(t)]) add to H a hyperedge F = {u, v}, and define a
function fF : {B,W}F × {0, . . . , n} → {0, 1, . . . , k,∞}

fF (colF , µ) =

{
[colF (u) 6= colF (v)] if µ = 0,

∞ otherwise.

We introduce those hyperedges in order to keep track of the number of edges with
endpoints of different colours in G[β(t)].

(c) For each t′ ∈ V (T) which is a child of t in the tree decomposition add to H
a hyperedge F = σ(t′), and define a function fF : {B,W}F × {0, . . . , n} →
{0, 1, . . . , k,∞} as follows

fF (colF , µ) =


∞ if min(|col−1F (B)|, |col−1F (W)|) > 3k,

∞ if xt′,colF ,µ+µ0
=∞,

xt′,colF ,µ+µ0
− x0 otherwise,

where µ0 = |col−1F (W)|, and x0 = |{uv ∈ E(G[σ(t′)]) : colF (u) 6= colF (v)}|. Less
formally, we are shifting the values by x0 and µ0 in order not to overcount white

23

vertices of σ(t′) and edges of G[σ(t′)] having endpoints of different colours in colF ,
as a vertex of σ(t′) might appear in several bags, and similarly an edge of G[σ(t′)]
may have both endpoints in several bags being children of t′.

Note that each of the hyperedges of H is of size at most η (by Theorem 10, or more
precisely the technical statement of Theorem 24), hence

I = (k, n, η,H, col0, (fF)F∈E(H))

is an instance of the Hypergraph Painting problem. In the following, we will refer
to the hyperedges of H introduced in consecutive points above as to hyperedges of
type (a), (b), and (c), respectively.

Claim 35. Let (wµ)0≤µ≤n be the solution for the instance I of the Hypergraph
Painting problem. Then for any 0 ≤ µ ≤ n we have xt,col0,µ = wµ.

Moreover for any colouring col : β(t) → {B,W} witnessing wµ ≤ k there is
an extension col′ : γ(t) → {B,W}, such that col′|β(t) = col, and the number of
bichromatic edges of G[γ(t)] with respect to col′ equals wµ.

Proof. Fix an arbitrary 0 ≤ µ ≤ n. First, we show that xt,col0,µ ≥ wµ. Note that
the inequality holds trivially for xt,col0,µ =∞, hence let us assume xt,col0,µ ≤ k and
let col : γ(t)→ {B,W} be a colouring such that

• col|σ(t) = col0,
• |Z| ≤ k, where Z = {uv ∈ E(G[γ(t)]) | col(u) 6= col(v)},
• |col−1(W)| = µ.

Recall that Theorem 10 ensures that for any child t′ of t in the tree decomposition the
adhesion σ(t′) is (2k, k)-unbreakable in G[γ(t)]. Therefore,

min(|col−1(B) ∩ σ(t′)|, |col−1(W) ∩ σ(t′)|) ≤ 3k ,

as otherwise (X = NG[γ(t)][col−1(B)], Y = col−1(W)) would be a separation of G[γ(t)]
of order at most k with |(X \ Y) ∩ σ(t′)|, |(Y \X) ∩ σ(t′)| > 2k, contradicting the fact
that σ(t′) is (2k, k)-unbreakable in G[γ(t)]. Consequently, the values xt′,col|σ(t′),· are

well-defined, i.e., col|σ(t′) satisfies (4). Furthermore, observe that

xt′,col|σ(t′),|col−1(W)∩γ(t′)| ≤ |Z ∩ E(G[γ(t′)])|,(5)

which is witnessed by the colouring col|γ(t′). For the hyperedge F ∈ E(H) of type (c)

that corresponds to t′, we define aF = |col−1(W) ∩ (γ(t′) \ σ(t′))|. For hyperedges
F ∈ E(H) of type (b), we simply set aF = 0. Finally, for hyperedges F ∈ E(H)
of type (a), say F = {v} for some vertex v, we put aF = [col(v) = W]. In other
words, aF is equal to 0 if v is black under col, and 1 if v is white under col. From the
definition of (aF)F∈E(H) it readily follows that

∑
F∈E(H) aF = |col−1(W)| = µ. This

is because every vertex v ∈ γ(t) coloured white under col contributes 1 to exactly one
summand aF : if v ∈ β(t) then v contributes to a{v} for the unique type-(a) hyperedge
{v}, and if v ∈ γ(t′) \ σ(t′) for some child t′ of t, then v contributes to aF , where F is
the hyperedge of type (c) corresponding to t′.

