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and extend all previously known kernelization results for planar graph problems.
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1. INTRODUCTION

Preprocessing (data reduction or kernelization) as a strategy of coping with hard
problems is universally used in almost every implementation. The history of pre-
processing, like applying reduction rules to simplify truth functions, can be traced
back to the 1950’s [Quine 1952]. A natural question in this regard is how to measure
the quality of the preprocessing rules proposed for a specific problem. For a long
time the mathematical analysis of polynomial time preprocessing algorithms was
neglected. The basic reason for this anomaly was that if we start with an instance
I of an NP-hard problem and can show that, in polynomial time, we can replace
this with an equivalent instance I ′ with |I ′| < |I| then that would imply P=NP
in classical complexity. The situation changed drastically with advent of parame-
terized complexity. Combining tools from parameterized and classical complexities
it has become possible to derive upper and lower bounds on the sizes of reduced
instances, or so called kernels.

Kernelization. In parameterized complexity each problem instance comes with a
parameter k and the parameterized problem is said to admit a polynomial kernel if
there is a polynomial time algorithm (the degree of polynomial is independent of k),
called a kernelization algorithm, that reduces the input instance down to an instance
with size bounded by a polynomial p(k) in k, while preserving the answer. This
reduced instance is called a p(k) kernel for the problem. If p(k) = O(k), then we call
it a linear kernel (for a more formal definition, see Subsection 2.1.1). Kernelization
has been extensively studied in the realm of parameterized complexity, resulting
in polynomial kernels for a variety of problems. Notable examples of kernelization
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include a 2k-sized vertex kernel for Vertex Cover [Chen et al. 2001], a 355k
vertex kernel for Dominating Set on planar graphs [Alber et al. 2004], which
later was improved to a 67k vertex kernel [Chen et al. 2007], and an O(k2) kernel
for Feedback Vertex Set [Thomassé 2010] parameterized by the solution size.

One of the most important results in the area of kernelization was given by
Alber et al. [2004]. They gave the first linear sized kernel for the Dominating
Set problem on planar graphs. The work of Alber et al. [2004] triggered an ex-
plosion of papers on kernelization, and in particular on kernelization of problems
on planar graphs. Combining the ideas of Alber et al. [2004] with problem spe-
cific data reduction rules, kernels of linear sizes were obtained for a variety of
parameterized problems on planar graphs including Connected Vertex Cover,
Minimum Edge Dominating Set, Maximum Triangle Packing, Efficient
Edge Dominating Set, Induced Matching, Full-Degree Spanning Tree,
Feedback Vertex Set, Cycle Packing, and Connected Dominating Set
[Alber et al. 2006; Alber et al. 2004; Bodlaender and Penninkx 2008; Bodlaender
et al. 2008; Chen et al. 2007; Guo and Niedermeier 2007b; Guo et al. 2010; Kanj
et al. 2011; Lokshtanov et al. 2011; Moser and Sikdar 2009]. Dominating Set has
received special attention from kernelization view point, leading to a linear kernel
on graphs of bounded genus [Fomin and Thilikos 2004] and polynomial kernel on
graphs excluding a fixed graph H as a minor and on d-degenerated graphs [Alon
and Gutner 2008; Philip et al. 2012]. We refer to the surveys [Guo and Niedermeier
2007a; Fomin and Saurabh 2014; Lokshtanov et al. 2012], as well as books [Cygan
et al. 2015; Downey and Fellows 2013; Flum and Grohe 2006; Niedermeier 2006]
for a detailed treatment of the area of kernelization.

Most of the papers on linear kernels on planar graphs have the following idea
in common: find an appropriate region decomposition (essentially a partitioning of
the vertex set into graphs of small diameter) of the input planar graph based on
the problem in question, and then perform problem specific rules to reduce the part
of the graph inside each region. The first step towards the general abstraction of
all these algorithms was initiated by Guo and Niedermeier [2007b], who proved a
general decomposition theorem for all problems with a specific distance property.
Combining this decomposition theorem with problem specific reduction rules yields
linear kernels for various problems on planar graphs. Thus all previous work on
kernelization was strongly based on the design of reduction rules particular to the
problem in question. In this paper we step aside and find properties of problems,
such as expressibility in Counting Monadic Second Order Logic (CMSO), which
allows these reduction rules to be automated.

Algebraic reduction techniques. The idea of graph replacement for algorithms
dates back to Fellows and Langston [Fellows and Langston 1989]. Arnborg et
al. [Arnborg et al. 1993] proved that every set of graphs of bounded treewidth that
is definable by a Monadic Second Order Logic (MSO) formula is also definable by
reduction. By making use of algebraic reductions, Arnborg et al. [Arnborg et al.
1993] obtained a linear time algorithm for MSO expressible problems on graphs
of bounded treewidth. Bodlaender and de Fluiter [Bodlaender and de Fluiter
1996; Bodlaender and van Antwerpen-de Fluiter 2001; de Fluiter 1997] general-
ized these ideas in several ways—in particular, they applied it to a number of
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optimization problems. It is also important to mention the work of Bodlaender and
Hagerup [Bodlaender and Hagerup 1998], who used the concept of graph reduction
to obtain parallel algorithms for MSO expressible problems on graphs of bounded
treewidth.

Algorithmic meta-theorems. Our results can be seen as what Grohe and Kreutzer
call algorithmic meta-theorems [Grohe 2007; Kreutzer 2011]. Meta-theorems bring
out the deep relations between logic and combinatorial structures, which is a funda-
mental issue of computational complexity. Such theorems also yield a better under-
standing of the scope of general algorithmic techniques and the limits of tractability.
A typical example of meta-theorem is the celebrated Courcelle’s theorem [Courcelle
1992] which states that all graph properties definable in MSO can be decided in
linear time on graphs of bounded treewidth. More recent examples of such meta-
theorems state that all first-order definable properties on planar graphs can be
decided in linear time [Frick and Grohe 2001] and that all first-order definable
optimization problems on classes of graphs with excluded minors can be approx-
imated in polynomial time to any given approximation ratio [Dawar et al. 2007].
Our meta-theorems not only give a uniform and natural explanation for a large
family of known kernelization results but also provide a variety of new results. In
what follows we build up towards our theorems. We first give necessary definitions
needed to formulate our results.

Parameterized graph problems. A parameterized graph problem Π in general
can be seen as a subset of Σ∗×Z+ where, in each instance (x, k) of Π, x encodes a
graph and k is the parameter (we denote by Z+ the set of all non-negative integers).
In this paper we extend this definition by permitting the parameter k to be negative
with the additional constraint that either all pairs with non-positive value of the
parameter are in Π or that no such pair is in Π. Formally, a parametrized problem Π
is a subset of Σ∗×Z where for all (x1, k1), (x2, k2) ∈ Σ∗×Z with k1, k2 < 0 it holds
that (x1, k1) ∈ Π if and only if (x2, k2) ∈ Π. This extended definition encompasses
the traditional one and is being adopted for technical reasons (see Subsection 2.3).
In many cases, in the pair (x, k), x will encode an annotated graph, that is a pair
(G,S) where S is a subset of the vertices of G, i.e., S contains the annotated vertices
of G. In this paper, we mostly work on problems restricted to certain graph classes.
For this reason, given a graph class G, we use notation ΠeG for the set of instances
of Π minus the instances (x, k) where x does not encode a graph in G. That way,
the new problem Π′ = ΠeG is a subset of Σ∗×Z that corresponds to the restriction
of Π to graphs in G. In this paper we mostly apply such restrictions to bounded
genus graphs. We denote by Gr the class of graphs that are 2-cell embeddable in
some surface of Euler genus at most r.

r-coverable problems. Let G = (V,E) be a graph embedded without crossings
in a surface. (For more details on graph embeddings, see Subsection 6.) The
radial distance between two vertices x, y of G in this embedding is one less than
the minimum length of an alternating sequence of vertices and faces starting from
x and ending in y, such that every two consecutive elements of this sequence are
incident with each other. Given a set S ⊆ V, we define Rr

G(S) to be the set of all
vertices of G whose radial distance from some vertex of S is at most r.

Let r be a non-negative integer. We say that a parameterized graph problem
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Π has the radial r-coverability property if all YES-instances (G, k), G = (V,E), of
Π encode graphs embeddable in some surface of Euler genus at most r and there
exist such an embedding and a set S ⊆ V such that |S| ≤ r · k and Rr

G(S) = V.
We say that a problem Π is radially r-coverable if either Π or its “complement
in Gr”, namely Π ∩ Gr has the radial r-coverability property, (here, Π = Σ∗ \ Π).
Every problem Π that has the radial r-coverability property is radially r-covervable.
However, the converse is not necessarily true. In particular, the p-Independent
Set problem can easily be seen to be radially r-coverable but it does not have the
radial r-coverability property.

r-quasi-coverable problems. A parameterized graph problem Π has the radial
r-quasi-coverability property if all YES-instances of Π encode graphs embeddable
in some surface of Euler genus at most r and there exist such an embedding and
a set S ⊆ V such that |S| ≤ r · k and tw(G \Rr

G(S)) ≤ r (by tw(G) we denote
the treewidth of G, for the formal definition, see Subsection 2.1.2). We say that a
problem Π is radially r-quasi-coverable, if either Π or Π∩Gr has the radial r-quasi-
coverability property. Every problem Π that has the radial r-quasi-coverability
property is radially r-quasi-covervable. Again, the converse is not necessarily true.
For an example, the p-Cycle Packing problem is radially r-quasi-coverable but
it does not have the radial r-quasi-coverability property.

Thus for a coverable problem we are able to cover the whole graph with O(k)
balls of constant radius, while in a quasi-coverable we can cover with O(k) balls
of constant radius an “essential” part of the graph. Of course, if a problem is r-
coverable then it is also r-quasi-coverable. From now on, for simplicity, we drop
the terms “radial” and “radially” and we simply use the terms “r-quasi-coverability
property” or “r-quasi-coverable”.

Counting Monadic Second Order Logic. We use CMSO [Arnborg et al. 1991;
Courcelle 1990; 1997], an extension of MSO, as a basic tool to express properties
of vertex/edge sets in graphs. As in this section our aim is to define a series of
CMSO-based problem properties, we avoid the formal definitions of CMSO and we
postpone them for Subsection 2.6.

Our first result concerns a parameterized analogue of graph optimization prob-
lems where the objective is to find a maximum or minimum sized vertex or edge
set satisfying a CMSO-expressible property. We now define a class of parameter-
ized problems, called p-min-CMSO problems1, with one problem for each CMSO
sentence ψ on graphs, where ψ has a free vertex set variable S. The p-min-CMSO
problem defined by ψ is denoted by p-min-CMSO[ψ] and defined as follows.

p-min-CMSO[ψ]
Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Is there a subset S ⊆ V such that |S| ≤ k and (G,S) |= ψ?

In other words, p-min-CMSO[ψ] is a subset Π of Σ∗ × Z where for every (x, k) ∈
Σ∗ × Z+, (x, k) ∈ Π if and only if there exists a set S ⊆ V where |S| ≤ k such

1We follow the notation given in the book by Flum and Grohe [Flum and Grohe 2006] and add

“p” in front of names of problems to emphasize that these are parameterized problems.
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that the graph G encoded by x together with S satisfy ψ, i.e., (G,S) |= ψ. For
(x, k) ∈ Σ∗ × Z− we know that (x, k) /∈ Π. In this case, we say that Π is definable
by the sentence ψ and that Π is a p-min-CMSO[ψ].

The definition of p-eq-CMSO[ψ] (resp. p-max-CMSO[ψ]) problem is the same
as the one for p-min-CMSO[ψ] problem with the difference that now we ask that
|S| = k (resp. |S| ≥ k) and that for any (x, k) ∈ Σ∗ × Z− we have that (x, k) ∈ Π.
We can also extend the notion of a p-min/eq/max-CMSO[ψ] problems to edge
versions. In these problems S is a subset of edges instead of a subset of vertices.
All of our results can be straightforwardly extended to this alternate setting. In
particular, an edge set problem on graph G = (V,E) can be transformed to a
vertex subset problem on the edge-vertex incidence graph I(G) of G, which is is
a bipartite graph with vertex bipartition’s V and E with edges between vertices
v ∈ V and e ∈ E if and only if v is incident with e in G. Observe that if G can be
embedded in surface Σ then so does I(G) and even the treewidth of these graphs
only differ by a factor of 2. To make the translation work throughout the paper, it
is sufficient to use the fact that the property of being an incidence graph of a graph
G is expressible in MSO. To avoid complications in our proof we omit the details
for this.

The annotated version Πα of a p-min/eq/max-CMSO[ψ] problem Π is the pa-
rameterized graph problem whose instances are pairs of the form ((G, Y ), k) where
(G, Y ) is an annotated graph and k is a non-negative integer. In the annotated ver-
sion of a p-min/eq-CMSO[ψ] problem, S is additionally required to be a subset
of Y. For the annotated version of a p-max-CMSO[ψ] problem S is not required
to be a subset of Y, but instead of |S| ≥ k we demand that |S ∩ Y | ≥ k. A problem
is an annotated p-min/eq/max-CMSO[ψ] problem if it is the annotated version of
some p-min/eq/max-CMSO[ψ] problem.

Our results. Our first result is the following theorem (the proofs of Theorems 1.1,
1.2, and 1.3 are given in Section 4).

Theorem 1.1. If Π is an r-coverable p-min/max-CMSO[ψ] (respectively p-eq-
CMSO[ψ]) problem, then the annotated version Πα admits a quadratic (respectively
cubic) kernel.

Let us remark that, while a parameterized graph problem is a special case of
its annotated version where all vertices are annotated, the existence of a polyno-
mial kernel for the annotated version does not imply directly that the corresponding
(non-annotated) parameterized graph problem admits a polynomial kernel. Indeed,
a polynomial kernelization for an annotated parameterized graph problem Πα is a
polynomial time algorithm that, given an input (G = (V,E), Y, k) of Πα, computes
an equivalent instance (G′ = (V ′, E′), Y ′, k′) of Πα such that max{|V ′|, k′} = kO(1).
The point here is that even when Y = V, we cannot guarantee that Y ′ = V ′. How-
ever, there is a simple trick resolving this issue, given some additional complexity
conditions. In particular, Theorem 1.1 can be used to prove the following.

Theorem 1.2. If Π is an NP-hard r-coverable p-min/eq/max-CMSO[ψ] prob-
lem and Πα is in NP, then Π admits a polynomial kernel.

Theorems 1.1 and 1.2 provide polynomial kernels for a variety of parameterized
graph problems. However, many parameterized graph problems in the literature
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are known to admit linear kernels on planar graphs. Our next theorem unifies and
generalizes all known linear kernels for parametrized graph problems on surfaces.
To this end we make use of the notion of having Finite Integer Index or, in short, FII.
This term first appeared in the works of [Bodlaender and van Antwerpen-de Fluiter
2001; de Fluiter 1997] and is similar to the notion of finite state [Abrahamson and
Fellows 1993; Borie et al. 1992; Courcelle 1990]. As the definition of the property
of having FII is long, we defer it to Subsection 2.3. Out next result is the following.

Theorem 1.3. If Π is an r-quasi-coverable parameterized graph problem that
has FII, then Π admits a linear kernel.

