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Abstract. Let η ≥ 0 be an integer and G be a graph. A set X ⊆
V (G) is called a η-treewidth modulator in G if G \ X has treewidth at
most η. Note that a 0-treewidth modulator is a vertex cover, while a 1-
treewidth modulator is a feedback vertex set ofG. In the η/ρ-Treewidth
Modulator problem we are given an undirected graph G, a ρ-treewidth
modulator X ⊆ V (G) in G, and an integer ` and the objective is to
determine whether there exists an η-treewidth modulator Z ⊆ V (G) in
G of size at most `. In this paper we study the kernelization complexity
of η/ρ-Treewidth Modulator parameterized by the size of X. We
show that for every fixed η and ρ that either satisfy 1 ≤ η < ρ, or
η = 0 and 2 ≤ ρ, the η/ρ-Treewidth Modulator problem does not
admit a polynomial kernel unless NP ⊆ coNP/poly. This resolves an
open problem raised by Bodlaender and Jansen in [STACS 2011]. Finally,
we complement our kernelization lower bounds by showing that ρ/0-
Treewidth Modulator admits a polynomial kernel for any fixed ρ.

Keywords: η-treewidth modulator, kernelization upper and lower bounds,
polynomial parameter transformation

1 Introduction

The last few years have seen a surge in the study of kernelization complex-
ity of parameterized problems, resulting in a multitude of new results on
upper and lower bounds for kernelization [1, 2, 7, 9, 11]. Bodlaender and
Jansen [13] initiated the systematic study of the kernelization complex-
ity of a problem parameterized by something else than the value of the
objective function.

The problem (or parameter) that received the most attention in this
regard is vertex cover. A vertex cover of a graph G is a vertex set S such
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that all edges of G have at least one endpoint in S, and the vertex cover
number of G is the size of the smallest vertex cover in G. In the Vertex
Cover problem we are given a graph G and an integer k and asked
whether the vertex cover number of G is at most k. Over the last year we
have seen several studies of problems parameterized by the vertex cover
number of the input graph [3, 4, 14], as well as a study of the Vertex
Cover problem parameterized by the size of the smallest feedback vertex
set of the input graph G. A feedback vertex set of G is a set S such that
G \ S is acyclic and the feedback vertex number of G is the size of the
smallest feedback vertex set in G.

The reason parameterizing Vertex Cover by the feedback vertex
number of the input graph is interesting is that while the feedback vertex
number is always at most the vertex cover number, it can be arbitrar-
ily smaller. In particular, in forests the feedback vertex number is zero,
while the vertex cover number can be arbitrarily large. Hence a kernel of
size polynomial in the feedback vertex number is always polynomial in
the vertex cover number, yet it could also be much smaller. Bodlaender
and Jansen [13] show that Vertex Cover parameterized by the feed-
back vertex number admits a polynomial kernel. At this point a natural
question is whether Vertex Cover has a polynomial kernel when pa-
rameterized by even smaller parameters than the feedback vertex number
of the input graph. Bodlaender and Jansen [13] ask a particular variant
of this question; whether Vertex Cover admits a polynomial kernel
when parameterized by the size of the smallest ρ-treewidth modulator
(see below) of the input graph, for any ρ ≥ 2.

Definition 1. Let η ≥ 0 be an integer and G be a graph. A set X ⊆ V (G)
is called an η-treewidth modulator in G if G\X has treewidth at most η.

Observe that a 0-treewidth modulator s of G are vertex covers, while
1-treewidth modulator s are feedback vertex sets. In the η-Treewidth
Modulator problem we are given a graph G and integer ` and asked
whether G has a η-treewidth modulator of size at most `. In this paper
we consider the kernelization complexity of η-Treewidth Modulator,
when parameterized by the size of the smallest ρ-treewidth modulator of
the input graph G, for fixed values of η and ρ. Specifically, we consider
the following problem.



3

η \ ρ 0 1 2 3 4 5 · · ·
0 YES YES NO NO NO NO NO · · ·
1 YES YES NO NO NO NO NO · · ·
2 YES ? ? NO NO NO NO · · ·
3 YES ? ? ? NO NO NO · · ·
4 YES ? ? ? ? NO NO · · ·
5 YES ? ? ? ? ? NO · · ·
...

...
...

...
...

...
...