Next, we verify that col|β(t) and (aF)F∈E(H) certify that xt,col0,µ ≥ wµ. For this,
we split the contributions of hyperedges of E(H) to the sum

∑
F∈E(H) fF (col|F , aF)

into three summands, according to the types of hyperedges of E(H). The hyperedges
of type (a) do not contribute to the sum at all. The hyperedges of type (b) contribute
exactly |Z ∩ E(G[β(t)])|, while the hyperedges of type (c) contribute exactly∑

t′

xt′,col|σ(t′),aF+|col−1(W)∩σ(t′)| − |Z ∩ E(G[σ(t′)])|,

24

which is not larger than∑
t′

|Z ∩ (E(G[γ(t′)]) \ E(G[σ(t′)]))|;

here, the sum is over all children t′ of t and the inequality follows from (5). This
means that each hyperedge of Z is counted exactly once, so the total contribution is
at most |Z| = xt,col0,µ.

In the other direction, we want to show xt,col0,µ ≤ wµ. As in the previous
case, for wµ = ∞ the inequality holds trivially. Hence, we assume wµ ≤ k. Let
col : β(t) → {B,W} be a colouring and

∑
F∈E(H) aF be a partition of µ that, in

conjunction, witness the value of wµ, i.e., they satisfy
• col|σ(t) = col0,
•
∑
F∈E(H) aF = µ,

• wµ =
∑
F∈E(H) fF (col|F , aF).

Our goal is to extend the colouring col on γ(t) \ β(t), so that the total number of
white vertices equals µ and the number of bichromatic edges equals wµ. Initially
set col′ = col and consider children t′ of t in the tree decomposition one by one.
Let F = σ(t′) ∈ E(H) be a type (c) hyperedge of H. Since wµ ≤ k, we have
fF (col|F , aF) ≤ k, and by the definition of fF

fF (col|F , aF) = xt′,col|F ,aF−µ0
− x0 ,

where µ0 = |col−1(W) ∩ σ(t′)|, and x0 = |{uv ∈ E(G[σ(t′)]) : col(u) 6= col(v)}|. Let
colF : γ(t′) → {B,W} be the colouring witnessing the value xt′,col|F ,aF−µ0

. Note
that colF is consistent with col on F = σ(t′), so we can update col′ by setting
col′ = col′ ∪ colF .

Observe that the hyperedges of E(H) of type (a) together with shifting by µ0

ensure that col′ colours exactly µ vertices white. Finally, the hyperedges of E(H)
of type (b) together with shifting by x0 ensure that col′ has exactly wµ bichromatic
edges, which shows xt,col0,µ ≤ wµ. As col′|β(t) = col the last part of the claim follows
as well.

The previous claim shows that solving the Hypergraph Painting instance I
is enough to find the values xt,col0,·, however in the previous section we have only
shown how to solve q-proper instances of Hypergraph Painting, for bounded q.
Therefore, we show that there is a small enough value of q, such that I becomes a
q-proper instance.

Claim 36. There is some q with q = 2O(k) and q ≥ k, such that I is a q-proper
instance of the Hypergraph Painting problem.

Proof. For the hyperedges F ∈ E(H) of size at most two the local unbreakability
property is trivially satisfied, while for all the other hyperedges F = σ(t′) local
unbreakability follows directly from the definition of fF .

By Theorem 10 each G[γ(t′)] \ σ(t′) is connected and N(γ(t′) \ σ(t′)) = σ(t′),
which means that the graph G[γ(t′)] \ E(G[σ(t′)]) is connected, and consequently
xt′,colF ,· > 0 for any colouring colF which uses both colours (as we need to remove at
least one edge). This proves the connectivity property.

Recall, that by Theorem 10 the set β(t) is (τ ′, k)-unbreakable in G[γ(t)] for some
τ ′ = 2O(k). Let q = τ ′ + k and let (wµ)0≤µ≤n be a solution for the instance I of
the Hypergraph Painting problem. Consider an arbitrary 0 ≤ µ ≤ n such that
wµ ≤ k. We want to show, that there exists a witnessing colouring col : β(t) →

25

{B,W} certifying the global unbreakability. In fact we will show that any colouring
col : β(t)→ {B,W} witnessing wµ satisfies

min(|col−1(B)|, |col−1(W)|) ≤ q = τ ′ + k .

By Claim 352 there is an extension col′ of col, having wµ ≤ k bichromatic edges of
G[γ(t)]. Note that (X = NG[γ(t)][col′−1(B)], Y = col′−1(W)) is a separation of G[γ(t)]
of order at most k, hence by (τ ′, k)-unbreakability of β(t) we have

min(|(X \ Y) ∩ β(t)|, |(Y \X) ∩ β(t)|) ≤ τ ′ .

However |col−1(B)| ≤ |(X \ Y) ∩ β(t)| + k and |col−1(W)| ≤ |(Y \ X) ∩ β(t)| + k,
which implies

min(|col−1(B)|, |col−1(W)|) ≤ k + τ ′ = q ,

proving the global unbreakability property.