Our theorems are similar in spirit, yet they have a few differences. In particular,
not every p-min/eq/max-CMSO[ψ] problem has FII. For example, the Indepen-
dent Dominating Set problem is a p-min-CMSO[ψ] problem, but it does not
have FII. Also the class of parameterized graph problems that have FII does not
have a syntactic characterization and hence it may take some more work to apply
Theorem 1.3 than Theorem 1.1. On the other hand, Theorem 1.3 applies to r-
quasi-coverable problems and yields linear kernels. That way, it unifies and implies
results presented in [Alber et al. 2006; Alber et al. 2004; Bodlaender and Penninkx
2008; Bodlaender et al. 2008; Chen et al. 2007; Fomin and Thilikos 2004; Guo and
Niedermeier 2007b; Guo et al. 2010; Kanj et al. 2011; Lokshtanov et al. 2011; Moser
and Sikdar 2009] as a corollary.

At high level, the proofs of our theorems consist of combinatorial decomposi-
tion and algebraic reductions. The combinatorial part shows how a graph can be
decomposed into pieces with specific properties, and the algebraic reductions part
explains how these pieces can be reduced. The important tool in both parts is the
notion of protrusion, i.e. a subset of vertices of a graph, inducing a graph of con-
stant treewidth and separated from the remaining part of the graph by a constant
number of vertices. In the algebraic reductions part of the proof, we show that suf-
ficiently large protrusions can be replaced by equivalent protrusions of smaller size.
For CMSO problems algebraic reduction step is much more technical and involved
than for FII. Here we work with annotated problems and perform replacements in
several stages.

In the combinatorial part, the result concerning quasi-coverable problems is
roughly as follows. Suppose that after deleting k constant radius balls from a
bounded-genus graph G the remaining part of G has constant treewidth. Then
either G has a protrusion of sufficiently large size (and in this case we can apply
protrusion reduction to reduce the instance), or G has O(k) vertices. The proof of
this result is based on a new treewidth-obstruction lemma for graphs embedded on
a surface of bounded genus, which is interesting in its own right. More precisely
the lemma states that if a graph of bounded genus has two vertices which are far
apart (in the radial distance) and cannot be separated by a small separator, then
the treewidth of the graph is large. Concerning coverable problems, we show that
every bounded genus graph G whose vertices can be covered by k balls of constant
radius admits a protrusion decomposition. A protrusion decomposition is a parti-
tion of the vertex set into O(k) sets, one of these sets is a set S of size O(k) and
the other sets are protrusions separated from each other by S. Combined with pro-
trusion replacement rules for CMSO problems, such a decomposition implies the
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existence of a polynomial kernel for every coverable CMSO problem.

The remaining part of this paper is organized as follows. In the next section
(Section 2) we give a series of definitions on basic notions that are necessary to
describe our results. In Section 3 we give a proof of a variant of the classical
Courcelle’s Theorem which we use in the proofs of our results. In Section 4 we
present our meta-algorithmic framework for kernelization and explain how our main
results are derived from a series of algorithmic and combinatorial properties. The
algorithmic properties are proved in Section 5 while our combinatorial results are
proven in Section 6. Some criterion for proving that a problem in graphs has FII
are given in Section 7 and in Section 8 we give an extended exposition of how
our results can be applied to concrete problems. In Section 9, we conclude with
some open problems and further research directions. At the end of the paper, we
append a short compendium of problems for which linear or polynomial kernels are
consequences of our results.

2. DEFINITIONS AND NOTATIONS

In this section we give necessary definitions, set up notations and derive some
preliminary results that we make use of in proving the main results of the paper.

2.1 Preliminaries

In this section we define some concepts that we use in the rest of this paper.
Given a graph G = (V,E) we use the notation V (G) and E(G) for V and E
respectively. Given a set S ⊆ V (G), we define ∂G(S) as the set of vertices in S
that have a neighbor in V \ S. For a set S ⊆ V (G), the neighbourhood of S in
G is NG(S) = ∂G(V (G) \ S). We also define the closed neighborhood of S in G
as NG[S] = S ∪ ∂G(V (G) \ S). When it is clear from the context, we omit the
subscripts.

Let G = (V,E) be a graph. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V
and E′ ⊆ E. The subgraph G′ is called an induced subgraph of G if E′ = {{u, v} ∈
E | u, v ∈ V ′}. In this case, G′ is also called the subgraph induced by V ′ and is
denoted by G[V ′]. Given a graph G and a set S ⊆ V, we denote by G \S the graph
G[V \ S]. If S ⊆ E, we denote G \ S = (V,E \ S). We also use the term (x, y)-path
for a path in G that has x and y as endpoints.

Throughout this paper we use Z, Z+ and Z− for the sets of integers, non-negative
and non-positive integers respectively. Finally, we use N for the set of positive
integers.

2.1.1 Parameterized algorithms and kernels. An instance of a parameterized
problem consists of (x, k), where k is called the parameter. Thus a parameter-
ized problem Π is a subset of Σ∗ × Z for some finite alphabet Σ such that for all
(x1, k1), (x2, k2) ∈ Σ∗×Z with k1, k2 < 0 it holds that (x1, k1) ∈ Π ⇐⇒ (x2, k2) ∈
Π. A central notion in parameterized complexity is fixed parameter tractability,
which means, for a given instance (x, k), solvability in time f(k) · p(|x|), where f
is an arbitrary function of k and p is a polynomial in the input size. The notion of
kernelization is formally defined as follows.
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Definition 2.1. [Kernelization] Let Π ⊆ Σ∗ × Z be a parameterized problem
and g be a computable function. We say that Π admits a kernel of size g if there
exists an algorithm K, called kernelization algorithm, or, in short, a kerneliza-
tion, that given (x, k) ∈ Σ∗ × Z+, outputs, in time polynomial in |x| + k, a pair
(x′, k′) ∈ Σ∗ × Z+ such that

(a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π, and

(b) max{|x′|, k′} ≤ g(k).

For every (x, k) ∈ Σ∗ × Z−, the algorithm outputs a trivial equivalent instance.
When g(k) = kO(1) or g(k) = O(k) then we say that Π admits a polynomial or
linear kernel respectively.

In this paper, we study parameterized problems on graphs. However, in many
cases we have to deal with annotated graph problems whose input is a pair (G,S),
where S is a set of annotated vertices of G. For such problems the task is to find a
solution that is contained in S. For this reason, we use the term parameterized graph
problem for every subset Π of Σ∗ × Z, where in each instance I = (x, k) ∈ Σ∗ × Z
the string x is encoding either a graph G = (V,E) or a pair (G,S) with S ⊆ V and
the integer k encodes the parameter.

2.1.2 Tree-width. Let G = (V,E) be a graph. A tree decomposition of G is a
pair (T,X = {Xt}t∈V (T )) where T is a tree and X is a collection of subsets of V
such that:

—∀e = {u, v} ∈ E, ∃t ∈ V (T ) : {u, v} ⊆ Xt and

—∀v ∈ V , T [{t | v ∈ Xt}] is non-empty and connected.

We call the vertices of T nodes and the sets in X bags of the tree decomposition
(T,X ). The width of (T,X ) is equal to max{|Xt| − 1 | t ∈ V (T )} and the treewidth
of G = (V,E) is the minimum width over all tree decompositions of G. We denote
the treewidth of a graph G by tw(G).

A nice tree decomposition is a triple (T,X , r) where (T,X ) is a tree decomposition
where the tree T is rooted on some vertex r ∈ V (T ) and the following conditions
are satisfied:

—Every node of the tree T has at most two children;

—if a node t has two children t1 and t2, then Xt = Xt1 = Xt2 (we call t a join
node); and

—if a node t has one child t1, then either |Xt| = |Xt1 | + 1 and Xt1 ⊂ Xt (in this
case we call t1 introduce node) or |Xt| = |Xt1 | − 1 and Xt ⊂ Xt1 (in this case we
call t1 forget node).

It is possible to transform a given tree decomposition (T,X ) into a nice tree decom-
position (T ′,X ′, r) where the root r is any vertex of T in time O(|V |+ |E|) [Bod-
laender 1996].

2.2 Boundaried Graphs

Here we define the notion of boundaried graphs and various operations on them.
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Definition 2.2. [Boundaried Graphs] A boundaried graph is a graph G with
a set B ⊆ V (G) of distinguished vertices and an injective labelling λ from B to
the set Z+. The set B is called the boundary of G and the vertices in B are
called boundary vertices or terminals. Given a boundaried graph G, we denote
its boundary by δ(G), we denote its labelling by λG, and we define its label set
by Λ(G) = {λG(v) | v ∈ δ(G)}. Given a finite set I ⊆ Z+, we define FI to
denote the class of all boundaried graphs whose label set is I. Similarly, we define
F⊆I =

⋃
I′⊆I FI′ . We also denote by F the class of all boundaried graphs. Finally

we say that a boundaried graph is a t-boundaried graph if Λ(G) ⊆ {1, . . . , t}.
Definition 2.3. [Gluing by ⊕] Let G1 and G2 be two boundaried graphs. We

denote by G1⊕G2 the graph (not boundaried) obtained by taking the disjoint union
of G1 and G2 and identifying equally-labeled vertices of the boundaries of G1 and
G2. In G1 ⊕ G2 there is an edge between two labeled vertices if there is either an
edge between them in G1 or in G2.

Definition 2.4. Let G = G1⊕G2 where G1 and G2 are boundaried graphs. We
define the glued set of Gi as the set Bi = λ−1

Gi
(Λ(G1) ∩ Λ(G2)), i = 1, 2. For a

vertex v ∈ V (G1) we define its heir h(v) in G as follows: if v 6∈ B1 then h(v) = v,
otherwise h(v) is the result of the identification of v with an equally labeled vertex
in G2. The heir of a vertex in G2 is defined symmetrically. The common boundary
of G1 and G2 in G is equal to h(B1) = h(B2) where the evaluation of h on vertex
sets is defined in the obvious way. The heir of an edge {u, v} ∈ E(Gi) is the edge
{h(u), h(v)} in G.

Let G be a class of (not boundaried) graphs. By slightly abusing notation we say
that a boundaried graph belongs to a graph class G if the underlying graph belongs
to G.

2.3 Finite Integer Index

Definition 2.5. [Canonical equivalence on boundaried graphs.] Let Π be
a parameterized graph problem whose instances are pairs of the form (G, k). Given
two boundaried graphs G1, G2 ∈ F , we say that G1≡ΠG2 if Λ(G1) = Λ(G2) and
there exist a transposition constant c ∈ Z such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ Π⇔ (G2 ⊕ F, k + c) ∈ Π.

Note that the relation ≡Π is an equivalence relation. Observe that c could be
negative in the above definition. This is the reason we extended the definition of
parameterized problems to include negative parameters also.

Next we define a notion of “transposition-minimality” for the members of each
equivalence class of ≡Π .

Definition 2.6. [Progressive representatives] Let Π be a parameterized graph
problem whose instances are pairs of the form (G, k) and let C be some equivalence
class of ≡Π. We say that J ∈ C is a progressive representative of C if for every
H ∈ C there exists c ∈ Z−, such that

∀(F, k) ∈ F × Z (H ⊕ F, k) ∈ Π⇔ (J ⊕ F, k + c) ∈ Π. (1)

The following lemma guaranties the existence of a progressive representative for
each equivalence class of ≡Π.
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Lemma 2.7. Let Π be a parameterized graph problem whose instances are pairs of
the form (G, k). Then each equivalence class of ≡Π has a progressive representative.

Proof. We first examine the case where every instance of Π with a negative
valued parameter is a NO-instance.

Let C be an equivalence class of ≡Π. We distinguish two cases:

Case 1. Suppose first that for every H ∈ C, every F ∈ F , and every integer k ∈ Z
it holds that (H ⊕ F, k) 6∈ Π. Then we set J to be an arbitrary chosen graph in C
and c = 0. In this case, it is obvious that (1) holds for every (F, k) ∈ F × Z.
Case 2. Suppose now that for some H0 ∈ C, F0 ∈ F , and k0 ∈ Z it holds that
that (H0 ⊕ F0, k0) ∈ Π. Among all such triples, choose the one where the value of
k0 is minimized. Since every instance of Π with a negative valued parameter is a
NO-instance, it follows that k0 is well defined and is non-negative. We claim that
H0 is a progressive representative.

Let H ∈ C. As H0 ≡Π H, there is a constant c such that

∀(F, k) ∈ F × Z (H ⊕ F, k) ∈ Π⇔ (H0 ⊕ F, k + c) ∈ Π.

It suffices to prove that c ≤ 0. Assume for a contradiction that c > 0. Then, by
taking k = k0 − c and F = F0, we have that

(H ⊕ F0, k0 − c) ∈ Π⇔ (H0 ⊕ F0, k0 − c+ c) ∈ Π.

Since (H0⊕F0, k0) ∈ Π it follows that (H⊕F0, k0−c) ∈ Π contradicting the choice
of H0, F0, k0.

Suppose now that every instance of Π with a negative valued parameter is a
YES-instance. The proof of this case is symmetric to the previous one: just replace
every occurrence of “∈ Π” with a “ 6∈ Π” and every occurrence of “ 6∈ Π” with “∈ Π”
and the “NO-instance” with “YES-instance”.

Notice that two boundaried graphs with different label sets belong to different
equivalence classes of ≡Π . Hence for every equivalence class C of ≡Π there exists
some finite set I ⊆ Z+ such that C ⊆ FI . We are now in position to give the
following definition.

Definition 2.8. [Finite Integer Index] A parameterized graph problem Π
whose instances are pairs of the form (G, k) has Finite Integer Index (or simply
has FII), if and only if for every finite I ⊆ Z+, the number of equivalence classes
of ≡Π that are subsets of FI is finite. For each I ⊆ Z+, we define SI to be a set
containing exactly one progressive representative of each equivalence class of ≡Π

that is a subset of FI . We also define S⊆I =
⋃
I′⊆I SI′ .

2.4 An alternate way to define extended formulation of a parameterized problem

Parameterized problems usually have been defined as subsets of Σ∗ × Z+. That
is, a parameterized problem Π is a subset of Σ∗ × Z+. However, in this paper we
define a parameterized problem Π to be a subset of Σ∗ × Z thus allowing negative
parameters. An alternate route to obtain all the results in this paper without
changing the classical notion of a parameterized problem would be to define an
extension of a parameterized problem as follows. For Π ⊆ Σ∗ × Z+, we say that
Πext ⊆ Σ∗ × Z is an extension of Π, if
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—for all k ≥ 0, (x, k) ∈ Πext if and only if (x, k) ∈ Π, and

—for all (x1, k1), (x2, k2) ∈ Σ∗ × Z with k1, k2 < 0 it holds that (x1, k1) ∈ Π if and
only if (x2, k2) ∈ Π.

Observe that a parameterized problem Π ⊆ Σ∗ × Z+ has two extensions based on
whether all (x, k), k < 0, is a NO-instance or an YES-instance. For an extension
Πext we could now use the definition of finite integer index used in this paper. For
a parameterized problem Π, that is a subset of Σ∗ × Z+, we say that Π has finite
integer index if at least one of the two extensions of Π has finite integer index.
These simple modifications will allow us to work with the traditional definition of a
parameterized problem. However, for the clarity of presentation and to avoid going
between Π and Πext throughout the paper, we decided to modify the definition of
a parameterized problem to allow negative parameters.

2.5 Structures and its properties

We first define the notions of structure and arity of a structure.

Definition 2.9. [Structure and arity] A structure is a tuple where the first
element of the tuple is a graph G and the remaining elements of the tuple are either
subsets of V, subsets of E, vertices in G or edges in G. The arity of the structure
is the number of elements in the tuple.