... · · ·
Table 1. Kernelization complexity of the η/ρ-Treewidth Modulator problem. YES
means that the problem admits a polynomial kernel, NO means that the problem
does not admit a polynomial kernel and ? means that the status of the kernelization
complexity of the problem is unknown. Boldface indicates results proved in this paper.

η/ρ-Treewidth Modulator Parameter: |X|
Input: An undirected graph G, a ρ-treewidth modulator X ⊆ V (G)
in G, and an integer `.
Question: Does there exist an η-treewidth modulator Z ⊆ V (G) in
G of size at most `?

Fomin et al. [10] recently proved that ρ-treewidth modulator admits
a O((logOPT )

3
2 ) factor approximation. Therefore, we could relax the

condition of giving the ρ-treewidth modulator X along with the graph,
as the algorithm can always approximate this set. This shows equivalence
of existence of polynomial kernels for η/η-Treewidth Modulator and
the classical η-Treewidth Modulator parameterized by the solution
size.

The result of Bodlaender and Jansen [13] can now be reformulated as
follows; 0/1-Treewidth Modulator admits a polynomial kernel. We
settle the kernelization complexity of η/ρ-Treewidth Modulator for a
wide range of values of η and ρ. In particular we resolve the open problem
of Bodlaender and Jansen [13] by showing that unless NP ⊆ coNP/poly,
0/ρ-Treewidth Modulator does not admit a polynomial kernel for
any ρ ≥ 2. Finally, we complement our negative results by showing that
ρ/0-Treewidth Modulator admits a polynomial kernel for every fixed
ρ. A concise description of our results can be found in Table 1.

The diagonal entries of the table - the η/η-Treewidth Modulator
problems are particularly interesting. Note that 0/0-Treewidth Modu-
lator and 1/1-Treewidth Modulator are equivalent to the classical
Vertex Cover and Feedback Vertex Set problems, respectively,
parameterized by the solution size. Furthermore, let F be a finite set of
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graphs. In the F-Deletion problem, we are given an n-vertex graph G
and an integer k as input, and asked whether at most k vertices can be
deleted from G such that the resulting graph does not contain any graph
from F as a minor. It is well known that η/η-Treewidth Modulator
can be thought of as a special case of the F-Deletion problem, where
F contains a planar graph. It is conjectured in [10] that F-Deletion
admits a polynomial kernel if and only if F contains a planar graph.
Notice that a polynomial kernel for η/η-Treewidth Modulator auto-
matically implies a polynomial kernel for η/ρ-Treewidth Modulator
for η ≥ ρ. The conjecture of [10] implies, if true, that η/η-Treewidth
Modulator does admit a polynomial kernel and that therefore, all the
empty slots of Table 1 should be “YES”.

Notation. All graphs in this paper are undirected and simple. For a graph
G we denote its vertex set by V (G) and edge set by E(G). For a vertex
v ∈ V (G) we define its neighbourhood NG(v) = {u : uv ∈ E(G)} and
closed neighbourhood NG[v] = NG(v) ∪ {v}. If X is a set of vertices or
edges of G, by G\X we denote the graph G with all vertices and edges in
X deleted (when deleting a vertex, we delete its incident edges as well).
We use a shortened notation G \ v for G \ {v}. If u, v ∈ V (G), u 6= v and
uv /∈ E(G), then G ∪ {uv} denotes the graph G with added edge uv. A
set S ⊆ V (G) is said to separate u from v, if u, v ∈ V (G) \ S and u and
v lie in different connected components of G \ S.

2 η-Treewidth Modulator parameterized by vertex cover

In this section we show that for any η ≥ 0 the η/0-Treewidth Modu-
lator problem has a kernel with O(|X|max(η+1,3)) vertices.

Let η ≥ 0 be a fixed integer. We provide a set of reduction rules and
assume that at each step we use an applicable rule with the smallest num-
ber. At each reduction rule we discuss its soundness, that is, we prove that
the input and output instances are equivalent. All presented reductions
can be applied in polynomial time in a trivial way. If no reduction rule
can be used on an instance (G,X, `), we claim that |V (G)| is bounded
polynomially in |X|.

Recall that in an η/0-Treewidth Modulator instance (G,X, `)
the set X is a vertex cover of G. As a vertex cover is an η-treewidth
modulator for any η ≥ 0, we obtain the following rule.