By Claim 36 we can use Lemma 27 and in qO(k) · ηO(k2) · |I|O(1) = O?(2O(k3))
time compute the values wµ for each 0 ≤ µ ≤ n. At the same time Claim 35 shows
that xt,col0,µ = wµ for each 0 ≤ µ ≤ n. Since the number of nodes of T is at most n

and the number of colourings obeying (4) is 2O(k2) the whole dynamic programming

routine takes O?(2O(k3)) time. Consequently Theorem 1 follows, apart from the precise
dependency on the size of G in the running time. We discuss how to make this
dependency as low as O(n3 log3 n) in the next section.

4.3. Dependency on the size of G in the running time. Here we argue
about the factors polynomial in the size of G in the running time of the algorithm.

We first note that we may assume that m = |E(G)| = O(kn), by applying the
sparsification technique of Nagamochi and Ibaraki [26].

Lemma 37 ([26]). Given an undirected graph G and an integer k, in O(k(|V (G)|+
|E(G)|)) time we can obtain a set of edges E0 ⊆ E(G) of size at most (k+1)(|V (G)|−1),
such that for any edge uv ∈ E(G) \E0 in the graph (V (G), E0) there are at least k + 1
edge-disjoint paths between u and v.

Proof. The algorithm performs exactly k + 1 iterations. In each iteration it finds
a spanning forest F of the graph G, adds all the edges of F to E0 and removes all the
edges of F from the graph G.

Observe that for any edge uv remaining in the graph G, the vertices u and v are
in the same connected components in each of the forests found. Hence in each of those
forests we can find a path between u and v; thus, we obtain k + 1 edge-disjoint paths
between u and v.

The above lemma allows us to sparsify the graph, so that it contains O(kn) edges,
and any edge cut of size at most k remains in the graph, while any edge cut with
at least k + 1 edges after sparsification still has at least k + 1 edges. Therefore
applying Lemma 37 gives us an equivalent instance (V (G), E0) and consequently the

construction of the decomposition takes 2O(k2)n3 time.
There are at most n bags of the decomposition, which adds a O(n) factor to the

running time. In each bag t, we consider ηO(k) colourings of the adhesion σ(t); hence,
there are ηO(k)n calls to the procedure solving Hypergraph Painting.

In each call, we have V (H) = β(t) and |E(H)| = O(n+m) = O(kn), as we have a
hyperedge for each vertex and edge of β(t) as well as a hyperedge for each child of t in

2Note that to use Claim 35 we do not require that I is proper.

26

the decomposition. The hypergraph H is stored in a standard way: for each hyperedge
we store a list of its members, and for each vertex we store a list of hyperedges in
which it participates. As discussed in Section 4.1, each function f can be represented
by giving ηO(k)n values different than ∞.

Note that we do not need to perform the entire algorithm for Hypergraph
Painting for each value of µ independently. Instead, we may perform it only once,
and return wµ to be the minimum t(µ) among all branches of the algorithm.

By Lemma 25 and the construction of perfect families of [27], there are 2O(k3) log2 n

choices of the assignment p, and they can be enumerated in 2O(k3)n log2 n time. More
precisely, by Lemma 25 we can enumerate the splitter F in time 2O(k3)|E(H)| log |E(H)| ≤
2O(k3)n log n. This splitter has at most 2O(k3) log n elements. For each element S
of the splitter F, we enumerate an (|S|, k)-perfect family in time 2O(k)|S| log |S| ≤
2O(k)n log n, and this perfect family has 2O(k) log n members. Thus, we enumerate at
most 2O(k3) log2 n assignments p in time 2O(k3)n log2 n.

For each assignment p, we need to perform the two cleaning operations exhaustively.
To speed them up, instead of maintaining the entire graph Lp, we keep only its
connected components: each vertex of H knows its connected component, and the
connected component knows its size and its vertices. In this manner, by enumerating
the smaller component, we can merge two connected components in amortized O(log n)
time, as each vertex changes the connected components it belongs to O(log n) times.
Consequently we may initiate the graph Lp in O(ηkn+ n log n) time, as we have to
iterate over O(kn) hyperedges of size η each, and the total time needed to merge
connected components is O(n log n).

To apply the operations, we maintain the following auxiliary information. Each
hyperedge F stores the set of the connected components of Lp it intersects (note that
this set is of size at most 2). Once this set changes its cardinality from 2 to 1, the
first operation starts to be applicable on F . As each vertex changes its connected
component O(log n) times, each list is updated at most O(log n) times, which gives
O(kn log n) time in total.

For the second operation, we need to maintain, for each connected component D
of Lp, a list T (D,B) of hyperedges F such that F ∩D 6= ∅, F \D 6= ∅, p(F) > 0 and
colF,p(F)(v) = B for some v ∈ F ∩D; analogously we define a list T (D,W). Once
both lists are non-empty, the second operation is applicable. As each hyperedge is of
size at most η, all lists can be recomputed in O(ηkn) time, whenever the set of the
connected components of the graph Lp changes: each hyperedge F inserts itself into
at most 2 lists.