Given a structure α of arity p and an integer i ∈ {1, . . . , p} we let α[i] denote the
i’th element of α. The graph of a structure α is denoted by Gα and it appears as the
first element of the structure, that is Gα = α[1]. Appending a subset S of V (Gα)
to a structure α of arity p produces a new structure, denoted by α′ = α � S, of
arity p+ 1 with the first p elements of α′ being the elements of α and α′[p+ 1] = S.
Appending an edge set, a vertex, or an edge to a structure is defined similarly. For
example, consider the structure α = (Gα, S, e), of arity 3 where S ⊆ V (Gα) and
e ∈ E(Gα). Let also S′ be some subset of V (Gα) and let u ∈ V (Gα). Appending
S′ to α results to the structure α′ = α � S′ = (Gα, S, e, S

′), while appending u to
α′ results to the structure α′′ = α′ � u = (Gα, S, e, S

′, u).
Next we define the notions of type of a structure and property of structures.

Definition 2.10. [Type of structure] The type of a structure of arity p is
another tuple of arity p, denoted by type(α), where the first element type(α)[1] is
graph, while for every i ∈ {2, . . . , p}, type(α)[i] is vertex, edge, vertex set or edge
set according to what the i’th element of α is. Note that we distinguish between a
set containing a single vertex or edge from just a single vertex or edge.

Definition 2.11. [Properties of structures] A property of structures is a
function σ that assigns to each structure a value in {true, false}.

2.6 Counting Monadic Second Order Logic and its properties

The syntax of Monadic Second Order Logic (MSO) of graphs includes the logical
connectives ∨, ∧, ¬,⇔,⇒, variables for vertices, edges, sets of vertices, and sets of
edges, the quantifiers ∀, ∃ that can be applied to these variables, and the following
five binary relations:

(1) u ∈ U where u is a vertex variable and U is a vertex set variable;
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(2) d ∈ D where d is an edge variable and D is an edge set variable;

(3) inc(d, u), where d is an edge variable, u is a vertex variable, and the interpre-
tation is that the edge d is incident with the vertex u;

(4) adj(u, v), where u and v are vertex variables and the interpretation is that u
and v are adjacent;

(5) equality of variables representing vertices, edges, sets of vertices, and sets of
edges.

In addition to the usual features of monadic second-order logic, if we have atomic
sentences testing whether the cardinality of a set is equal to q modulo r, where q
and r are integers such that 0 ≤ q < r and r ≥ 2, then this extension of the MSO
is called the counting monadic second-order logic. Thus CMSO is MSO with the
following atomic sentence for a set S:

cardq,r(S) = true if and only if |S| ≡ q (mod r).

We refer to [Arnborg et al. 1991; Courcelle 1990; 1997] for a detailed introduction
on CMSO.

A CMSO sentence ψ where some of the variables are free can be evaluated on a
structure α by instantiating the free variables of ψ by the elements of α. In order
to determine which variables of ψ are instantiated by which elements of α we need
to introduce some conventions.

In a CMSO-sentence ψ, each free variable x has a rank rx ∈ N \ {1} associated
to it. Thus a CMSO-sentence ψ can be seen as a string accompanied by a tuple of
integers containing one integer rx for each free variable x of ψ.

We say that type(α) matches ψ if the arity of α is at least max rx, where the
maximum is taken over each free variable x of ψ and for each free variable x of
ψ, type(α)[rx] corresponds to the kind of the variable x. For an example, if x is a
vertex set variable, then type(α)[rx] = vertex set. Finally we say that α matches ψ
if type(α) matches ψ. For each free variable x of ψ and a structure α that matches
ψ the corresponding element of x in α is α[rx].

Definition 2.12. [Property σψ] Each CMSO-sentence ψ defines a property
σψ on structures as follows: For every structure α that does not match ψ the value
of σψ(α) is equal to false, otherwise the value of σψ(α) is the result of the evaluation
of ψ with each free variable x of ψ instantiated by α[rx].

Note that it is not necessary that every element of α corresponds to some variable
of ψ. However, it is still possible that the sentence ψ can be evaluated on the
structure α and, in this case, the evaluation of the sentence does not depend on all
the elements of the structure.

A property σ is CMSO-definable if there exists a sentence ψ such that σ = σψ.
In this case we say that the CMSO-sentence ψ defines σ.

Observation 1. For every CMSO-definable property σ there exists a CMSO-
sentence ψ that defines σ and has the following additional features.

(1 ) Each variable of ψ has a unique name.

(2 ) ψ does not use the adj operator,
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(3 ) ψ does not have conjunctions,

(4 ) ψ does not have universal quantifiers.

Proof. Let ψ′ be a CMSO-sentence defining σ. We construct another CMSO-
sentence ψ defining σ so that ψ satisfies Properies (1)–(4). For Property (1), we
rename each variable so that it has a unique name. When we rename a free variable
x of ψ of rank rx to x′ we let x′ have rank rx′ = rx in ψ′.

For Property (2), we replace each occurrence of adj(x, x′) by ∃x′′ ∈ E : inc(x′′, x)∧
inc(x′′, x′). For Properties (3) and (4), just use the fact that ∧ and ∀ can be ex-
pressed using ∨, ∃, and ¬ by De Morgan’s laws.

We call CMSO-sentences satisfying Properties (1)–(4) of Observation 1 normalized
CMSO-sentences.

2.7 Boundaried structures

In this subsection we extend the notion of boundaried graphs to boundaried struc-
tures.

Definition 2.13. [Boundaried structure] A boundaried structure is a tuple
where the first element is a boundaried graph G and the remaining elements are
either subsets of V (G), subsets of E(G), vertices in V (G), edges in E(G), or the
symbol ?. For a boundaried structure α, α[i] is the i’th element of α and Gα = α[1]
is always a boundaried graph.

Definition 2.14. [Type of a boundaried structure] The type of the bound-
aried structure is defined similarly to the type of a structure; for a boundaried
structure α of arity p, type(α) is a tuple of arity p, where the first element of
type(α) is boundaried graph, while for every i ∈ {2, . . . , p}, type(α)[i] is vertex,
edge, ?, vertex set, or edge set according to what α[i] is.

Definition 2.15. [Type matching] Given a CMSO-formula ψ, we say that
type(α) matches ψ if the arity of α is at least max rx, where the maximum is taken
over each free variable x of ψ and for every free variable x of ψ

—if x is a vertex variable then type(α)[rx] ∈ {?, vertex}
—if x is a edge variable then type(α)[rx] ∈ {?, edge}
—if x is a vertex set variable then type(α)[rx] = vertex set

—if x is a edge set variable then type(α)[rx] = edge set

We say that α matches ψ if type(α) matches ψ.

We denote by A the set of all boundaried structures. Given some p ∈ N, we
denote by Ap the set of all boundaried structures of arity p and given a finite set
I ⊆ Z+ we denote by ApI the set of all boundaried structures of arity p whose
boundaried graph has label set I. Notice that according to this definition, A1

I is
essentially the same as FI . Finally, we say that a boundaried structure α is a
t-boundaried structure if Λ(Gα) ⊆ {1, . . . , t}.

Definition 2.16. [Compatiblity] For two boundaried structures α and β we
say that α and β are compatible, we denote this by α ∼c β, if the following condi-
tions are satisfied.
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—α and β have the same arity p.

—For every i ≤ p, type(α)[i] = type(β)[i] 6= ? or exactly one out of type(α)[i],
type(β)[i] is a vertex or edge and exactly one of them is a ?.

—For every i ∈ {2, . . . , p} such that both α[i] and β[i] are vertices, α[i] ∈ δ(Gα),
β[i] ∈ δ(Gβ) and λGα(α[i]) = λGβ (β[i]).

—For every i such that both α[i] and β[i] are edges, α[i] ∈ E(Gα[δ(Gα)]), β[i] ∈
E(Gβ [δ(Gβ)]) and λGα(α[i]) = λGβ (β[i]) (here we extend the function λ to sets
in the obvious way).

Definition 2.17. [Gluing of boundaried compatible structures] When
two boundaried structures α and β are compatible, the operation of gluing α and β
is defined as follows.

—α⊕ β is a structure γ with the same arity, say p, as α and β.

—Gγ = Gα ⊕Gβ .
—For every i ∈ {2, . . . , p} such that both α[i] and β[i] are both vertex sets or both

edge sets, we define γ[i] = h(α[i]) ∪ h(β[i]).

—For every i ∈ {2, . . . , p} such that both α[i] and β[i] are vertices or both are edges
we have h(α[i]) = h(β[i]) (by compatibility) and we set γ[i] = h(α[i]) = h(β[i]).
If α[i] = ? we set γ[i] = h(β[i]) whereas if β[i] = ? we set γ[i] = h(α[i]). By
compatibility, exactly one of these cases apply for every i.

3. A VARIANT OF COURCELLE’S THEOREM

In this subsection we give a proof of a variant of the classical Courcelle’s Theo-
rem [Courcelle 1990; 1992; 1997], see also [Courcelle and Engelfriet 2012], which we
use in the proofs of our results.

We define the compatibility equivalence relation ≡c on boundaried structures as
follows. We say that α ≡c β if for every boundaried structure γ,

α ∼c γ ⇐⇒ β ∼c γ.

Clearly ≡c is an equivalence relation. We now make the following observation.

Observation 2. For every arity p and finite set I ⊆ Z+, the relation ≡c has a
finite number of equivalence classes when restricted to ApI .

Proof. Define the compatibility signature of a boundaried structure α to be a
string s(α) that encodes the following information about α:

—Λ(Gα)

—type(α).

—For every i such that α[i] is a vertex, s(α) encodes whether α[i] ∈ δ(Gα), and if
so, it encodes λGα(α[i]).

—For every i such that α[i] is an edge, s(α) encodes whether α[i] ∈ E(Gα[δ(Gα)]),
and if so, it also encodes λGα(α[i]).

Clearly, for every fixed I and p, the compatibility signature s(α) can be encoded
by a number of bits that depends only on I and p and hence there are only finitely
many different compatibility signatures for boundaried structures inApI . It is easy to
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verify that whether a boundaried structure α ∈ ApI is compatible with a boundaried
structure γ ∈ Ap can be deduced solely from γ and the compatibility signature of α.
Thus, if two boundaried structures α and β have the same compatibility signatures
then α ≡c β. This completes the proof.

Definition 3.1. [Canonical equivalence on structures.] For a property σ
of structures, we define the corresponding canonical equivalence relation ≡σ on
boundaried structures. For two boundaried structures α and β we say α ≡σ β if
α ≡c β and for all boundaried structures γ compatible to α (and thus also to β),
we have

σ(α⊕ γ) = true⇔ σ(β ⊕ γ) = true.

It is easy to verify that ≡σ is an equivalence relation. We say that a property σ of
structures is finite state if, for every p ∈ N and I ⊆ Z+, the equivalence relation ≡σ
has a finite number of equivalence classes when restricted to ApI . Given a CMSO-
sentence ψ, we say that ≡σψ is the canonical equivalence relation corresponding to
ψ and we simply denote this relation by ≡ψ.

In our arguments, the following lemma will be crucial. While it is an implicit
consequence of the results [Arnborg et al. 1991; Courcelle 1990; 1997; 1992; Abra-
hamson and Fellows 1993; Borie et al. 1992; Downey and Fellows 1998], in the rest
of this section, we give a complete and self-contained proof.

Lemma 3.2. Every CMSO-definable property on structures has finite state.

Proof. Our aim is to prove that for every p ∈ N and finite I ⊆ Z+, and CMSO-
definable property σ, the equivalence relation ≡σ has a finite number of equivalence
classes when restricted to ApI . For this we will define, for every normalized CMSO-
sentence ψ, a function sgnψ that takes as input a boundaried structure and outputs
a string in {0, 1}∗. To prove the result it suffices to show the following two properties
of the function sgnψ:

(i) for all p ∈ N, J ⊆ Z+, the set sgnψ(ApI) is finite.

(ii) for every two boundaried structures α and β, if sgnψ(α) = sgnψ(β) then α ≡σ β.
We need the following claim:

Decoder Claim: In order to prove Property (ii), it is enough to prove that for every
CMSO-sentence ψ defining a property σ, there exist two functions

decc : {0, 1}∗ ×Ap → {true, false}
decψ : {0, 1}∗ ×Ap → {true, false}

such that for every pair α ∈ ApI and γ ∈ Ap we have that

decc(sgnψ(α), γ) = true ⇐⇒ α ∼c γ. (2)

and for every pair α ∈ ApI and γ ∈ Ap with α ∼c γ it holds that

decψ(sgnψ(α), γ) = true ⇐⇒ σ(α⊕ γ) = true. (3)

Proof of Decoder Claim: For the proof of the above claim, assume that for some
α, β ∈ ApI , it holds that

sgnψ(α) = sgnψ(β). (4)
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Then for all γ ∈ Ap, it holds that

α ∼c γ ⇔(2) decc(sgnψ(α), γ) = true⇔(4) decc(sgnψ(β), γ) = true⇔(2) β ∼c γ,

hence α ≡c β. Further, for all γ ∈ Ap such that α ∼c γ it holds that

σ(α⊕ γ) = true ⇔(3) decψ(sgnψ(α), γ) = true

⇔(4) decψ(sgnψ(β), γ) = true

⇔(3) σ(β ⊕ γ) = true,

and thus α ≡σ β, as required. This completes the proof of the decoder claim.

We start by partially defining the outputs of sgnψ as follows. If α does not
match ψ then sgnψ(α) is the null string, denoted by ε, otherwise, sgnψ encodes
the compatibility signature of α (as defined in the proof of Observation 2) and
additional information about α that will be specified later in the proof.

The existence of a function decc satisfying (2) follows directly from the proof of
Observation 2.

We define the function decψ such that decψ(ε, γ) = false for every boundaried
structure γ. Also decψ(sgnψ(α), γ) = false whenever type(α ⊕ γ) does not match
ψ. Observe that this can be checked using the compatibility signature of α (that is
already encoded in sgnψ(α)) and γ. Thus decψ satisfies (3) for all pairs α, γ such
that α⊕ γ does not match ψ.

In the remainder of the proof, we will complete the definition of sgnψ and we will
define decψ for all pairs sgnψ(α), γ such that α⊕ γ match ψ. This should be done
in a way such that (i) holds for sgnψ and (3) holds for decψ.

We now define sgnψ and decψ and prove that they have the claimed properties
for the case where α matches ψ and ψ is an atomic CMSO-sentence. An atomic
CMSO-sentence is a sentence of the form “u ∈ S”, “e ∈ S”, “u = v”, “e = d”,
“inc(d, u)”, or “cardq,r(S)” where S is a set variable, u and v are vertex variables,
e and d are edge variables and r ∈ N \ {1} and q ∈ {0, . . . , r − 1}. In this case, we
append to sgnψ(α) certain information about α that

(i) encodes G[δ(Gα)],

(ii) encodes λGα ,

(iii) for every vertex variable x, encodes whether α[rx] = ? or not (recall that rx
is the rank of x). If α[rx] 6= ?, then sgnψ(α) encodes whether α[rx] ∈ δ(Gα)
and, if this is the case, also encodes λGα(α[rx]),

(iv) for every edge variable x, encodes whether α[rx] = ? or not. If α[rx] 6= ?,
sgnψ(α) also encodes whether α[rx] ⊆ δ(Gα) and if this is the case, also
encodes λGα(α[rx]),

(v) for every vertex set variable x, encodes λGα(α[rx] ∩ δ(Gα)),

(vi) for every edge set variable x, encodes λGα(α[rx] ∩ E(δ(Gα))) (here λGα is
extended to sets of unordered pairs in the natural way),

(vii) for every vertex variable x such that α[rx] 6= ? and every vertex set variable
x′, encodes whether α[rx] ∈ α[rx′ ].