Reduction 1. If |X| ≤ `, return a trivial YES-instance.
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Thus, from this point we can assume that |X| > `. The next rule is a
small variant on the well known “Common Neighbors” rule [5].

Reduction 2. Let x, y ∈ X, x 6= y and xy /∈ E(G). If |NG(x)∩NG(y)| ≥
|X|+η, then add an edge xy, that is, return the instance (G∪{xy}, X, `).

Lemma 2. Reduction 2 is sound.

Proof. Let G′ = G ∪ {xy}. First note that any η-treewidth modulator Z
in G′ is an η-treewidth modulator in G too, as G \ Z is a subgraph of
G′ \ Z.

In the other direction, let Z be an η-treewidth modulator in G of size
at most `, and let T be a tree decomposition of G \Z of width at most η.
If either x ∈ Z or y ∈ Z then clearly Z is also a treewidth modulator for
G′. Hence we assume that x, y /∈ Z. In this case we claim that there exists
a bag that contains both x and y. If this is not the case, there exists a
separator S of size at most η that separates x from y in G \Z [8, Lemma
12.3.1]. Thus S ∪Z separates x from y in G. Any such a separator needs
to contain NG(x) ∩NG(y). However,

|NG(x) ∩NG(y)| ≥ |X|+ η > `+ η ≥ |Z|+ η ≥ |S ∪ Z|,

a contradiction. Thus there exists a bag with both x and y, and T is a
tree decomposition of G′ \ Z. ut

Definition 3. Let Y = V (G)\X. A vertex v ∈ Y is a Y -simplicial vertex
if G[NG(v)] is a clique.

Lemma 4. Let (G,X, `) be an η/0-Treewidth Modulator instance.
There exists a minimum η-treewidth modulator in G that does not contain
any Y -simplicial vertex.

Proof. Let Z be a minimum η-treewidth modulator in G with a minimum
possible number of Y -simplicial vertices. Assume that there exists a Y -
simplicial vertex v ∈ Z. If NG(v) ⊆ Z, then v is an isolated vertex in
G\(Z\{v}) and Z\{v} is an η-treewidth modulator in G, a contradiction
to the assumption that Z is minimum. Thus let x ∈ NG(v)\Z. Note that
x ∈ X, as X is a vertex cover of G and v /∈ X by the definition of a
Y -simplicial vertex.

We claim that Z ′ = Z ∪ {x} \ {v} is an η-treewidth modulator in G.
As v was Y -simplicial, NG[v] ⊆ NG[x]. Let φ : V (G) \ Z ′ → V (G) \ Z,
φ(v) = x and φ(u) = u if u 6= v. Note that φ is an injective homomorphism
of G \ Z ′ into G \ Z, thus G \ Z ′ is isomorphic to a subgraph of G \ Z.
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We infer that G \ Z ′ has not greater treewidth than G \ Z, and Z ′ is
a minimum η-treewidth modulator in G with a smaller number of Y -
simplicial vertices than Z, a contradiction. ut

Reduction 3. For every set A ⊆ X of size η + 1 such that G[A] is a
clique, let SA be the set of Y -simplicial vertices v satisfying A ⊆ NG(v).
For every such A with nonempty SA, mark one Y -simplicial vertex from
SA (vertices can be marked multiple times). If there are any unmarked
Y -simplicial vertices, delete them, i.e., return the instance (G \ U,X, `),
where U is the set of unmarked Y -simplicial vertices.

Lemma 5. Reduction 3 is sound.

Proof. We argue that deleting a single unmarked Y -simplicial vertex v
results in an equivalent instance. The claim follows by applying this ar-
gument consecutively for all the unmarked Y -simplicial vertices.

Let G′ = G \ {v}. First note that G′ is a subgraph of G, so every
η-treewidth modulator Z of G gives raise to an η-treewidth modulator
Z \ {v} of G′ that is not larger.