We infer that the operations can be exhaustively applied in 2O(k)n2 time for a
fixed assignment p. Also, including the constraints imposed by the colouring col0, i.e.,
obtaining the functions f̂F (col, µ), can be done in 2O(k2)n2 time.

We now move to the analysis of the final knapsack-type dynamic programming
routine. We first show that the ⊕ operation can be performed using O(k2) applications
of the Fast Fourier Transform, taking total time O(k2b log b), instead of the naive O(b2)
time bound. Consider two functions t1, t2 ∈ {0, . . . , b} → {0, . . . , k,∞}. For i ∈ {1, 2}
and 0 ≤ j ≤ k by pi,j we define the polynomial

pi,j(x) =
∑

0≤µ≤b

[ti(µ) = j]xµ .

Note that if (t1⊕ t2)(µ) 6=∞, then (t1⊕ t2)(µ) is equal to the smallest j, such that for
some partition j = j1 + j2 the coefficient in front of the monomial xµ in the polynomial

27

p1,j1 · p2,j2 is non-zero. Therefore we can compute t1 ⊕ t2 in O(k2b log b) time. There
are O(1) such operations per each hyperedge of E(H). Consequently, the final dynamic
programming algorithm takes 2O(k)n2 log n time.

Concluding, the total running time is 2O(k3)n3 log3 n, as promised in Theorem 1.

5. Weighted variant. In this section we sketch how using our approach one
can solve the following weighted variant of the Minimum Bisection problem:

Theorem 38. Given a graph G with edge weights w : E(G)→ R and an integer

k, one can in O?(2O(k3)) time find a partition of V (G) into sets A and B minimizing∑
e∈E(A,B) w(e) subject to ||A| − |B|| ≤ 1 and |E(A,B)| ≤ k, or correctly state that

such a partition does not exist.

Proof sketch. Essentially, we follow the same approach as in the previous section,
except that in all dynamic programming tables we need to add an additional dimension
to control the size of the constructed cut E(A,B), and store the weight of the cut as
the value of the entry in the DP table.

In some more details, for a fixed bag t, a colouring col0 : σ(t) → {B,W} satis-
fying (4), and integers 0 ≤ µ ≤ n and 0 ≤ ξ ≤ k we consider a variable xt,col0,µ,ξ ∈
R ∪ {+∞} that equals the minimum possible value of

∑
e∈E(col−1(B),col−1(W)) w(e)

among colourings col : γ(t)→ {B,W} satisfying:
• col|σ(t) = col0,

• |col−1(W)| = µ, and
• |E(col−1(B), col−1(W))| = ξ.

The value +∞ is attained if no such colouring exists.
Analogously, we modify the Hypergraph Painting problem to match the

aforementioned definition of the values xt,col0,µ,ξ. That is, it takes as an input functions
fF : {B,W}F × {0, . . . , b} × {0, . . . , k} → R ∪ {+∞}, where we require value +∞ for
any colouring that violates the local unbreakability constraint. For each 0 ≤ µ ≤ b
and 0 ≤ ξ ≤ k we seek for a value wµ,ξ ∈ R ∪ {+∞} defined as a minimum, among all
colourings col extending col0, and all possible sequences (aF)F∈E(H) and (bF)F∈E(H)

such that
∑
F aF = µ and

∑
F bF = ξ, of∑
F∈E(H)

fF (col|F , aF , bF).

The knapsack-type dynamic programming of Section 4.1 is adjusted in a natural
way, and the remaining reasoning of Section 4.1 remains unaffected by the weights.
Consequently, the adjusted Hypergraph Painting problem can be solved in time
O?(qO(k) · dO(k2)).

It is straightforward to check that the adjusted Hypergraph Painting problem
corresponds again to the task of handling one bag in the tree decomposition of
the input graph. To finish the proof note that the value we are looking for equals
min0≤ξ≤k xr,∅,bn/2c,ξ, where r is the root of the tree decomposition.

6. α-edge-separators. In this section we argue that the algorithm of Section 4
can be extended to show the following:

Theorem 39. Given an n-vertex graph G, a real α ∈ (0, 1) and an integer k, one

can in 2O(k3)nO(1/α) time decide whether there exists a set X of at most k edges of G
such that each connected component of G \X has at most αn vertices.

To prove Theorem 39, we need the following lemma. A slight variation of this
lemma appeared as problem C1 on the shortlist of the 54th International Mathematical

28

Olympiad, IMO 2013 [30].

Lemma 40. Let α ∈ (0, 1) be a real constant and let a1, a2, . . . , an ∈ [0, α] be reals
such that

∑n
`=1 a` = 1. Then one can partition numbers a1, a2, . . . , an into 2

⌈
1
α

⌉
− 1

groups (possibly empty), such that the sum of numbers in each group is at most α.