(viii) for every edge variable x such that α[rx] 6= ? and every edge set variable x′,
encodes whether α[rx] ∈ α[rx′ ].
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(ix) for every pair of vertex variables x, x′ where α[rx] 6= ? 6= α[rx′ ], encodes
whether {α[rx], α[rx′ ]} ∈ E(Gα),

(x) for every vertex variable x and every edge variable x′, where α[rx] 6= ? 6=
α[rx′ ], encodes whether α[rx] ∈ α[rx′ ] (i.e, whether α[rx′ ] is incident to α[rx]),

(xi) if ψ is “cardq,r(x)” where x is either a vertex set or an edge set variable,
encodes |α[rx]| (mod r),

(xii) for every pair of vertex variables x, x′ where α[rx] 6= ? 6= α[rx′ ], encodes
whether α[rx] = α[rx′ ],

(xiii) for every pair of edge variables x, x′ where α[rx] 6= ? 6= α[rx′ ], encodes whether
α[rx] = α[rx′ ],

To see that sgnψ(α) satisfies Property (i), it is enough to verify that, for every
α ∈ ApI , the length of sgnψ(α) is upper bounded by a function depending only the
atomic formula ψ, the integer p, and the set I.

We now define decψ(sgnψ(α), γ) for the case where ψ is an atomic CMSO-formula
and α ⊕ γ matches ψ and prove that decψ satisfies (3) for this case. For this, we
distinguish cases depending on the kind of ψ. During our case analysis, we use
quotes “ ” in order to delimit the string that corresponds to a formula and we use
the symbol ◦ to denote the concatenation operation between strings. For example,
if ψ = “∃x∀y ¬φ(x, y)”, then ψ = “∃x∀y” ◦ “¬φ(x, y)”.

We give a detailed proof in the case where ψ = “x ∈ x′”. We also provide a
brief description of the proofs for the remaining cases that can all be formalized in
a similar fashion.

Case 1: ψ = “x ∈ x′” where x is a vertex variable and x′ is a vertex set variable.
Then decψ(sgnψ(α), γ) is computed by the procedure in Table 3:

if α[rx] 6= ? (using the compatibility signature of α)
then if α[rx] ∈ α[rx′ ] (using (vii))

then return true
else if α[rx] ∈ δ(Gα) (using (iii))

then if λ−1
Gγ

(λGα (α[rx])) ∈ γ[rx′ ] (using (iii))

then return true
else return false

else return false
else if γ[rx] ∈ γ[rx′ ] (notice that γ[rx] 6= ?, since α ∼c γ)

then return true
else if γ[rx] ∈ δ(Gγ)

then if λ−1
Gα

(λGγ (γ[rx])) ∈ α[rx′ ] (using (iii) and (v))

then return true
else return false

else return false

Table I. The procedure of the Case 1 in the proof of Lemma 3.2.

It can be easily verified that the above procedure outputs true if and only if
(α⊕ γ)[rx] ∈ (α⊕ γ)[rx′ ] that is, if and only if σ(α⊕ γ) = true. Furthermore, every
query of the above procedure can be answered by inspecting sgnψ(α) and γ. The
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numbers in the parentheses in the above procedure correspond to the items of the
encoding of sgnψ(α) that are used to answer each query about α. This completes
the proof of Case 1.

Case 2: ψ = “x ∈ x′” where x is an edge variable and x′ is a edge set variable.
Here the function decψ should decide whether σ(α⊕ γ) is true which, in this case,
is the same as asking whether (α⊕ γ)[rx] ∈ (α⊕ γ)[rx′ ] is true. This last question
is equivalent to asking whether one of the following holds

α[rx] ∈ α[rx′ ] (5)

γ[rx] ∈ γ[rx′ ] (6)

α[rx] ∈ E(Gα[δ(Gα)]) and λGα(α[rx]) ∈ λGγ (γ[rx′ ] ∩ E(Gγ [δ(Gγ)])) (7)

γ[rx] ∈ E(Gγ [δ(Gγ)]) and λGγ (γ[rx]) ∈ λGα(γ[rx′ ] ∩ E(Gα[δ(Gα)])) (8)

Each query in (5)–(8) can be answered given γ and sgnψ(α) (but no access to α
itself).

Case 3: ψ = “x = x′” where both x and x′ are vertex variables. Here the function
decψ should decide whether σ(α ⊕ γ) is true which, in this case, is the same as
asking whether (α ⊕ γ)[rx] = (α ⊕ γ)[rx′ ] is true. This last question is equivalent
to asking whether one of the following holds

α[rx] = α[rx′ ] 6= ? (9)

γ[rx] = γ[rx′ ] 6= ? (10)

α[rx] ∈ δGα and γ[rx′ ] ∈ δGγ and λGα(α[rx]) = λGγ (γ[rx′ ]) (11)

α[rx′ ] ∈ δGα and γ[rx] ∈ δGγ and λGα(α[rx′ ]) = λGγ (γ[rx]). (12)

The above is correct because α ∼c γ implies that at most one of α[rx] and γ[rx] is
a ? and, whenever neither of them are ?’s, it holds that α[rx] ∈ δGα , γ[rx] ∈ δGγ ,
and λGα(α[rx]) = λGγ (γ[rx]) and the same holds for α[rx′ ] and γ[rx′ ]. Again, each
query in (9)–(12) can be answered given γ and sgnψ(α).

Case 4: ψ = “x = x′” where both x and x′ are edge variables. This case is very
similar to the Case 3 and is omitted.

Case 5: ψ = “inc(x, x′)” where x is an edge variable and x′ is a vertex variable.
Again, here the function decψ should decide whether σ(α ⊕ γ) is true and this is
equivalent to (α ⊕ γ)[rx′ ] ⊆ (α ⊕ γ)[rx]. This last question is equivalent to asking
whether one of the following holds

? 6= α[rx′ ] ⊆ α[rx] (13)

? 6= γ[rx′ ] ⊆ γ[rx] (14)

α[rx′ ] ∈ δ(Gα) and λGα(α[rx′ ]) ∈ λGγ (γ[rx]) (15)

γ[rx′ ] ∈ δ(Gγ) and λGγ (γ[rx′ ]) ∈ λGα(α[rx]) (16)

As in Case 3, the above is correct because of the fact that α ∼c γ and it is enough
to verify that each query in (13)–(16) can be answered given γ and sgnψ(α).

Case 6: ψ = “cardq,r(x)” where x is a vertex set variable. The function decψ
should decide whether σ(α⊕ γ) is true which in this case means that

|(α⊕ γ)[rx]| ≡ q (mod r).
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This, in turn, is equivalent to

|α[rx]|+ |γ[rx]| − |λGα(α[rx] ∩ δ(Gα)) ∩ λGγ (γ[rx] ∩ δ(Gγ))| ≡ q (mod r) (17)

It is easy to see that (17) can be evaluated given γ and sgnψ(α). This proves
Property (ii), therefore the statement of the lemma holds when ψ is an atomic
sentence.

To complete the proof we now complete the definition of sgnψ for every non-
atomic normalized CMSO-sentence ψ and we will define decψ for all pairs sgnψ(α),
γ such that α⊕ γ match ψ. As in the case of atomic formulas, this should be done
in a way such that (i) holds for sgnψ and (3) holds for decψ.

By using induction, we assume that sgnψ′ and decψ′ have been defined such
that sgnψ′ satisfies Property (i) and decψ′ satisfies (3) for every normalized CMSO-
sentence ψ′ and has length smaller than ψ. This, together with the decoder claim
implies Property (ii) for ψ′, namely that

∀α′, β′ ∈ A sgnψ′(α′) = sgnψ′(β′)⇒ α′ ≡ψ′ β′. (18)

One of the following cases applies:

Case 1. ψ = “¬” ◦ ψ′, where both ψ and ψ′ have the same free variables whose
rank is the same in ψ and ψ′. From the induction hypothesis, we know that there
exist sgnψ′ and decψ′ such that sgnψ′ satisfies Property (i) and decψ′ satisfies (3).
We define

sgnψ(α) = sgnψ′(α) (19)

We also define

decψ(sgnψ(α), γ) = ¬decψ′(sgnψ′(α), γ) (20)

Notice that, in (20), decψ is indeed a function of sgnψ(α) and γ because of the
definition of sgnψ(α) in (19). By induction hypothesis, for every p ∈ N and I ⊆ Z+,
sgnψ(ApI) = sgnψ′(ApI) is finite, yielding that sgnψ satisfies Property (i).

To prove that decψ satisfies (3), let α ∈ ApI and γ ∈ Ap with α ∼c γ. Then

σψ(α⊕ γ) = ¬σψ′(α⊕ γ) = ¬decψ′(sgnψ′(α)) =(20) decψ(sgnψ(α), γ)

where the second equation holds because of the induction hypothesis.

Case 2. ψ = ψ1 ◦ “ ∨ ” ◦ ψ2 where ψ1 and ψ2 have the same free variables and the
free variables have the same rank in ψ, ψ1, and ψ2. From the induction hypothesis,
we know that there exist sgnψ1

, sgnψ2
, decψ1 , and decψ2 such that sgnψ1

and sgnψ2

both satisfy Property (i) while decψ1
and decψ2

both satisfy (3).
We define

sgnψ(α) = encode(sgnψ1
(α), sgnψ2

(α)) (21)

where encode is a function that receives two strings and encodes them as a single
string. We also define two functions decode1 and decode2 such that

decodei(encode(s1, s2)) = si, for i ∈ {1, 2}.
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We now define

decψ(sgnψ(α), γ) = decψ1(decode1(sgnψ(α)), γ)

∨ decψ2(decode2(sgnψ(α)), γ)

From (21), we have that for every p ∈ N and I ⊆ Z+,

sgnψ(ApI) ⊆ encode(sgnψ1
(ApI), sgnψ2

(ApI)) ∪ {ε} (22)

By the induction hypothesis, sgnψi(A
p
I) is finite, for i ∈ {1, 2}. This, together

with (22), implies that sgnψ satisfies Property (i).
To prove that decψ satisfies (3), observe that for all α ∈ ApI , γ ∈ Ap such that

α ∼c γ,

σψ(α⊕ γ) = true ⇐⇒ (σψ1(α⊕ γ) = true)
∨

(σψ2(α⊕ γ) = true)

⇐⇒ (decψ1
(sgnψ1

(α), γ) = true)
∨

(decψ2
(sgnψ2

(α), γ) = true)

⇐⇒ (decψ1(decode1(sgnψ(α)), γ) = true)∨
(decψ2(decode2(sgnψ(α)), γ) = true)

⇐⇒ decψ(sgnψ(α), γ) = true.

The first equivalence holds because of the definition of ψ, the second by the in-
duction hypothesis, the third by the definition of decodei, and the last one by the
definition of decψ.

Case 3. ψ = “∃x ⊆ V (G)” ◦ ψ′, where ψ has p free variables and ψ′ has p+ 1 free
variables, the ranks of the free variables of ψ and ψ′ are the same, except for the
variable x which is a free variable in ψ′ but is not free in ψ and the rank of x in ψ′

is p+ 1. From the induction hypothesis, we know that there exist sgnψ′ and decψ′

such that sgnψ′ satisfies Property (i) and decψ′ satisfies (3). We define

sgnψ(α) = encode({sgnψ′(α � x) | x ⊆ V (Gα)}) (23)

where, given a setW of signatures the string encode(W) encodes all members ofW.
We also define the function decode that receives as an entry a string s and outputs
the set of strings that are encoded to it, in particular decode(encode(W)) =W. We
now define

decψ(sgnψ(α), γ) =
∨

s∈decode (sgnψ(α))
y ⊆ V (Gγ)

such that invsgnψ′(s) ∼c (γ � y)

σψ′(invsgnψ′(s)⊕ (γ � y)) (24)

where, given a string s encoding a signature, invsgnψ′(s) returns the lexicographi-
cally smallest boundaried structure α? such that sgnψ′(α?) = s. First observe that
the function decψ is indeed a function of sgnψ(α) and γ. By the construction of
sgnψ, for all p ∈ N and every finite I ⊆ N, it holds that

sgnψ(ApI) ∈ encode(2sgnψ′ (Ap+1
I )) ∪ {ε}

which proves that sgnψ satisfies Property (i) (given a set X we denote by 2X the
set of all its subsets). It remains to prove that decψ satisfies (3), namely that for
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all α ∈ ApI and γ ∈ AI such that α ∼c γ, the following hold

decψ(sgnψ(α), γ) = true⇒ σψ(α⊕ γ) = true (25)

decψ(sgnψ(α), γ) = true⇐ σψ(α⊕ γ) = true (26)

To prove (25), assume that decψ(sgnψ(α), γ) = true. Thus there exist some y ⊆
V (Gγ) and s ∈ decode(sgnψ(α)) such that invsgnψ′(s) ∼c (γ � y) and

σψ′(invsgnψ′(s)⊕ (γ � y)) = true. (27)

As decode(sgnψ(α)) = {sgnψ′(α � x) | x ⊆ V (Gα)}, we may select an x ⊆ V (Gα)
such that s = sgnψ′(α � x). Therefore, the construction of invsgnψ′ ensures that
sgnψ′(invsgnψ′(s)) = s = sgnψ′(α � x). From (18), invsgnψ′(s) ≡ψ′ α � x. This
means that (α � x) ∼c (γ � y), σψ′(invsgnψ′(s) ⊕ (γ � y)) = σψ′((α � x) ⊕ (γ � y)),
and, from (27), it follows that

σψ′((α � x)⊕ (γ � y)) = true.

Recall that (α � x)⊕ (γ � y) = (α⊕ γ) � (x ∪ y). Therefore

σψ′((α⊕ γ) � (x ∪ y)) = true.

which, by the definition of ψ, implies that σψ(α⊕ γ) = true and (25) follows.

It now remains to prove (26). Assume that the value of σψ(α ⊕ γ) == true .
Thus, by the definition of ψ, there exist some x ⊆ V (Gα) and some y ⊆ V (Gγ)
such that (α � x) ∼c (γ � y) and

σψ′((α � x)⊕ (γ � y)) = true (28)

Let s = sgnψ′(α � x) and observe, by (23), that s ∈ decode(sgnψ(α)). By the
definition of invsgnψ′ we have that sgnψ′(invsgnψ′(s)) = sgnψ′(α � x) = s. By (18),
invsgnψ′(s) ≡ψ′ α � x. Hence, from (28), we obtain that invsgnψ′(s) ∼c (γ � y) and

σψ′(invsgnψ′(s)⊕ (γ � y)) = true.

Notice that s and y certify, in (24), that decψ(sgnψ(α), γ) = true, yielding (26).

(Multi) case 4. ψ = “∃x ⊆ E(G)” ◦ ψ′ or ψ = “∃x ∈ V (G)” ◦ ψ′ or ψ = “∃x ∈
E(G)”◦ψ′. The proof of the first case is the same as the proof of Case 3. The proof
for the remaining two cases differs from the proof of Case 3 only in that when the
variables of x an y in the proof are quantified as vertices or edges of the vertex or
edge set respectively of a boundaried structure, they may also take the value ?.

As the above case analysis is complete, the proof follows.

4. DERIVATION OF OUR RESULTS

In this section we give two master theorems from which all our results will be
derived. We start with fundamental notions of our paper. These are the notions of
protrusion, protrusion replacement, and protrusion decomposition.

Definition 4.1. [t-protrusion] Given a graph G, we say that a set X ⊆ V is
a t-protrusion of G if |∂(X)| ≤ t and tw(G[X]) ≤ t.
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Definition 4.2. [(f, a)-protrusion replacement family] Let Π be a parame-
terized graph problem, let f : Z+ → Z+ be a non-decreasing function and let a ∈ Z+.
An (f, a)-protrusion replacement family for Π is a collection A = {Ai | i ≥ 0} of
algorithms, such that algorithm Ai receives as input a pair (I,X), where

—I is an instance of Π whose graph and parameter are G and k ∈ Z,

—X is an i-protrusion of G with at least f(i) · ka vertices,

and outputs an equivalent instance I∗ such that, if G∗ and k∗ are the graph and
the parameter of I∗, then |V (G∗)| < |V (G)| and k∗ ≤ k.The running time of a
(f, a)-protrusion replacement family is the running time of Ai.