In the other direction, let Z be an η-treewidth modulator of G′ and let
T be the tree decomposition of G′ \ Z of width at most η. By Lemma 4
we can assume that Z ⊆ X. Consider R = N(v) \ Z. Observe that R
induces a clique in G′ \ Z. Therefore, as G′ \ Z has treewidth at most η,
it follows that |R| ≤ η + 1. Consider the case when |R| = η + 1. As R
induces a clique of cardinality η + 1 in G[X] and there is an unmarked
Y -simplicial vertex v such that R ⊆ N(v), it follows that there exists
another Y -simplicial vertex v′ with R ⊆ N(v′) that was actually marked
for R. Recall that Z ⊆ X, so v′ /∈ Z. Thus, R ∪ {v′} induces a clique of
size η+ 2 in G′ \Z, a contradiction with G′ \Z having treewidth at most
η.

We conclude that |R| ≤ η. As R induces a clique in G′ \ Z, there
exists a bag B in the decomposition T such that R ⊆ B. Consider tree
decomposition T ′ obtained from T by introducing a bag R∪{v} as a leaf
attached to the bag B. It is easy to check that T ′ is a tree decomposition
of G \ Z, while its width is bounded by η due to |R ∪ {v}| ≤ η + 1.
Therefore, Z is an η-treewidth modulator in G as well. ut

We now claim that if none of the above reduction rules are applicable,
the remaining instance is small.
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Lemma 6. Let (G,X, `) be an η/0-Treewidth Modulator instance.
If Reductions 1–3 are not applicable, then

|V (G)| ≤ |X|+
(|X|

2

)
(|X|+ η − 1) +

( |X|
η + 1

)
= O(|X|max(η+1,3)).

Proof. Any vertex of G is of one of three types: either in X, or not in
X and Y -simplicial, or not in X and not Y -simplicial. The number of
vertices of the first type is trivially bounded by |X|.

Let v ∈ V (G) \ X be a non-Y -simplicial vertex. Then there exist
x, y ∈ NG(v) such that x 6= y and xy /∈ E(G). However, for fixed x, y ∈ X
with x 6= y and xy /∈ E(G) we may have at most |X| + η − 1 vertices
in NG(x) ∩ NG(y), since Reduction 2 is not applicable. We infer that
there are at most

(|X|
2

)
(|X| + η − 1) vertices in V (G) \ X that are not

Y -simplicial.
Since reduction 3 is not applicable, the number of Y -simplicial vertices

in the graph is bounded by the number of subsets of X of size η + 1.
Therefore, there are at most

( |X|
η+1

)
Y -simplicial vertices in the graph. ut

We conclude this section with the following theorem.

Theorem 7. There exists a polynomial-time algorithm that takes as an
input an η/0-Treewidth Modulator instance (G,X, `) and outputs
an equivalent instance (G′, X, `) with |V (G′)| ∈ O(|X|max(η+1,3)).

Proof. First note that our reductions do not change the set X nor the
required size of the η-treewidth modulator , i.e., the integer `. All our
reductions work in polynomial time for fixed η and each of them either
decreases the number of vertices of the graph or introduces new edges
where there was no edge before. Therefore, the number of applications
of the rules is bounded polynomially in the size of the graph. Lemma 6
provides the claimed bound on |V (G)| when no reduction is applicable.

ut

3 Lower bounds

In this section we first prove that under reasonable complexity assump-
tions the 0/2-Treewidth Modulator problem does not have a poly-
nomial kernel, which resolves an open problem by Bodlaender et al. [13].
Next we generalize this result and prove that for any η, ρ such that
ρ ≥ η + 1 and (η, ρ) 6= (0, 1) the η/ρ-Treewidth Modulator prob-
lem does not have a polynomial kernel. To prove the non-existence of a



8

polynomial kernel we use the notion of polynomial parameter transfor-
mation.

Definition 8 ([6]). Let P and Q be parameterized problems. We say
that P is polynomial parameter reducible to Q, if there exists a polyno-
mial time computable function f : Σ∗ × N → Σ∗ × N and a polynomial
p, such that for all (x, k) ∈ Σ∗ × N the following holds: (x, k) ∈ P iff
(x′, k′) = f(x, k) ∈ Q and k′ ≤ p(k). The function f is called a polyno-
mial parameter transformation.

Theorem 9 ([6]). Let P and Q be parameterized problems and P̃ and
Q̃ be the unparameterized versions of P and Q respectively. Suppose that
P̃ is NP-hard and Q̃ is in NP. Assume there is a polynomial parameter
transformation from P to Q. Then if Q admits a polynomial kernel, so
does P .