Proof. Let q = d 1αe. For ` = 0, 1, . . . , n, let b` =
∑`
i=1 ai. For j = 1, 2, . . . , q − 1,

let ij be the unique index such that bij−1 ≤ j · α and bij > j · α. Let us denote also
i0 = 0 and iq = n + 1; then also bi0 ≥ 0 · α and biq−1 ≤ q · α. Define the following
groups:

{ {a1, a2, . . . , ai1−1},
{ai1},

{ai1+1, ai1+2, . . . , ai2−1},
{ai2},
. . .

{aiq−2+1, aiq−2+2, . . . , aiq−1−1},
{aiq−1},

{aiq−1+1, aiq−1+2, . . . , an} }.

For every group of form {aij+1, aij+2, . . . , aij+1−1} we have that

ij+1−1∑
`=ij+1

a` = bij+1−1 − bij ≤ (j + 1)α− jα = α.

On the other hand, for every group of form {aij} we have that aij ≤ α by the
assumption that aij ∈ [0, α]. Hence, the formed groups satisfy the required properties.

The following corollary is immediately implied by Lemma 40.

Corollary 41. Let α ∈ (0, 1) be a real constant and let H be a graph on n
vertices. Then the following conditions are equivalent:
(a) Each connected component of H has at most αn vertices.
(b) There exists a partition of V (H) into ζ possibly empty sets A1, A2, . . . , Aζ , where

ζ = 2
⌈
1
α

⌉
− 1, such that |Ai| ≤ αn for each i = 1, 2, . . . , ζ and no edge of H

connects two vertices from different parts.

Equipped with Corollary 41, we may now describe how to modify the algorithm of
Section 4 to prove Theorem 39. Most of the modifications are straightforward, hence
we just sketch the consecutive steps.

Proof sketch of Theorem 39. By Corollary 41, we may equivalently seek for a
colouring of V (G) into ζ = 2

⌈
1
α

⌉
− 1 colours, such that at most k edges connect

vertices of different colours. Essentially, we now proceed as in Section 4, but, instead
of colouring vertices into black and white, we use ζ colours, and we keep track of the
number of vertices coloured in each colour.

In some more details, for a fixed bag t, a colouring col0 : σ(t) → {1, . . . , ζ}
satisfying

(6) ∃1≤c≤ζ |col−10 (c)| ≥ |σ(t)| − 3k

and a function µ : {1, . . . , ζ} → {0, . . . , n}, we consider a variable xt,col0,µ taking
value in {0, 1, . . . , k,∞}, which is equal to the minimum possible number of edges

29

with endpoints coloured by different colours by a colouring col, among all colourings
col : γ(t)→ {1, 2, . . . , ζ} satisfying:

• col|σ(t) = col0, and

• for each 1 ≤ c ≤ ζ, |col−1(c)| = µ(c).
The value ∞ is attained if all such colourings yield more than k edges with endpoints
of different colours.

Recall that, for any bag t, the adhesion σ(t) is (2k, k)-unbreakable. Similarly as in
Claim 35, we infer that if in a colouring col : γ(t)→ {1, . . . , ζ} at most k edges have
endpoints painted in different colours, it needs to colour all but at most 3k vertices of
σ(t) with a single colour. This motivates condition (6). Note that this requirement is
only needed to obtain 2poly(k) dependency on k, and, if it is omitted, the dependency
will become doubly-exponential.

We now modify the Hypergraph Painting problem to match the aforementioned
definition of the values xt,col0,µ. That is, the problem takes as an input functions
fF : {1, . . . , ζ}F × {0, . . . , b}ζ → {0, 1, . . . , k,∞}. For each µ : {1, . . . , ζ} → {0, . . . , b}
we seek for a value wµ ∈ {0, 1, . . . , k,∞} defined as a minimum, among all colourings
col : V (H)→ {1, . . . , ζ} extending col0, and all possible sequences (acF)F∈E(H),1≤c≤ζ
such that

∑
F a

c
F = µ(c) for each 1 ≤ c ≤ ζ, of∑

F∈E(H)

fF (col|F , (acF)1≤c≤ζ).

The value of ∞ is attained whenever the sum exceeds k.
In the local unbreakability constraint we require that a value different than ∞ can

be attained only if all but at most 3k elements of F are coloured in a single colour.
This corresponds to the previously discussed condition (6) on valid colourings col0
of an adhesion σ(t). The connectivity requirement states that fF (col, α) is non-zero
whenever col uses at least two colours: the corresponding colouring of the subgraph
γ(t) (as in the proof of Claim 36) needs to colour the endpoints of at least one edge
with different colours, as γ(t) is connected. The global unbreakability constraint
requires that whenever wµ < ∞, there is a witnessing colouring col that colours all
but at most τ ′ + k vertices with a single colour. This follows from the fact that, in
our decomposition, β(t) is (τ ′, k)-unbreakable, so any colouring of γ(t) that colours
endpoints of at most k edges with different colours needs to paint all but at most
τ ′ + k vertices of β(t) with the same colour.