Definition 4.3. [(α, β)-Protrusion decomposition] An (α, β)-protrusion de-
composition of a graph G is a partition P = {R0, R1, . . . , Rρ} of V (G) such that

—max{ρ, |R0|} ≤ α,
—each R+

i = NG[Ri], i ∈ {1, . . . , ρ}, is a β-protrusion of G, and

—for every i ∈ {1, . . . , ρ}, NG(Ri) ⊆ R0.

We call the sets R+
i , i ∈ {1, . . . , ρ}, the protrusions of P.

4.1 Meta-algorithmic properties

We define the following two properties for a parameterized graph problem Π.

A [Protrusion replacement:] There exists an (f, a)-protrusion replacement fam-
ily A for Π, for some function f : Z+ → Z+ and some a ∈ Z+.

B [Protrusion decomposition:] There exists a constant c such that, if G and
k ∈ Z+ are the graph and the parameter of a YES-instance of Π then G admits
a (c · k, c)-protrusion decomposition.

We also consider the following weaker version of the combinatorial property:

B∗ [Weak protrusion decomposition:] There exist a constant c′ and a non-de-
creasing function g : Z+ → Z+ such that, for every x ∈ Z+, if G and k ∈ Z+ are
the graph and the parameter of a YES-instance of Π such that all c′-protrusions
of G are of size at most x, then G has a (g(x) ·k, g(x))-protrusion decomposition.

To see that B implies B∗, set c′ = 1 and consider the function g, with g(x) = c,
where c is the constant in the definition of B.

4.2 The meta-algorithm

All our kernelization algorithms are based on the following procedure that makes
use of some (f, a)-protrusion replacement family A = {Ai | i ≥ 0}. In the following
procedure, given a set R ⊆ V (G), we define CR as the set of connected components
of G \ R that have treewidth at most |R|. Let XR be the set of vertices that are
either in R or in some of the connected components of CR.
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Meta-kernelization(t)
Input: An instance I of a parameterized graph problem.
Output: An equivalent instance I ′.

If k ≥ 0 and |I| ≤ k, we return I. While there exists some R ⊆ V (G) of
size at most 2t such that |XR| ≥ f(2 · |R|) · ka, apply algorithm A2·|R|
with the pair (I,XR) as input and replace I by the output I ′ of this
algorithm. In case the parameter k′ of I ′ is negative, then output a
trivial YES or NO instance of Π depending on whether (I ′,−1) ∈ Π or
not.

Lemma 4.4. Procedure Meta-kernelization(t) runs in |I|O(t) steps. Moreover, it
outputs an instance with a graph G such that for all i ∈ {0, . . . , t}, all i-protrusions
of G have size at most f(2i) · ka.

Proof. Notice that the while-loop of the procedure will be applied less than
n = |I| times, since each iteration decreases the size of the graph by at least one.
In each iteration of the outer loop we have to consider O(|I|2t) different choices
for R. For each choice of R the set XR can be computed in linear time using
the algorithm of [Bodlaender 1996]. That way, the procedure requires O(|I|2t+2)
steps in total. To show that the input specifications of the algorithm A2·|R| are
satisfied when it is called, we argue that every time the algorithm A2·|R| is applied
to (I,XR), XR is a 2 · |R|-protrusion of the graph G in the instance of I. For this,
notice that ∂G(XR) ⊆ R and tw(G[XR]) ≤ tw(G[XR \R]) + |R| ≤ 2|R|.

Let I ′ be the output of Meta-kernelization(t) and G be the graph of I ′. Assume
towards a contradiction that for some j ∈ {0, . . . , t}, G contains a j-protrusion X
of size > f(2j) ·ka. Let R = ∂G(X). Observe that |R| ≤ j and that every connected
component C of G \ R that contains at least one vertex of X is contained in X.
Thus tw(C) ≤ j, therefore X ⊆ XR. But then, XR is a 2j-protrusion of G of size
≥ f(2j) ·ka, contradicting the fact that I ′ is the output of Meta-kernelization(t).

4.3 Two master theorems

Our results can be deduced from the following two master theorems. While their
proofs are similar in spirit, we present them separately in order to illustrate the
way properties A, B, and B∗ are combined.

Theorem 4.5. If a parameterized graph problem Π has property A for some
nonnegative constant a and property B for some constant c, then Π admits a kernel
of size O(ka+1).

Proof. Let A = {Ai | i ≥ 0} be an (f, a)-protrusion replacement family for Π.
We claim that the required kernelization algorithm is Meta-kernelization(c).

Suppose that I is a YES-instance of Π. Meta-kernelization(c) procedure trans-
forms I to a YES-instance I∗ of Π. Assume that G∗ and k∗ are the graph and
the parameter of I∗ respectively. First of all we assume that k∗ ≥ 0 else Meta-
kernelization(c) returns a trivial YES or NO instance. Let P = {R0, R1, . . . , Rρ}
be a (c · k∗, c)-protrusion decomposition of G∗ for some ρ ≤ c · k∗, whose existence
follows from property B. Notice that k∗ ≤ k. Therefore, from Lemma 4.4, we have
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that

|V (G∗)| ≤ |R0|+
ρ∑
i=1

|Ri| ≤ c · k + c · k · f(2c) · ka = c · k · (f(2c) · ka + 1).

Hence, if the above procedure outputs an instance whose graph has more than
c · k · (f(2c) · ka + 1) vertices, then the (I, k) is a NO-instance and in this case
the algorithm outputs a trivial NO-instance of Π. Otherwise, by Lemma 4.4, the
algorithm outputs, in O(|I|2c+2) steps, an equivalent instance with a graph on
O(ka+1) vertices, as required.

When a = 0, we can use the weaker condition B∗ and have a linear kernel.

Theorem 4.6. If a parameterized graph problem Π has property A for a = 0,
and property B∗ for some constant c, then Π admits a linear kernel.

Proof. Let A = {Ai | i ≥ 0} be an (f, 0)-protrusion replacement family for Π.
(Notice that in this proof it is important that a = 0.)

Let also g : Z+ → Z+ be a function such that, for every x ∈ Z+, if G and k are
the graph and the parameter of a YES-instance of Π such that all c-protrusions
of G have size at most x, then G has a (g(x) · k, g(x))-protrusion decomposition.
We claim that the required kernelization algorithm is Meta-kernelization(c). Let
t = g(f(2c)).

Suppose now that I is a YES-instance of Π. Meta-kernelization(c) procedure trans-
forms I to a YES-instance I∗ of Π. Assume that G∗ and k∗ are the graph and
the parameter of I∗ respectively. First of all we assume that k∗ ≥ 0 else Meta-
kernelization(c) returns a trivial YES or NO instance. By Lemma 4.4, I∗ has no
c-protrusion of size at least f(2c). By applying Condition B∗ for x = f(2c), we
have that G∗ has a (t · k∗, t)-protrusion decomposition P = {R0, R1, . . . , Rρ} for
some ρ ≤ t · k∗. Notice that k∗ ≤ k. By Lemma 4.4, we have that

|V (G∗)| ≤ |R0|+
ρ∑
i=1

|Ri| ≤ t · k + t · k · f(2c) = t · k · (f(2c) + 1).

Hence, if the above procedure outputs an instance whose graph has more than
t · k · (f(2c) + 1) vertices, then the algorithm outputs a trivial NO-instance of Π.
Otherwise, by Lemma 4.4, the algorithm outputs, in O(|I|2t+2) steps, an equivalent
instance on O(k) vertices, as required.

We now have all necessary notions to present how the meta-algorithmic theorems
mentioned in the introduction are derived from Master Theorems 4.5 and 4.6.

4.4 Problems having the algorithmic and combinatorial properties

Our meta-algorthmic results follow by combining the following six results. The first
four imply the protrusion replacement property A.

—Every annotated p-min-CMSO[ψ] problem has the protrusion replacement prop-
erty A for a = 1. (Lemma 5.8, Subsection 5.2)

—Every annotated p-eq-CMSO[ψ] problem has the protrusion replacement prop-
erty A for a = 2. (Lemma 5.12, Subsection 5.3)
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—Every annotated p-max-CMSO[ψ] has the protrusion replacement property A
for a = 1. (Lemma 5.17, Subsection 5.4)

—Every parameterized graph problem Π that has FII has the protrusion replace-
ment property A for a = 0. (Lemma 5.19, Subsection 5.5)

The two last results imply the protrusion decomposition properties B and B∗.

—Every r-coverable problem has the protrusion decomposition property B. (Lemma 6.1,
Subsection 6.2)

—Every r-quasi-coverable problem has the weak protrusion decomposition property
B∗. (Lemma 6.4, Subsection 6.3).

4.5 Derivation of Theorems 1.1, 1.2, and 1.3

All our main results are consequences of Master Theorems 4.5 and 4.6. Theorem 1.1
follows from Master Theorem 4.5 and Lemmata 5.8, 5.12, 5.17, and 6.1. Moreover,
Theorem 1.3 follows from Master Theorem 4.6 and Lemmata 5.19 and 6.4. We
conclude this section with the proof of Theorem 1.2

Proof of Theorem 1.2. Suppose that Π is NP-hard and its annotated ver-
sion Πα is in NP. Consider an algorithm that, given an instance I = (G, k) of
Π, applies first the kernelization algorithm of Theorem 1.1 as a subroutine on the
annotated instance ((G,V (G)), k), that is, all the vertices of G are set to be anno-
tated. This subroutine outputs an equivalent annotated instance I ′ = ((G′, Y ′), k)
of Πα where the number of vertices in G′ is a polynomial function of k. The next
step of the algorithm is to apply a polynomial time many-to-one reduction from
Πα to Π on I ′ and obtain an equivalent instance I ′′ = (G′′, k′′) where |I ′′| is a
polynomial function of |I ′|. This reduction exists from the Cook–Levin theorem,
as Πα ∈ NP and Π is NP-hard. Then |I ′′| is a polynomial function of k and this
two-step polynomial-time algorithm is the desired kernelization algorithm for Π.
The reduction from Πα to Π might output an instance I ′′ with parameter k′′ where
k′′ is exponential in |I ′′| because k′′ could be encoded in binary. However, since Π
is a p-min/eq/max-CMSO[ψ] problem, (I ′′, k′′) ∈ Π if and only if (I ′′, k′′′) ∈ Π,
where k′′′ = min{k′′, |I ′′|+ 1}. The kernelization algorithm outputs (I ′′, k′′′).

5. REDUCTION RULES

In this section we prove the existence of protrusion replacement families for p-
min/eq/max-CMSO[ψ] graph problems and for parameterized problems that have
FII.

5.1 Model checking on structures

In order to prove our reduction rules we consider an extension of p-min/eq/max-
CMSO problems to a setting where the input is a structure rather than a graph.
Specifically we consider the following problems.

Min/Max-CMSO on Structures
Input: A structure α and a CMSO sentence ψ.
Output: A minimum/maximum size subset S of V (G) (or E(G)) such

that (α � S) |= ψ.
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Eq-CMSO on Structures
Input: A structure α, a CMSO sentence ψ, and an integer k.
Output: A subset S of V (G), (or E(G)) |S| = k such that (α � S) |= ψ.

Observe that in the above problems the CMSO sentence is part of the input and
not fixed as in the case of p-min/eq/max-CMSO[ψ] problems. We will repeatedly
apply the following result from [Borie et al. 1992, Theorem 5], see also [Arnborg
et al. 1991].

Proposition 5.1. There exists a computable function f : Z+×Z+ → Z+ and an
algorithm that solves Min/Max/Eq-CMSO on Structures in f(tw(Gα), |ψ|) ·
|V (Gα)| steps.

Proposition 5.1 is a slight strengthening of Theorem 5 of [Borie et al. 1992]; what
is shown there explicitly is the corresponding version where the input is a graph
rather than a structure. Arnborg et al. [Arnborg et al. 1991] show the variant of
Proposition 5.1 for MSO logic rather than CMSO logic. Either of these proofs can
be made to work both on structures and with CMSO logic.

The construction of each protrusion replacement family depends on whether
we are dealing with an annotated p-min-CMSO[ψ], p-eq-CMSO[ψ], or p-max-
CMSO[ψ] problem, or whether the problem in question has FII. For the case of
annotated problems, the constructions consist of three parts. In the first two parts,
we focus on reducing the set of annotated vertices, and in the last part we reduce
the set of vertices. In all cases, we assume that we are given a sufficiently large
t-protrusion. In the following discussion we deal with annotated p-min/eq/max-
CMSO[ψ] problems where the set S in question is a set of vertices. The case where
S is a set of edges can be dealt with in an identical manner.

5.2 Protrusion replacement families for annotated p-min-CMSO[ψ] Problems

We start from the existence of a protrusion replacement family for annotated p-
min-CMSO[ψ] problems. The technique employed in this section will act as a
template for other types of annotated problems. Recall that in an annotated p-
min-CMSO[ψ] problem Πα we are given a structure (G, Y ) and an integer k. The
objective is to find a set S ⊆ Y of size at most k such that (G,S) models some
CMSO sentence ψ. For our reduction rule, we are also given a sufficiently large t-
protrusion X. In the first step of the reduction, we show that the set Y ∩X can be
substituted in O(|X|) steps by a new set Z of O(k) vertices such that ((G, Y ), k) is
a YES-instance if and only if ((G,Z ∪ (Y \X)), k) is a YES-instance. In the second
step we show that the t-protrusion X can be partitioned into O(k) t′-protrusions,
where t′ = O(t), such that each t′-protrusion contains vertices from Z only in its
(bounded size) boundary. In the third and final step of the reduction rule, we replace
the largest t′-protrusion with an equivalent, but smaller, t′-boundaried graph. For
the case of p-min-CMSO[ψ] problems, these three reduction steps correspond to
Lemmata 5.3, 5.4, and 5.6 respectively.

We start by proving a lemma that lets us analyze the interior of a protrusion
without bothering about the rest of the graph.
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Lemma 5.2. There is an algorithm that given two boundaried structures (GX , YX)
and (GR, SR) of type (graph, vertex set) and a CMSO-sentence ψ finds a minimum
size set SX ⊆ YX , if such a set exist, such that (GX , SX)⊕ (GR, SR) |= ψ in time
|V (GX ⊕GR)| · f(|ψ|, tw(GX ⊕GR)).

Proof. Let (G′, Y ′, S′R) = (GX , YX , ∅) ⊕ (GR, ∅, SR). Finding the desired set
SX ⊆ Y now amounts to finding a minimum size set S′X ⊆ Y ′ such that (G′, S′X ∪
S′R) |= ψ. This is easily formulated as Min-CMSO on Structures and hence
may be solved in the desired running time by Proposition 5.1.

Reducing the set of annotated vertices. The first step of our reduction rule
is based on the following lemma.

Lemma 5.3. Let Πα be an annotated p-min-CMSO[ψ] problem and let t be an
integer. Then there exists an algorithm that given an instance ((G, Y ), k) of Πα and
a t-protrusion X of G, outputs in time O(|X|) an equivalent instance ((G, Y ′), k)
of Πα, where |Y ′ ∩X| = O(k) and Y ′ ⊆ Y.

We remark that the constants hidden in the “O”-notation of the complexity of
the algorithm and the size of its output depend only on the length of the CMSO-
sentence ψ defining Πα and the constant t. From now onwards, we will not explicitly
mention this.