To show that 0/2-Treewidth Modulator does not have a polyno-
mial kernel we show a polynomial parameter transformation from CNF-
SAT parameterized by the number of variables.

CNF − SATn Parameter: n
Input: A formula φ on n variables.
Question: Does there exist an assignment Φ satisfying the formula φ?

Theorem 10 ([12]). The CNF − SATn problem does not have a poly-
nomial kernel unless NP ⊆ coNP/poly.

Theorem 11. The 0/2-Treewidth Modulator problem does not have
a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We show a polynomial parameter transformation from CNF-SAT
parameterized by the number of variables. Let φ be a formula on n vari-
ables x1, . . . , xn. Without loss of generality we may assume that each
clause of φ consists of an even number of literals since we can repeat an
arbitrary literal of each odd size clause. We create the following graph G.
First, we add a set X of 2n vertices xi,¬xi for 1 ≤ i ≤ n. Moreover, we
add n edges connecting xi with ¬xi for each 1 ≤ i ≤ n. Furthermore, for
each clause C of the formula φ we add a clause gadget Ĉ to the graph G.
Let {l1, l2, . . . , lc} be the multiset of literals appearing in the clause C. For
each literal li we make a vertex ui. Next we add to the graph G two paths
P1 = v1, . . . , vc and P2 = v′1, . . . , v

′
c having c vertices each, and connect

vi with v′i for every 1 ≤ i ≤ c. We add a pendant vertex to both vertices
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v1 and vc. Finally, for each 1 ≤ i ≤ c we make the vertex ui adjacent to
vi, v

′
i and also to the vertex x ∈ X corresponding to the negation of the

literal li (see Fig. 1). We would also like to remark that the clause gadget
used here is the same as the one used in [15], for showing algorithmic
lower bounds on the running time of an algorithm for Independent Set
parameterized by the treewidth of the input graph.

Observe that G\X is of treewidth two and consequently (G,X, `) is a
proper instance of 0/2-Treewidth Modulator, where we set ` = n+∑

C∈φ 2|C|. We show that (G,X, `) is a YES-instance of 0/2-Treewidth
Modulator iff φ is satisfiable. Let us assume that φ is satisfiable and let
Φ be a satisfying assignment. Since |V (G)| = `+n+

∑
C∈φ(|C|+2), instead

of showing a vertex cover of size ` it is enough to show an independent
set of size n+

∑
C∈φ(|C|+ 2). For each variable we add to the set I one

of the vertices xi,¬xi which is assigned a true value by Φ. For each clause
C = {l1, . . . , lc} we add to the set I an independent set of vertices from Ĉ
containing one vertex ui0 corresponding to the literal satisfying the clause
C, two pendant vertices adjacent to v1 and vc, and exactly one vertex from
{vi, v′i} for each 1 ≤ i ≤ c, i 6= i0 (see Fig. 1). It is easy to check that I is an
independent set in the graph G of size n +

∑
C∈φ(|C| + 2), which shows

that (G,X, `) is a YES-instance of the 0/2-Treewidth Modulator
problem.

In the other direction, assume that (G,X, `) is a YES-instance of the
0/2-Treewidth Modulator problem. Hence there exists an indepen-
dent set I in G of size n +

∑
C∈φ(|C| + 2). Since for each clause C the

independent set I contains at most |C|+2 vertices from the clause gadget
Ĉ, we infer that I contains exactly |C|+ 2 vertices out of each gadget Ĉ
and exactly one vertex from each pair xi,¬xi. Let Φ be an assignment
such that Φ(xi) is true iff xi ∈ I. Consider a clause C = {l1, . . . , lc} of
the formula φ. Observe that since C has an even number of literals the
set I, contains at least one vertex ui from the clause gadget Ĉ. Since I is
independent we infer that the vertex ¬li ∈ X is not in I and hence li ∈ I,
which shows that the clause C is satisfied by Φ.

Since CNF-SAT is NP-hard and 0/2-Treewidth Modulator is in
NP, by Theorem 9 the claim follows. ut

We generalize this result by showing a transformation from 0/2-Treewidth
Modulator to η/ρ-Treewidth Modulator for η ≤ ρ+1 and (η, ρ) 6=
(0, 1).
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x1

¬x1

x2

¬x2

x3

¬x3

x4

¬x4

x5

¬x5
X

u1 u2 u3 u4

Fig. 1. A graph G for a formula consisting of a single clause C = {¬x1, x2, x3,¬x4}.
The encircled vertices belong to an independent set I corresponding to an assignment
setting to true literals {x1,¬x2, x3, x4,¬x5}.