The core spirit of the reasoning of Section 4.1 remains in fact unaffected by
this change. However, for sake of clarity, we now describe the changes in more
details. We apply colour-coding to paint the hyperedges with assignment p : E(H)→
{0, . . . , `}, where p(F) = 0 means “definitely monochromatic” and p(F) = i > 0 means
“monochromatic or coloured according to the colouring colF,i : F → {1, 2, . . . , ζ}”. The
colourings colF,i are required to comply with the (new) unbreakability constraint, thus
there are ηO(k)ζO(k) such colourings. We guess a colour—call it black—that will be the
dominant colour in β(t). For the assignment p to be good, i.e., leading to the discovery
of an optimum solution, we require that for all hyperedges that are not monochromatic
in the solution colopt we have p(F) = i > 0 and colF,i = colopt|F (i.e., we have guessed
the correct colouring of F), and the “definitely monochromatic” hyperedges contain a
spanning hyperforest of the hypergraph (V (H), Enot black), where Enot black consists
of all not-black monochromatic hyperedges in the colouring colopt.

For a hyperedge F , we insert to Lp all possible edges with both endpoints in F if
p(F) = 0 and all edges between the vertices of the same colour of colF,i if p(F) = i > 0.

30

It is straightforward to verify that, if p is good, then the following holds:
1. all connected components of Lp are painted monochromatically in colopt (cf.

Claim 28);
2. if a connected component D of Lp is not painted black in colopt, then all

hyperedges F such that F ∩D 6= ∅ and F \D 6= ∅ are not coloured monochro-
matically by colopt and, consequently, their colourings colF,p(F) conforms with
colopt (cf. Claim 29).

We can now perform adjusted cleaning operations on p as follows, again preferring the
first operation to the second:
(1) For any hyperedge F completely contained in some component D of Lp, F is

monochromatic in colopt, so set p(F) = 0.
(2) If for any connected component D of Lp we have two hyperedges F1, F2 (possibly

F1 = F2) such that F1 ∩D 6= ∅, F2 ∩D 6= ∅, p(F1) > 0, p(F2) > 0, and for some
v1, v2 ∈ D (possibly v1 = v2) we have colF1,p(F1)(v1) 6= B and colF1,p(F1)(v1) 6=
colF2,p(F2)(v2), then set p(F1) = 0. This is because the guess on colF1,p(F1) is
clearly incorrect.

Again, it is straightforward to see that a good assignment p remains good under the
cleaning operations. After the cleaning operations are applied exhaustively, we may
now classify any connected component D of Lp as

• “definitely black”: there exists a hyperedge F with p(F) > 0 such that
colF,p(F) colours at least one vertex of D black; or

• “potentially not black”: otherwise.
A reasoning analogous to that of Claim 31 shows that a definitely black component is
painted black by colopt, provided p is good.

On the other hand, consider any connected component D of Lp that is potentially
not black. If there exists at least one hyperedge F with p(F) > 0 and F ∩ D = ∅,
then colF,p(F) colours some vertex of D with some non-black colour, say blue. Since
the second cleaning procedure was not applicable, for every other hyperedge F ′ with
p(F ′) > 0 and F ′ ∩D = ∅ we have that colF ′,p(F ′) colours all the vertices of D ∩ F ′
blue. Then it is straightforward to verify that an analogue of Claim 32 holds: for
every potentially not black component D, either colopt colours D with a non-black
colour, being consistent with all hyperedges F with p(F) > 0 that intersect D, or
colopt colours D and all intersecting hyperedges black. Observe that in the first option,
if there is at least one hyperedge F with p(F) > 0 and F ∩ D = ∅, then there is
exactly one non-black colour in which D may be coloured. However, there might be
components D for which there is no such hyperedge (they form separate connected
components in the hypergraph H); we call them colorful, as choosing every non-black
colour is admissible for them.

We may now proceed to the final knapsack-type dynamic programming. Unfor-
tunately, we cannot use the previous approach verbatim, as it is no longer true that
the components of Lp may be considered independently. Indeed, if there exists a
hyperedge F that intersects two potentially not black components D1 and D2 (and,
hence, p(F) > 0), then colopt paints D1 black if and only if it paints D2 black as well.

Consequently, we need to adjust the knapsack-type DP as follows. A black
component is painted black, so we can proceed with them as previously. Two potentially
not black componentsD1 andD2 are entangled if there exists a hyperedge F intersecting
both of them. To avoid confusion, we call connected components of the entanglement
relation blocks. Observe that all components within any block, apart from trivial
blocks consisting of one colorful component, make a joint decision on whether they are
all painted black or they are all painted with the unique non-black color admissible for

31

them (which may be different for each component). These decisions are independent
between each other: the decision in one block does not influence the decision in another
one. On the other hand, each colorful component is not entangled with any other
component, so it just chooses to be painted with any of the ζ colors.