Proof. Let ψ be the CMSO-sentence mentioned in the definition of Πα. Lemma 3.2
implies that the canonical equivalence relation ≡σψ has finitely many equivalence
classes on the set of boundaried structures of arity two with label set {1, . . . , t}.
Let MinRep(ψ, t) be a set containing a representative (a boundaried structure of
arity two) for each equivalence class of ≡σψ with the minimum number of vertices
in the graph of a structure. Given G, Y and X we define the sets B = ∂G(X),
R = (V (G) \ X) ∪ B and the boundaried structures (GX , YX) and (GR, YR) as
follows. The boundaried graphs GX and GR are just G[X] and G[R] respectively.
Both have boundary B, with labels from {1, . . . , t} such that GX ⊕GR = G. Sim-
ilarly YX = Y ∩X while YR = Y \X, such that (G, Y ) = (GX , YX)⊕ (GR, YR).

For every structure α = (GαR, S
α
R) ∈ MinRep(ψ, t) we find using Lemma 5.2 a

minimum size set SαX ⊆ YX such that (GX , S
α
X) ⊕ α |= ψ. Since |MinRep(ψ, t)|

and the size of each structure in MinRep(ψ, t) depends only on |ψ| and t, and the
treewidth of G[X] is at most t, this takes time O(|X|). Now, define

Y ′X =
⋃

α∈MinRep(ψ,t)

{
SαX if |SαX | ≤ k,
∅ otherwise.

We set Y ′ = Y ′X ∪ YR (formally Y ′X and YR are vertex sets of different graphs,
so actually Y ′ is the second element of the 2-tuple of (GX , Y

′
X) ⊕ (GR, YR), i.e.,

Y ′ = ((GX , Y
′
X) ⊕ (GR, YR))[2], but this is just semantics). Since |MinRep(ψ, t)|

depends only on |ψ| and t the construction of Y ′ implies |Y ′ ∩X| = O(k).
To complete the proof, it remains to show that ((G, Y ′), k) ∈ Πα if and only

if ((G, Y ), k) ∈ Πα. For the forward direction we have that Y ′ ⊆ Y and hence
feasible solutions to ((G, Y ′), k) are also feasible for ((G, Y ), k). We now turn to
proving the reverse direction. Let S ⊆ Y , |S| ≤ k be such that (G,S) |= ψ.
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Let SX = X ∩ S and SR = S \ X. Observe that (GX , SX) ⊕ (GR, SR) = (G,S)
and that |SX | + |SR| = |S| ≤ k. Choose α = (GαR, S

α
R) ∈ MinRep(ψ, t) such

that α ≡σψ (GR, SR). Let SαX ⊆ YX be the set computed for α in the previous
paragraph. Since

(GX , SX)⊕ α |= ψ ⇐⇒ (GX , SX)⊕ (GR, SR) |= ψ ⇐⇒ true

it follows that |SαX | ≤ |SX | ≤ k. Thus SαX ⊆ Y ′X . Let S′ = SαX ∪ SR (again,
formally SαX and SR are vertex sets of different graphs, so actually S′ = ((GX , S

α
X)⊕

(GR, SR))[2]). We have that S′ ⊆ Y ′, |S′| ≤ |SαX | + |SR| ≤ |SX | + |SR| = |S| ≤ k.
Finally we observe that

(G,S′) |= ψ

⇐⇒ (GX , S
α
X)⊕ (GR, SR) |= ψ

⇐⇒ (GX , S
α
X)⊕ α |= ψ

⇐⇒ true.

This concludes the proof.

Partitioning Protrusions. In the second step of the reduction rule, the t-
protrusion X is partitioned into O(k) smaller t′-protrusions for some t′ = O(t).

Lemma 5.4. Let G be a graph, Y be a subset of its vertices, and k be an integer.
Let also X be a t-protrusion and Z = X∩Y such that |Z| ≤ k. There is time O(|X|)
algorithm that outputs a collection Q of (4t+2)-protrusions such that X =

⋃
Q∈QQ,

|Q| = O(k), and for every Q ∈ Q, Z ∩Q ⊆ ∂G(Q).

Proof. We assume that G[X] is connected, otherwise we work independently
on its connected components. We find a nice tree decomposition of G[X] and then
we add ∂G(X) to all its bags. We denote the resulting tree decomposition by (T,X )
and, clearly, it has width at most 2t.

The decomposition (T,X ) can be constructed in time O(|X|), see e.g. [Bodlaen-
der 1996]. Now we mark a subset of the nodes of T. For each vertex z ∈ Z we
mark, if exists, the forget node tz with the property that {z} = Xtz \Xt′z

, where
tz is the child of t′z in T. As each vertex is forgotten at most once in a nice tree
decomposition, so far we have marked at most |Z| + 1 nodes of T. Now, as long
as this is possible, we keep marking each bag that is the lowest common ancestor
of two already marked nodes. Using a standard counting argument for trees, it
follows that, in the worst case, this operation doubles the number of marked nodes.
Hence, there are at most O(|Z|) marked nodes; we denote this set by M. We say
that two nodes t1, t2 ∈ M are linked if these nodes are the only marked nodes of
the (t1, t2)-path in T. We define the set

P = {(t1, t2) | t1 and t2 are linked nodes of M and t1 is a predecessor of t2}.

We observe that |P | = O(|Z|) and each marked node belongs to some pair in P. Let
C be the set of the connected components of G[X] \

⋃
t∈M Xt. By the construction

of M, the neighborhood of a connected component C in C may intersect either a
single bag Xt of T, or two bags Xt1 , Xt2 of T such that (t1, t2) ∈ P. In the first
case, we define R(C) to be some pair in P that contains t as an endpoint (if there
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are many such pairs, we make an arbitrary choice). In the second case, we define
R(C) = {t1, t2}. Given a pair p of P, we use the notation L−1 to denote the union
of the vertex sets of all the connected components of C that map to p. It is now easy
to see that that R = {L−1(p) | p ∈ P} is a partition of G[X] \

⋃
t∈M Xt. As each

vertex from Z is in some bag corresponding to a marked node, none of the sets in
R intersects Z. Moreover the neighborhood in G of each set in R is a subset of at
most two bags of (T,X ) and thus its neighborhood has at most 2(2t+ 1) vertices.
We now define the set Q = {V (R) ∪ ∂G(V (R)) | R ∈ R}. Then each member Q of
Q is an (4t+ 2)-protrusion of G where Z ∩Q ⊆ ∂G(Q). Moreover,

⋃
Q∈Q = X and

the lemma follows as |Q| = |P | = O(k).

We will also need the following simple decomposition lemma for t-protrusions.

Lemma 5.5. If a graph G contains a t-protrusion X where |X| > c > 0, then
it also contains a (2t + 1)-protrusion Y where c < |Y | ≤ 2c. Moreover, given a
tree-decomposition of X of width at most r, a tree decomposition of Y of width at
most 2t can be found in time O(|X|).

Proof. If |X| ≤ 2c, we are done. Assume that |X| > 2c and let

(T,X = {Xx}x∈V (T ), s)

be a nice tree-decomposition of G[X], rooted at some, arbitrary chosen, node s
of T. Given a node x of the rooted tree T, we denote by D(x) the subset of V (T )
containing x and all its descendants in T and by Tx the subtree of T rooted at x. Let
B ⊆ V (T ) be the set containing each node x of T with the property that the number
of vertices appearing in

⋃
y∈D(x)Xy (i.e. the vertices in the bags corresponding to

x and its descendants) is more than c. As |X| ≥ 2c, B is a non-empty set. We
choose b to be a member of B whose descendants in T do not belong to B. The
choice of b and the fact that T is a binary tree ensure that c < |

⋃
y∈D(b)Xy| ≤ 2c.

We define Y = ∂G(X) ∪
⋃
y∈D(b)Xy and observe that

(Tb,X ′) = {∂G(X) ∪Xt}t∈D(b), b) (29)

is a tree decomposition of G[Y ]. As |∂G(X)| ≤ t, the width of the tree decomposition
in (29) is at most 2t. Moreover, it holds that ∂G(Y ) ⊆ ∂G(X) ∪Xb, therefore Y is
a (2t+ 1)-protrusion of G.

Reducing Protrusions. In the third phase of our reduction rule, we find a pro-
trusion to replace, and perform the replacement.

Lemma 5.6. Let Πα be an annotated p-min/eq-CMSO[ψ] problem. Then for
every integer t there is a c1 ∈ Z+ (depending only on |ψ| and t) and an algorithm
that given an instance ((G, Y ), k) of Πα and a t-protrusion X of G, where c1 <
|X| ≤ 2c1 and X ∩ Y ⊆ ∂G(X), outputs, in time O(|X|), an equivalent instance
((G∗, Y ∗), k) of Πα such that |V (G′)| < |V (G)|.

Proof. We define an equivalence relation between boundaried structures of type
(graph, vertex set) as follows: Let α1 = (G1, Y1) and α2 = (G2, Y2) be two bound-
aried structures with labelling functions λ1 : δ(G1) → {1, . . . , t} and λ2 : δ(G2) →
{1, . . . , t} respectively, such that Y1 ⊆ δ(G1) and Y2 ⊆ δ(G2).

We say that α1 ≈ α2 if the following conditions are satisfied:
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(1) Λ(G1) = Λ(G2)
(2) λ1(Y1) = λ2(Y2)
(3) for every S1 ⊆ Y1 and S2 ⊆ Y2 such that λ1(S1) = λ2(S2), it follows that

(G1, S1) ≡σψ (G2, S2).

Notice that ≈ is an equivalence relation. Because, in the above definition, the
sets S1 and S2 cannot have more than t vertices, the number of equivalence classes
of ≈ depends only on t and the number of equivalence classes of ≡σψ on boundaried
structures of arity two whose label set is a subset of {1, . . . , t}. By Lemma 3.2 the
number of such equivalence classes is finite and upper bounded by a function of
|ψ| and t. Thus the number of equivalence classes of ≈ is also upper bounded by
a function of |ψ| and t. Let S be a set of minimum size representatives of the
equivalence classes of ≈ and let c1 = maxα∈S |V (Gα)|.

Let G, Y and X be a graph and vertex sets as in the statement of the Lemma. We
now define the sets B = ∂G(X), R = (V (G)\X)∪B and the boundaried structures
(GX , YX) and (GR, YR) as follows. The boundaried graphs GX and GR are just
G[X] and G[R] respectively. Both have boundary B, with labels from {1, . . . , t}
such that GX ⊕ GR = G. Similarly YX = Y ∩ X while YR = Y \ X, such that
(G, Y ) = (GX , YX)⊕ (GR, YR). Observe that |V (GX)| = |X| > c1.

Our algorithm has in its source code hard-wired a table that for every bound-
aried structure α of type (graph, vertex set) with label set from {1, . . . , t} and
|V (Gα)| ≤ 2c1 contains the β ∈ S such that β ≈ α. The size of this table is a
constant that depends only on |ψ| and t. The algorithm looks up in the table and
finds the representative (G′X , Y

′
X) ∈ S such that (G′X , Y

′
X) ≈ (GX , YX). By con-

struction we have |V (G′X)| ≤ c1 < |V (GX)|. The algorithm outputs the instance
((G′, Y ′), k) where (G′, Y ′) = (G′X , Y

′
X) ⊕ (GR, YR). Since |V (G′X)| < |V (GX)| it

follows that |V (G′)| < |V (G′)| and it remains to argue that the instances ((G, Y ), k)
and ((G′, Y ′), k) are equivalent.

Suppose that ((G, Y ), k) is a YES-instance and let S ⊆ Y , |S| ≤ k (|S| = k for p-
eq-CMSO[ψ]) be such that (G,S) |= ψ. Let SX = X∩S and SR = S \X. Observe
that (GX , SX) ⊕ (GR, SR) = (G,S), SX = SX ∩ X ⊆ Y ∩ X ⊆ ∂(X), and that
|SX |+ |SR| = |S|. Let S′X be the subset of δ(G′X) such that λG′

X
(S′X) = λGX (SX).

Since SX ⊆ YX ⊆ δ(GX) it follows that |SX | = |S′X |. Furthermore, property 3 of
≈ yields that (GX , SX) ≡σψ (G′X , S

′
X). Let S′ = S′X ∪ SR (formally S′X and SR

are vertex sets of different graphs, so we set S′ = ((G′X , S
′
X)⊕ (GR, SR))[2]). Since

SR ∩ δ(GR) = ∅ we have that |S′| = |S′X | + |SR| = |SX | + |SR| = |S|. Thus, if
|S| ≤ k then |S′| ≤ k, while if |S| = k then |S′| = k. Finally we observe that

(G′, S′) |= ψ

⇐⇒ (G′X , S
′
X)⊕ (GR, SR) |= ψ

⇐⇒ (GX , SX)⊕ (GR, SR) |= ψ

⇐⇒ (G,S) |= ψ ⇐⇒ true.

This concludes the forward direction of the proof. The reverse direction is symmet-
ric.

Lemmata 5.3, 5.4, and 5.6 together yield a reduction rule for all annotated p-
min-CMSO[ψ] problems.
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Lemma 5.7. Let Πα be an annotated p-min-CMSO[ψ] problem. Then for every
t, there is a constant c2 > 0 (depending only on |ψ| and t) and an algorithm that,
given an instance ((G, Y ), k) of Πα and a t-protrusion X with |X| > c2k, outputs,
in time O(|X|), an equivalent instance ((G∗, Y ∗), k) of Πα such that |V ∗| < |V |.

Proof. Let |∂G(X)| = t. The algorithm starts by applying Lemma 5.3 to X,
and producing an equivalent instance ((G, Y ′), k) where |Y ′ ∩ X| ≤ ak, for some
constant a depending only on |ψ| and t. Let Z = Y ′ ∩ X. The next step is to
apply Lemma 5.4 and construct a collection Q of (4t + 2)-protrusions such that
X =

⋃
Q∈QQ, Z ∩ Q ⊆ ∂G(Q) for each Q ∈ Q, and |Q| ≤ bk for some constant b

depending only on |ψ| and t. Let c1 be the constant as guaranteed by Lemma 5.6
when applied on (8t + 4)-protrusions, and set c2 = c1 · b. By the pigeon-hole
principle, some (4t+ 2)-protrusion Q in Q has size at least |X|/bk > c1. We apply
Lemma 5.5 and obtain a (8t+ 4)-protrusion Q′ ⊆ Q such that Z ∩Q′ ⊆ ∂(Q′) and
c1 < |Q′| ≤ 2c1. Finally we apply the algorithm of Lemma 5.6 on Q′ and construct
an equivalent instance of Πα as required.

We are now ready to prove the following result.

Lemma 5.8. Every annotated p-min-CMSO[ψ] problem has the protrusion re-
placement property A for a = 1.

Proof. According to the terminology that we introduced in Section 4, we have
to prove that there exist an (f, 1)-protrusion replacement family A for Πα. Indeed,
this directly follows from Lemma 5.7 if we define f : Z+ → Z+ such that for every
r, f(r) is the constant c2 of Lemma 5.7.

5.3 Protrusion replacement for annotated p-eq-CMSO[ψ] Problems

In this section we give a reduction rule for annotated p-eq-CMSO[ψ] problems.
The rule is very similar to the one for the p-min-CMSO[ψ] problems described
in the previous section. The main difference between the two problem variants is
that we now need to keep track of solutions of every possible size between 0 and
k, instead of just the smallest one. Because of this, we require the protrusion to
contain at least ck2 vertices instead of ck vertices, in order to be able to reduce
it. We start by proving adaptations of Lemmata 5.2 and 5.3 to p-eq-CMSO[ψ]
problems.