Theorem 12. For any non-negative integers η, ρ satisfying η ≤ ρ + 1
and (η, ρ) 6= (0, 1) the η/ρ-Treewidth Modulator problem does not
admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. Observe that by Theorem 11 and trivial transformations it is
enough to prove the theorem for ρ = η+ 1, where η ≥ 1. We show a poly-
nomial parameter transformation from 0/2-Treewidth Modulator to
η/(η+ 1)-Treewidth Modulator. Let (G,X, `) be a 0/2-Treewidth
Modulator instance. Initially set G′ := G. Now for each edge uv of the
graph G we add to the graph G′ a set of η vertices Vuv and make the set
Vuv ∪ {u, v} a clique in G′.

First we show that (G′, X, `) is a proper instance of η/η+1-Treewidth
Modulator, that is we need to prove that G′ \X has treewidth at most
η + 1. Let T be a tree decomposition of width at most 2 of the graph
G \ X. Consider each edge uv of the graph G. If u, v 6∈ X then there
exists a bag Vt of the tree decomposition T containing both u and v. We
create a new bag Vt′ = {u, v} ∪ Vuv and connect it, as a leaf, to the bag
Vt. If u, v ∈ X, then we create a bag Vt′ = Vuv and connect it, as a leaf,
to any bag of T . In the last case w.l.o.g. we may assume that u ∈ X and
v 6∈ X. Then we create a new bag Vt′ = {v} ∪ Vuv and connect it, as a
leaf, to any bag of T containing the vertex v. After considering all edges
of G the decomposition T is a proper tree decomposition of G′ \ X of
width at most max(2, η + 1) = η + 1.
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Now we prove that (G,X, `) is a YES-instance of 0/2-Treewidth
Modulator iff (G′, X, `) is a YES-instance of η/(η + 1)-Treewidth
Modulator. Let Y be a vertex cover of G of size at most `. Observe
that each connected component of G′\Y contains exactly one vertex from
the set V (G) and after removing this vertex, this connected component
decomposes into cliques of size η. For this reason G′ \ Y has treewidth
at most η and consequently (G′, X, `) is a YES-instance of η/(η + 1)-
Treewidth Modulator.

Finally assume that there exists a set Y ⊆ V (G′) of size at most `
such that G′ \Y has treewidth at most η. Let uv be an edge of the graph
G. Recall that Vuv ∪ {u, v} is a clique in G′ and hence Y ∩ (Vuv ∪ {u, v})
is nonempty. Observe that if Y ∩ Vuv is nonempty, then Y \ Vuv ∪ {u} is
also a solution for (G′, X, `). Thus we may assume that for each edge uv
we have Y ∩{u, v} 6= ∅, which means that Y is a vertex cover of G of size
at most `.

Since η/(η+1)-Treewidth Modulator is in NP and the unparam-
eterized version of 0/2-Treewidth Modulator is NP-hard, the claim
follows. ut

4 Conclusions and Perspectives

In this paper we showed that for every fixed η and ρ that either satisfy
1 ≤ η < ρ, or η = 0 and 2 ≤ ρ, the η/ρ-Treewidth Modulator
problem does not admit a polynomial kernel unless NP ⊆ coNP/poly.
In the second half of the paper we complemented our negative result by
showing that ρ/0-Treewidth Modulator admits a polynomial kernel
for any fixed ρ.

A set of natural questions are obtained by restricting the input graphs.
For example: does η/ρ-Treewidth Modulator admit a polynomial
kernel on planar graphs, or on a graph class excluding a fixed graph H
as a minor, or on graphs of bounded degree? Surprisingly, the answer
to many of these questions is positive. One can easily show that the
techniques from [11] imply that for every fixed η and ρ, η/ρ-Treewidth
Modulator admits a linear kernel on H-minor free graphs. Moreover,
going along the lines of [10] proves that η/ρ-Treewidth Modulator
admits a linear vertex kernel on graphs of bounded degree or on graphs
excluding K1,t as an induced subgraph. Here K1,t is a star with t leaves.
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