This allows us to adjust the knapsack-type dynamic programming of Section 4.1. In
a single step we consider either all hyperedges intersecting all connected components of
Lp contained in a single block, or all hyperedges intersecting a single colorful component.
For a block the DP chooses the minimum out of two options (black or non-black), while
for a colorful component it chooses the minimum out of ζ options, one for each colour.
It is the straightforward to check that the analogues of Claims 32 and 34 hold. Namely,
on one hand, if p is good, then some computation path of the dynamic programming
procedure will lead to the discovery of an optimum solution, because colouring the
blocks and colorful components as in colopt is among the considered computation
paths. On the other hand, even if p is not necessarily good, the value computed by the
dynamic programming procedure is equal to the cost of some colouring of the vertices
of the hypergraph, computed implicitly along the way and defined in the same way
as in the proof of Claim 34. Therefore, no p gives rise to a value smaller than the
optimum, while any good p gives rise to a value not larger than the optimum.

It is straightforward to check that the adjusted Hypergraph Painting problem
corresponds again to the task of handling one bag in the tree decomposition of the
input graph. To finish the proof note that the minimum size of the cut we are looking
for equals

min
µ:{1,...,ζ}→{0,...,bαnc}

xr,∅,µ,

where r is the root of the tree decomposition, as long as the cut has size at most k.

7. Conclusions. In this paper we have settled the parameterized complexity of
Minimum Bisection. Our algorithm also works in the more general setting when the
edges are weighted, the vertex set is to be partitioned into a constant number of parts
rather than only two, and the cardinality of each of the parts is given on input.

The core component of our algorithm is a new decomposition theorem for general
graphs. Intuitively, we show that it is possible to partition any graph in a tree-like
manner using small separators so that each of the resulting pieces cannot be broken any
further. The uncovered structure is very natural in the context of cut problems, and
we believe that our decomposition theorem will find further algorithmic applications.

Having settled the parameterized complexity of Minimum Bisection it is natural
to ask whether the problem also admits a polynomial kernel, i.e. a polynomial-
time preprocessing algorithm that would reduce the size of the input graph to some
polynomial of the budget k. This question, however, has been already resolved by van
Bevern et al. [3], who showed that Minimum Bisection does not admit a polynomial
kernel unless coNP ⊆ NP/poly. We conclude with a few intriguing open questions.
(a) Can the running time of our algorithm be improved? In particular, does there

exist an algorithm for Minimum Bisection with running time 2O(k)nO(1), that
is, with linear dependence on the parameter in the exponent?

(b) The running time dependence of our algorithm on the input size is roughly cubic.
Is it possible to obtain a fixed-parameter tractable algorithm with quadratic, or
even nearly-linear running time dependence on input size? Note that the best
known algorithm for graphs of bounded treewidth has quadratic dependence on
the input size [20].

(c) Are the parameters in the decomposition theorem tight? For example, is it possible

32

to lower the adhesion size from 2O(k) to polynomial in k? Similarly, can one make
the bags (kO(1), k)-unbreakable rather than (2O(k), k)-unbreakable? Is it possible
to achieve both simultaneously? We remark that if the latter question has a
positive answer, this would improve the parameter dependence in the running
time of our algorithm for Minimum Bisection to kO(k).

(d) Is it possible to compute our decomposition faster, say in 2O(k log k)nO(1) or even
in 2O(k)nO(1) time? Currently the main bottleneck is the very simple Lemma 9.

We believe that one possible way to achieve progress on the questions above is via the
notion of linked (or lean) tree decompositions, see e.g. [2, 13, 31]. This graph-theoretic
notion has a very similar flavour to our concept of the unbreakability of bags, however
its algorithmic aspects seem unexplored so far. Connections between linked tree
decompositions and tree decompositions of the kind introduced in this work will be
explored in future work.

Acknowledgements. We would like to thank Rajesh Chitnis, Fedor Fomin,
MohammadTaghi Hajiaghayi and M. S. Ramanujan for earlier discussions on this
subject. We also acknowledge the very inspiring atmosphere of the Dagstuhl seminar
13121, where the authors discussed the core ideas leading to this work. Finally, we are
grateful to the reviewers for their multiple insightful remarks that helped improving
the quality of the presentation in this paper.

REFERENCES

[1] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM, 42 (1995), pp. 844–856.
[2] P. Bellenbaum and R. Diestel, Two short proofs concerning tree-decompositions, Combina-

torics, Probability & Computing, 11 (2002), pp. 541–547.
[3] R. van Bevern, A. E. Feldmann, M. Sorge, and O. Suchý, On the parameterized complexity

of computing graph bisections, in Proceedings of WG 2013, 2013, pp. 76–87.
[4] R. van Bevern, A. E. Feldmann, M. Sorge, and O. Suchý, On the parameterized complexity

of computing balanced partitions in graphs, Theory Comput. Syst., 57 (2015), pp. 1–35.
[5] T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser, Graph bisection algorithms with

good average case behavior, Combinatorica, 7 (1987), pp. 171–191.
[6] T. N. Bui, C. Heigham, C. Jones, and F. T. Leighton, Improving the performance of the

Kernighan-Lin and simulated annealing graph bisection algorithms, in Proceedings of DAC
1989, 1989, pp. 775–778.