Lemma 5.9. There is an algorithm that given two boundaried structures (GX , YX)
and (GR, SR) of type (graph, vertex set),a CMSO-sentence ψ and non-negative in-
teger k, finds a SX ⊆ YX of size k such that (GX , SX)⊕(GR, SR) |= ψ or concludes
that no such set exists in time |V (GX ⊕GR)| · f(|ψ|, tw(GX ⊕GR)).

Proof. Let (G′, Y ′, S′R) = (GX , YX , ∅) ⊕ (GR, ∅, SR). Finding the desired set
SX ⊆ Y now amounts to finding a set S′X ⊆ Y ′ of size k such that (G′, S′X∪S′R) |= ψ.
This is easily formulated as Eq-CMSO on Structures and hence may be solved
in the desired running time by Proposition 5.1.

Lemma 5.10. Let Πα be an annotated p-eq-CMSO[ψ] problem and let t be an
integer. Then there exist an algorithm that given an instance ((G, Y ), k) of Πα and
a t-protrusion X of G, outputs in time O(k|X|) an equivalent instance ((G, Y ′), k)
of Πα, where |Y ′ ∩X| = O(k2) and Y ′ ⊆ Y.
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Proof. The proof of the lemma starts exactly as in the proof of Lemma 5.3.
For a CMSO-sentence ψ defining Πα, Lemma 3.2 implies that the canonical equiv-
alence relation ≡σψ has finitely many equivalence classes on the set of boundaried
structures of arity two with label set {1, . . . , t}. We denote by MinRep(ψ, t) a set
containing a representative (a boundaried structure of arity two) for each equiva-
lence class of ≡σψ with the minimum number of vertices in the graph of a structure.
For given G, Y and X, we define the sets B = ∂G(X), R = (V (G)\X)∪B and the
boundaried structures (GX , YX) and (GR, YR) as follows. The boundaried graphs
GX and GR are just G[X] and G[R] respectively. Both have boundary B, with
labels from {1, . . . , t} such that GX ⊕ GR = G. Similarly YX = Y ∩ X while
YR = Y \X, such that (G, Y ) = (GX , YX)⊕ (GR, YR).

For every structure α = (GαR, S
α
R) ∈ MinRep(ψ, t) and every integer i ≤ k we

use Lemma 5.9 to find a set Sα,iX ⊆ YX such that |Sα,iX | = i and (GX , S
α
X)⊕α |= ψ.

If no such set exists we set Sα,iX = ∅. Since |MinRep(ψ, t)| and the size of each
structure in MinRep(ψ, t) depends only on ψ and t, and the treewidth of G[X] is
at most t, this takes time O(k|X|). Now, define

Y ′X =
⋃

α∈MinRep(ψ,t)
i≤k

Sα,iX

We set Y ′ = Y ′X ∪ YR (formally Y ′X and YR are vertex sets of different graphs, so
actually Y ′ = ((GX , Y

′
X) ⊕ (GR, YR))[2]). Since |MinRep(ψ, t)| depends only on

|ψ| and t the construction of Y ′ implies |Y ′ ∩X| = O(k2).
To complete the proof, it remains to show that ((G, Y ′), k) ∈ Πα if and only

if ((G, Y ), k) ∈ Πα. For the forward direction we have that Y ′ ⊆ Y and hence
feasible solutions to ((G, Y ′), k) are also feasible for ((G, Y ), k). We now turn to
proving the reverse direction. Let S ⊆ Y , |S| = k be such that (G,S) |= ψ. Let
SX = X ∩ S and SR = S \ X. Observe that (GX , SX) ⊕ (GR, SR) = (G,S) and
that |SX | + |SR| = |S| = k. Choose α = (GαR, S

α
R) ∈ MinRep(ψ, t) such that

α ≡σψ (GR, SR). Set i = |SX |, and let Sα,iX ⊆ YX be the set computed for α and i

in the previous paragraph. The existence of Sα,iX of size i is guaranteed by the fact
that

(GX , SX)⊕ α |= ψ ⇐⇒ (GX , SX)⊕ (GR, SR) |= ψ ⇐⇒ true.

By construction Sα,iX ⊆ Y ′X . Let S′ = Sα,iX ∪ SR (again, formally Sα,iX and SR are

vertex sets of different graphs, so actually S′ = ((GX , S
α,i
X ) ⊕ (GR, SR))[2]). We

have that S′ ⊆ Y ′. Further, since SR∩δ(GR) = ∅ we have that |S′| = |Sα,iX |+|SR| =
|SX |+ |SR| = |S| = k. Finally we observe that

(G,S′) |= ψ

⇐⇒ (GX , S
α,i
X )⊕ (GR, SR) |= ψ

⇐⇒ (GX , S
α,i
X )⊕ α |= ψ

⇐⇒ true.

This concludes the proof.
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Lemma 5.11. Let Πα be an annotated p-eq-CMSO[ψ] problem. Then for every
t, there is a constant c2 ∈ Z+ (depending only on |ψ|, and t) and an algorithm that,
given an instance ((G, Y ), k) of Πα and a t-protrusion X with |X| > c2k

2, outputs
in time O(k · |X|) an equivalent instance ((G∗, Y ∗), k) of Πα such that |V ∗| < |V |.

Proof. The algorithm starts by applying Lemma 5.10 to X, and producing an
equivalent instance ((G, Y ′), k) where |Y ′∩X| ≤ ak2, for some constant a depending
only on |ψ| and t. Let Z = Y ′∩X. The next step is to apply Lemma 5.4 and construct
a collection Q of (4t+ 2)-protrusions such that X =

⋃
Q∈QQ, Z ∩Q ⊆ ∂G(Q) for

each Q ∈ Q, and |Q| ≤ bk2 for some constant b depending only on |ψ| and t. Let c1
be the constant as guaranteed by Lemma 5.6 when applied on (8t+ 4)-protrusions,
and set c2 = c1 · b. By the pigeon-hole principle, some (4t + 2)-protrusion Q in
Q has size at least |X|/bk2 > c1. We apply Lemma 5.5 and obtain a (8t + 4)-
protrusion Q′ ⊆ Q such that Z ∩Q′ ⊆ ∂(Q′) and c1 < |Q′| ≤ 2c1. Finally we apply
the algorithm of Lemma 5.6 on Q′ and construct an equivalent instance of Πα as
required.

We are now ready to prove the following result.

Lemma 5.12. Every annotated p-eq-CMSO[ψ] problem has the protrusion re-
placement property A for a = 2.

Proof. According to the terminology that we introduced in Section 4, we have
to prove that there exists an (f, 2)-protrusion replacement family A for Πα. Indeed,
this directly follows from Lemma 5.11 if we define f : Z+ → Z+ such that for every
r, f(r) is the constant c2 in the proof of the same lemma.

5.4 Protrusion replacement for annotated p-max-CMSO[ψ] Problems

We now give a reduction rule for annotated p-max-CMSO[ψ] problems. The rule
is still similar to the ones described in the two previous sections, but differs more
from the p-min-CMSO[ψ] problems than p-eq-CMSO[ψ] did. We start by proving
a variant of lemma 5.2 for p-max-CMSO[ψ] problems.

Lemma 5.13. There is an algorithm that given two boundaried structures (GX , YX)
and (GR, SR) of type (graph, vertex set) and a CMSO-sentence ψ finds a set SX ⊆
V (GX) such that (GX , SX) ⊕ (GR, SR) |= ψ and |SX ∩ YX | is maximized. The
running time of the algorithm is |V (GX ⊕GR)| · f(|ψ|, tw(GX ⊕GR)).

Proof. Let (G′, Y ′, S′R, V
′) = (GX , YX , ∅, V (GX))⊕ (GR, ∅, SR, ∅). Finding the

desired set SX now amounts to finding a set S′X ⊆ V ′ such that (G′, S′X ∪S′R) |= ψ
and |S′X ∩Y ′| is maximized. This is easily formulated as Max-CMSO on Struc-
tures and hence may be solved in the desired running time by Proposition 5.1.

Lemma 5.14. Let Πα be an annotated p-max-CMSO[ψ] problem and let t be an
integer. There exists an algorithm that given an instance ((G, Y ), k) of Πα and a
t-protrusion X of G, outputs in time O(|X|) an equivalent instance ((G, Y ′), k) of
Πα, where |Y ′ ∩X| = O(k) and Y ′ ⊆ Y.

Proof. By Lemma 3.2, for a CMSO-sentence ψ defining Πα, the canonical equiv-
alence relation ≡σψ has finitely many equivalence classes on the set of boundaried
structures of arity two with label set {1, . . . , t}. As in proofs of Lemmata 5.3
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and 5.10, we define the following objects. We set MinRep(ψ, t) to be a set con-
taining a representative (a boundaried structure of arity two) for each equivalence
class of ≡σψ with the minimum number of vertices in the graph of a structure.
Also for G, Y and X, we define sets B = ∂G(X), R = (V (G) \ X) ∪ B, and the
boundaried structures (GX , YX) and (GR, YR) as follows. Again, the boundaried
graphs GX = G[X] and GR = G[R] have boundary B with labels from {1, . . . , t}
such that GX ⊕ GR = G. Similarly YX = Y ∩ X while YR = Y \ X, such that
(G, Y ) = (GX , YX)⊕ (GR, YR).

By making use of Lemma 5.13, for every structure α = (GαR, S
α
R) ∈MinRep(ψ, t),

we find a set SαX ⊆ V (GX) such that (GX , S
α
X)⊕α |= ψ and |SX∩YX | is maximized.

Since |MinRep(ψ, t)| and the size of each structure in MinRep(ψ, t) depends only
on |ψ| and t, and the treewidth of G[X] is at most t, this takes time O(|X|). If
|SαX ∩ YX | ≤ k, let ŜαX = SαX ∩ YX . On the other hand, if |SαX ∩ YX | > k, set ŜαX to
be a set of arbitrarily chosen k vertices from SαX ∩ YX . Now, define

Y ′X =
⋃

α∈MinRep(ψ,t)

ŜαX .

We set Y ′ = Y ′X ∪ YR (formally Y ′X and YR are vertex sets of different graphs, so
actually Y ′ = ((GX , Y

′
X) ⊕ (GR, YR))[2]). Since |MinRep(ψ, t)| depends only on

|ψ| and t the construction of Y ′ implies |Y ′ ∩X| = O(k).
To complete the proof, it remains to show that ((G, Y ′), k) ∈ Πα if and only

if ((G, Y ), k) ∈ Πα. For the forward direction we have that Y ′ ⊆ Y , and hence
for any set S ⊆ V (G) such that (G,S) |= ψ and |S ∩ Y ′| ≥ k we also have
that |S ∩ Y | ≥ k. We now turn to proving the reverse direction. Let S ⊆ V (G),
|S∩Y | ≥ k be such that (G,S) |= ψ. Let SX = X∩S and SR = S\X. Observe that
(GX , SX)⊕(GR, SR) = (G,S) and that |SX∩YX |+|SR∩YR| = |S∩Y | ≥ k. Choose
α = (GαR, S

α
R) ∈ MinRep(ψ, t) such that α ≡σψ (GR, SR). Let SαX ⊆ V (GX) be

the set computed for α in the previous paragraph. Since

(GX , SX)⊕ α |= ψ ⇐⇒ (GX , SX)⊕ (GR, SR) |= ψ ⇐⇒ true

it follows that |SαX ∩ YX | ≥ |SX ∩ YX |. Furthermore we have that |SαX ∩ Y ′X | ≥
|ŜαX | ≥ min(|SX ∩ YX |, k).

Let S′ = SαX ∪SR (again, formally SαX and SR are vertex sets of different graphs,
so actually S′ = ((GX , S

α
X)⊕ (GR, SR))[2]). We have that

|S′∩Y ′| ≥ |SαX∩Y ′X |+|SR∩YR| ≥ min(|SX∩YX |, k)+|SR∩YR| ≥ min(|S∩Y |, k) ≥ k.

Finally we observe that

(G,S′) |= ψ

⇐⇒ (GX , S
α
X)⊕ (GR, SR) |= ψ

⇐⇒ (GX , S
α
X)⊕ α |= ψ

⇐⇒ true.

This concludes the proof.

Lemma 5.15. Let Πα be an annotated p-max-CMSO[ψ] problem. Then for ev-
ery integer t there is a c1 ∈ Z+ (depending only on |ψ| and t) and an algorithm that
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given an instance ((G, Y ), k) of Πα and a t-protrusion X of G, where c1 < |X| ≤ 2c1
and X ∩ Y ⊆ ∂G(X), outputs, in time O(|X|), an equivalent instance ((G∗, Y ∗), k)
of Πα such that |V (G′)| < |V (G)|.

Proof. Let ψ be the CMSO-sentence mentioned in the definition of Πα. By
Lemma 3.2, the canonical equivalence relation ≡σψ has finitely many equivalence
classes on the set of boundaried structures of arity two with label set {1, . . . , t}. Let
MinRep(ψ, t) be a set containing a representative (a boundaried structure of arity
two) for each equivalence class of ≡σψ with the minimum number of vertices in the
graph of a structure. We now define an equivalence relation ≈ between boundaried
structures α = (Gα, Yα) of type (graph, vertex set) that satisfy Yα ⊆ δ(Gα). Let
α1 = (G1, Y1) and α2 = (G2, Y2) be two boundaried structures with labelling
functions λ1 : δ(G1) → {1, . . . , t} and λ2 : δ(G2) → {1, . . . , t} respectively, such
that Y1 ⊆ δ(G1) and Y2 ⊆ δ(G2). We say that α1 ≈ α2 if the following conditions
are satisfied:

(1) Λ(G1) = Λ(G2)
(2) λ1(Y1) = λ2(Y2)
(3) for every S1 ⊆ V (G1) there is a S2 ⊆ V (G2) such that λ1(S1 ∩ δ(G1)) =

λ2(S2 ∩ δ(G2)), and (G1, S1) ≡σψ (G2, S2).
(4) for every S2 ⊆ V (G2) there is a S1 ⊆ V (G1) such that λ1(S1 ∩ δ(G1)) =

λ2(S2 ∩ δ(G2)), and (G1, S1) ≡σψ (G2, S2).

Notice that ≈ is an equivalence relation. Further, consider two boundaried struc-
tures α1 = (G1, Y1) and α2 = (G2, Y2) such that Λ(G1) = Λ(G2), λ1(Y1) = λ2(Y2),
and for each subset L ⊆ {1, . . . , t} the sets

{β ∈MinRep(ψ, t) : ∃S1 ⊆ V (G1), λ1(S1 ∩ δ(G1)) = L ∧ (G1, S1) ≡σψ β}

and

{β ∈MinRep(ψ, t) : ∃S2 ⊆ V (G2), λ2(S2 ∩ δ(G2)) = L ∧ (G2, S2) ≡σψ β}

are the same. It is easy to verify that in this case (G1, Y1) ≈ (G2, Y2). Thus the
number of equivalence classes of ≈ is upper bounded by a function of |ψ| and t.
Let S be a set of minimum size representatives of the equivalence classes of ≈ and
let c1 = maxα∈S |V (Gα)|.

Let G, Y and X be a graph and vertex sets as in the statement of the Lemma. We
now define the sets B = ∂G(X), R = (V (G)\X)∪B and the boundaried structures
(GX , YX) and (GR, YR) as follows. The boundaried graphs GX = G[X] and GR =
G[R] have boundary B with labels from {1, . . . , t} such that GX ⊕ GR = G. We
define YX = Y ∩ X and YR = Y \ X, such that (G, Y ) = (GX , YX) ⊕ (GR, YR).
Observe that |V (GX)| = |X| > c1.