[7] T. N. Bui and A. Peck, Partitioning planar graphs, SIAM J. Comput., 21 (1992), pp. 203–215.
[8] T. N. Bui and L. C. Strite, An ant system algorithm for graph bisection, in Proceedings of

GECCO 2002, 2002, pp. 43–51.
[9] J. Carmesin, R. Diestel, F. Hundertmark, and M. Stein, Connectivity and tree structure

in finite graphs, Combinatorica, 34 (2014), pp. 11–46.
[10] J. Chen, Y. Liu, and S. Lu, An improved parameterized algorithm for the minimum node

multiway cut problem, Algorithmica, 55 (2009), pp. 1–13.
[11] R. H. Chitnis, M. Cygan, M. Hajiaghayi, M. Pilipczuk, and M. Pilipczuk, Designing FPT

algorithms for cut problems using randomized contractions, SIAM J. Comput., 45 (2016),
pp. 1171–1229.

[12] M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Minimum
Bisection is fixed parameter tractable, in Proceedings of STOC 2014, 2014, pp. 323–332.

[13] R. Diestel, Graph Theory, Springer, 2012.
[14] U. Feige and R. Krauthgamer, A polylogarithmic approximation of the minimum bisection,

SIAM J. Comput., 31 (2002), pp. 1090–1118.
[15] U. Feige, R. Krauthgamer, and K. Nissim, Approximating the minimum bisection size

(extended abstract), in Proceedings of STOC 2000, 2000, pp. 530–536.
[16] U. Feige and M. Mahdian, Finding small balanced separators, in Proceedings of STOC 2006,

2006, pp. 375–384.
[17] M. R. Garey and D. S. Johnson, Computers and intractability, vol. 174, Freeman New York,

1979.
[18] M. Grohe, K. Kawarabayashi, D. Marx, and P. Wollan, Finding topological subgraphs is

33

fixed-parameter tractable, in Proceedings of STOC 2011, 2011, pp. 479–488.
[19] M. Grohe and D. Marx, Structure theorem and isomorphism test for graphs with excluded

topological subgraphs, SIAM J. Comput., 44 (2015), pp. 114–159.
[20] K. Jansen, M. Karpinski, A. Lingas, and E. Seidel, Polynomial time approximation schemes

for max-bisection on planar and geometric graphs, SIAM J. Comput., 35 (2005), pp. 110–119.
[21] K. Kawarabayashi and M. Thorup, The minimum k-way cut of bounded size is fixed-parameter

tractable, in Proceedings of FOCS 2011, 2011, pp. 160–169.
[22] S. Khot and N. K. Vishnoi, The unique games conjecture, integrality gap for cut problems

and embeddability of negative-type metrics into `1, J. ACM, 62 (2015), pp. 8:1–8:39.
[23] D. Marx, Parameterized graph separation problems, Theor. Comput. Sci., 351 (2006), pp. 394–

406.
[24] D. Marx, B. O’Sullivan, and I. Razgon, Finding small separators in linear time via treewidth

reduction, ACM Transactions on Algorithms, 9 (2013), p. 30.
[25] D. Marx and I. Razgon, Fixed-parameter tractability of multicut parameterized by the size of

the cutset, SIAM J. Comput., 43 (2014), pp. 355–388.
[26] H. Nagamochi and T. Ibaraki, A linear-time algorithm for finding a sparse k-connected

spanning subgraph of a k-connected graph, Algorithmica, 7 (1992), pp. 583–596.
[27] M. Naor, L. J. Schulman, and A. Srinivasan, Splitters and near-optimal derandomization,

in Proceedings of FOCS 1995, 1995, pp. 182–191.
[28] H. Räcke, Optimal hierarchical decompositions for congestion minimization in networks, in

Proceedings of STOC 2008, 2008, pp. 255–264.
[29] N. Robertson and P. D. Seymour, Graph minors XIII. The disjoint paths problem, J. Comb.

Theory, Ser. B, 63 (1995), pp. 65–110.
[30] Shortlist of the 54th International Mathematical Olympiad, IMO 2013, Santa Marta, Colombia.

https://www.imo-official.org/problems/IMO2013SL.pdf.
[31] R. Thomas, A Menger-like property of tree-width: The finite case, J. Comb. Theory, Ser. B, 48

(1990), pp. 67–76.

34

https://www.imo-official.org/problems/IMO2013SL.pdf

	Introduction
	Preliminaries
	Decomposition
	Proof overview
	Chips
	Local decomposition
	Strengthening unbreakability of adhesions
	Constructing a decomposition

	Bisection
	Hypergraph painting
	Dynamic programming
	Dependency on the size of G in the running time

	Weighted variant
	-edge-separators
	Conclusions
	References