Our algorithm has in its source code hard-wired a table that for every bound-
aried structure α of type (graph, vertex set) with label set from {1, . . . , t} and
|V (Gα)| ≤ 2c1 contains the β ∈ S such that β ≈ α. The size of this table is a
constant that depends only on |ψ| and t. The algorithm looks up in the table and
finds the representative (G′X , Y

′
X) ∈ S such that (G′X , Y

′
X) ≈ (GX , YX). By con-

struction we have |V (G′X)| ≤ c1 < |V (GX)|. The algorithm outputs the instance
((G′, Y ′), k) where (G′, Y ′) = (G′X , Y

′
X) ⊕ (GR, YR). Since |V (G′X)| < |V (GX)| it
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follows that |V (G′)| < |V (G′)| and it remains to argue that the instances ((G, Y ), k)
and ((G′, Y ′), k) are equivalent.

Suppose ((G, Y ), k) is a YES-instance and let S ⊆ V (G), |S ∩ Y | ≥ k be such
that (G,S) |= ψ. Let SX = X ∩ S and SR = S \ X. Observe that (GX , SX) ⊕
(GR, SR) = (G,S), SX ∩ YX ⊆ δ(GX), and that |SX ∩ YX |+ |SR ∩ YR| = |S ∩ Y |.
Let S′X be a subset of V (G′X) such that λG′

X
(S′X ∩δ(G′X)) = λGX (SX ∩δ(GX)) and

(G′X , S
′
X) ≡σψ (GX , SX). The existence of such a set S′X is implied by property

(3) of ≈. Since YX ⊆ δ(GX), Y ′X ⊆ δ(G′X), ΛGX (YX) = ΛG′
X

(Y ′X) and ΛGX (SX ∩
δ(GX)) = ΛG′

X
(S′X ∩ δ(G′X)) we have that |SX ∩ YX | = |S′X ∩ Y ′X |.

Let S′ = S′X ∪ SR (formally S′X and SR are vertex sets of different graphs,
so we set S′ = ((G′X , S

′
X) ⊕ (GR, SR))[2]). Since SR ∩ δ(GR) = ∅ we have that

|S′ ∩ Y ′| = |S′X ∩ Y ′X | + |SR ∩ YR| = |SX ∩ YX | + |SR ∩ YR| = |S ∩ Y |. Thus, if
|S ∩ Y | ≥ k then |S′ ∩ Y ′| ≥ k. Finally we observe that

(G′, S′) |= ψ

⇐⇒ (G′X , S
′
X)⊕ (GR, SR) |= ψ

⇐⇒ (GX , SX)⊕ (GR, SR) |= ψ

⇐⇒ (G,S) |= ψ ⇐⇒ true.

This concludes the forward direction of the proof. The reverse direction is symmet-
ric, but using property 4 of ≈ rather than property 3.

Lemma 5.16. Let Πα be an annotated p-max-CMSO[ψ] problem. Then for ev-
ery t, there is a constant c2 > 0 (depending only on ψ, and t) and an algorithm that,
given an instance ((G, Y ), k) of Πα and a t-protrusion X with |X| > c2k, outputs,
in time O(|X|) an equivalent instance ((G, Y ∗), k) of Πα such that |V ∗| < |V |.

Proof. Let |∂G(X)| = t. The algorithm starts by applying Lemma 5.14 to X,
and producing an equivalent instance ((G, Y ′), k) where |Y ′ ∩ X| ≤ ak, for some
constant a depending only on |ψ| and t. Let Z = Y ′ ∩ X. The next step is to
apply Lemma 5.4 and construct a collection Q of (4t + 2)-protrusions such that
X =

⋃
Q∈QQ, Z ∩ Q ⊆ ∂G(Q) for each Q ∈ Q, and |Q| ≤ bk for some constant b

depending only on |ψ| and t. Let c1 be the constant as guaranteed by Lemma 5.15
when applied on (8t + 4)-protrusions, and set c2 = c1 · b. By the pigeon-hole
principle, some (4t+ 2)-protrusion Q in Q has size at least |X|/bk > c1. We apply
Lemma 5.5 and obtain a (8t + 4)-protrusion Q′ ⊆ Q such that Z ∩ Q′ ⊆ ∂(Q′)
and c1 < |Q′| ≤ 2c1. Finally we apply the algorithm of Lemma 5.15 on Q′ and
construct an equivalent instance of Πα as required.

Now we show the following result.

Lemma 5.17. Every annotated p-max-CMSO[ψ] has the protrusion replace-
ment property A for a = 1.

Proof of Lemma 5.17. According to the terminology that we introduced in
Section 4, we have to prove that there exists an (f, 1)-protrusion replacement family
A for Π. Indeed, this directly follows from Lemma 5.16 if we define f : Z+ → Z+

such that for every r, f(r) is the constant c2 in the statement of the same lemma.
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5.5 A protrusion replacement family based for problems that have FII

In the previous sections we gave reduction rules for annotated p-min/eq/max-
CMSO[ψ] problems. These reduction rules, together with the results proved later
in this article will give quadratic or cubic kernels for the problems in question.
However, for many problem a linear kernel is possible. In this section we provide
reduction rules for graph problems that have FII. These reduction rules will yield
linear kernels. The main reduction lemma is the following.

Lemma 5.18. Let Π be a problem that has FII. Then for every t ∈ Z+, there
exists a c ∈ Z+ (depending on Π and t), and an algorithm that, given an instance
(G, k) of Π and a t-protrusion X in G with |X| > c, outputs, in time O(|X|) an
equivalent instance (G∗, k∗) of Π where |V (G∗)| < |V (G)| and k∗ ≤ k.

Proof. Recall that we denote by S⊆[2t+1] a set of (progressive) representatives
for ≡Π restricted to boundaried graphs with label sets from {1, . . . , 2t+ 1}. Let

c = max
{
|V (Y )|

∣∣ Y ∈ S⊆[2t+1]

}
.

Our algorithm has in its source code hard-wired a table that stores for each
boundaried graph GY in F⊆[2t+1] on at most 2c vertices a boundaried graph G′Y ∈
S⊆[2t+1] and a constant µ ≤ 0 such that GY ≡Π G′Y , and specifically

∀(F, k) ∈ F × Z : (GY ⊕ F, k) ∈ Π ⇐⇒ (G′Y ⊕ F, k + µ) ∈ Π. (30)

The existence of such a constant µ ≤ 0 is guaranteed by the fact that S⊆[2t+1] is a
set of progressive representatives.

We now apply Lemma 5.5 and find a (2t+ 1)-protrusion Y of G where c < |Y | ≤
2c. Split G into two boundaried graphs GY = G[Y ] and GR = G[(V (G)\Y )∪∂(Y )]
as follows. Both GR and GY have boundary ∂(Y ), and since |∂(Y )| ≤ 2t+1 we may
label the boundaries of GY and GR with labels from [2t+1] such that G = GY ⊕GR.
As c < |V (GY )| ≤ 2c the algorithm can look up in its table and find a G′Y ∈ S⊆[2t+1]

and a constant µ such that GY ≡ G′Y and GY , G′Y and µ satisfy Equation 30. The
algorithm outputs

(G∗, k∗) = (G′Y ⊕GR, k + µ).

Since |V (G′Y )| ≤ c < |V (GY )| and k∗ ≤ k + µ ≤ k it remains to argue that the
instances (G, k) and (G∗, k∗) are equivalent. However, this is directly implied by
Equation 30.

We are now in position to prove Lemma.

Lemma 5.19. Every parameterized graph problem Π that has FII has the pro-
trusion replacement property A for a = 0.

Proof. According to the terminology that we introduced in Section 4, we have
to prove that there exists an (f, 0)-protrusion replacement family A for Π. Indeed,
this directly follows from Lemma 5.18 if we define f : Z+ → Z+ such that for each
r, f(r) is the constant c in the statement of the same lemma.

6. COMBINATORIAL RESULTS

We start this section with some necessary definitions from graph theory.
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6.1 Definitions from graph theory

Let e = {u, v} be an edge of a graph G = (V,E). We obtain the graph G/e by
contracting e. This means that the edge e is removed and its endpoints u, v, are
merged into a new vertex ve such that each edge incident with either u or v is
incident with ve. Note that loops and multiple edges can appear as a result of
edge contractions. More formally, let f be a function mapping u, v to ve and all
remaining vertices in V \{u, v} to itself. The contraction of e results in a new graph
G/e = (V ′, E′), where V ′ = (V \ {u, v})∪{ve}, E′ = E \ {e}, and for every w ∈ V ,
w′ = f(w) ∈ V ′ is incident with an edge e′ ∈ E′ if and only if the corresponding
edge e ∈ E is incident with w in G. When we have to remain in the class of simple
graphs, loops and multiple edges resulting by contractions are deleted.

A graph H is a minor of a graph G, we write H � G, if H can be obtained
by contracting some edges of a subgraph of G. A graph class C is minor-closed if
every minor of every graph in C also belongs to C. A minor-closed graph class C is
H-minor-free if H /∈ C.

Given a graph G = (V,E), we define the (normal) distance between two of its
vertex sets X and Y as the shortest path distance between them, i.e. the minimum
length of a path with endpoints in X and Y, and denote it by distG(X,Y ). Given
a set S ⊆ V of vertices, we denote by Br

G(S) the set of all vertices that are within
distance at most r from some vertex of S in G.

We also need some notions from topological graph theory. All concepts that we
do not define here can be found in the book [Mohar and Thomassen 2001]. The
Euler genus eg(Φ) of a nonorientable surface Φ is equal to the nonorientable genus
g̃(Φ) (or the crosscap number). The Euler genus eg(Φ) of an orientable surface Φ is
2g(Φ), where g(Φ) is the orientable genus of Φ. We say that a graph G is Φ-embedded
if it is accompanied with an embedding of the graph into Φ. We also sometimes
refer to an embedding as to a drawing of G in Φ. We treat edges and loops (in
some proofs we will also allow loops and multiple edges) as subsets of the surface Φ
that are homeomorphic to the open interval (0, 1). We define the endpoints of an
edge e as the set of points of Φ that are in the closure of e but not in e. We call by
face of a Φ-embedded graph G = (V,E) any connected component of Φ \ (E ∪ V ).
All embeddings we consider are 2-cell embeddings, which are embeddings with each
face being homeomorphic to a disk.

For a Φ-embedded connected graph G, the relation between the number of its
vertices n, the number of edges m, the number of faces f and the Euler genus, is
given by the Euler’s formula, see e.g. [Mohar and Thomassen 2001, (4.4)],

n−m+ f = 2− eg(Φ). (31)

Given a Φ-embedded graph G, we define its radial graph RG as an embedded
graph whose vertices are the vertices and the faces of G (each face f of G is rep-
resented by a point vf in it). Roughly, each point vf is adjacent to all vertices v
incident to f . However, a face can be incident “several times” with the same vertex,
and RG can have multiple edges. For a point vf in the face f and vertex v incident
with f , we draw a maximum number of multiple edges in f such that for every
pair of multiple edges e and e′ the open disc bounded by these edges intersects
G. Thus RG is a bipartite multigraph, embedded in the same surface as G. Radial

40



graphs provide an alternative way of viewing radial distance defined in Section 1:
the radial distance of a pair of vertices in G corresponds to their normal distance
in RG. The relation between radial and normal metrics is captured by the following
observation.

Observation 3. If G is a Φ-embedded graph, then for every set S ⊆ V and
every r ∈ Z+, it holds that Br

G(S) ⊆ R2r
G (S).

6.2 Decomposition lemma for coverable problems

In this section we show the following decomposition result.

Lemma 6.1. Every r-coverable problem has the protrusion decomposition prop-
erty B.

In order to prove Lemma 6.1, we have to show that every r-coverable problem sat-
isfies combinatorial property B, i.e. admits a protrusion decomposition. Lemma 6.1
follows directly from the following lemma.

Lemma 6.2. Let r be a positive integer and let G = (V,E) be a graph embedded
in a surface Φ of Euler genus g that contains a set S of vertices, |S| ≤ k, such that
Rr
G(S) = V. Then G has an (αk, β)-protrusion decomposition for some constants

α and β that depend only on r and g.

Indeed, since a problem is r-coverable, there is a set S, |S| ≤ r · k, such that
Rr
G(S) = V. Then combinatorial property B holds for c = r ·max{α, β}.

The rest of this subsection is devoted to the proof of Lemma 6.2. We start with
definitions and preliminary results. The first observation follows directly from the
definition of protrusion decomposition.

Observation 4. If G has an (αk, β)-protrusion decomposition, then the same
holds for every subgraph of G.

The following proposition is a consequence of the result from [Eppstein 2000] on
the treewidth of graphs with bounded genus and diameter.

Proposition 6.3. There exists function f1 : Z+ × Z+ → Z+ such that if G =
(V,E) is a graph of Euler genus at most g such that V = Br

G(v) for some v ∈ V ,
then tw(G) ≤ f1(r, g).

For the purposes of the proof of the next lemma, we permit the existence of mul-
tiple edges or loops in the embedding. Thus contracting edges can create multiple
edges or loops which we do not delete. We call a face trivial if it is incident with
at most two edges. We call a loop empty if it is the boundary of some face of G.

A walk of length λ in a multigraph G is a sequence C = v0e1v1 · · · eλvλ of alter-
nating vertices and edges of G such that for every i ∈ {1, . . . , λ}, the vertices vi−1

and vi are the endpoints of edge ei. Thus an edge or a vertex can appear many
times in a walk. If in the previous definition we additionally demand that v0 = vλ,
then the walk is a closed walk.

We are ready to proceed with the proof of the lemma.

Proof of Lemma 6.2. We may assume that all the faces in the embedding of
G are triangular, meaning that they are incident with at most 3 edges, and that G is
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connected. Indeed, if G is not triangulated, we can always triangulate it by adding
edges in such a way that it does not increase radial distances between the vertices
of G. Then by Observation 4, we can obtain the required protrusion decomposition
for G from the decomposition of its triangulation.

For every v ∈ S, we construct a breadth-first search tree Tv of depth at most r
rooted at v. Because Br

G(S) = V , we have that every vertex of G is in some Tv for
some v ∈ S. While some vertices can be within distance r from several vertices of
S, by suitably modifying these trees, we may assume that every vertex is assigned
to exactly one tree. That way, the vertex sets of the trees in T = {Tv | v ∈ S} form
a partition of V.

We denote by H the graph obtained from G after contracting all the edges of
the trees in T . Notice that V (H) = S, and as G is triangulated, every face of H is
incident to at most 3 edges. We further simplify H as follows.

—As long as there are two edges incident with a trivial face, we delete one of them;

—As long as there is an empty loop, we delete it.

We denote the resulting graph by H̃. Again, every face of H̃ is incident to at most
3 edges. Also V (H̃) = S.

By making use of Euler’s formula (31), we derive that H̃ has at most 2k+ 2g− 4
faces and at most 3k+ 3g− 6 edges. The edges of H̃ can be seen as the edges of G
which were not contracted or deleted during the construction of H̃. For every edge
ẽ of H̃, we denote by e the corresponding edge of G.

Let ẽ be an edge of H̃ with endpoints u, v ∈ S. Let xu and xv be the endpoints of
the corresponding edge e in G. If u = v, then xu and xv are vertices of Tv. If u 6= v,
then xu is a vertex of Tu and xv is a vertex of Tv. In both cases, there are unique
paths Pu,xu in Tu and Pv,xv in Tv from u to xu, and from v to xv correspondingly.
Each of these paths is of length at most r. We set Pe = Pu,xu ∪ {e} ∪ Pv,xv . Let us
note that if u = v, then Pe is a closed walk, and if u 6= v, then it is a path. The
length of Pe is at most 2r + 1.

We construct graph G̃ from G by contracting for every edge ẽ of H̃ all edges
except e in the corresponding walk Pe. Thus besides S, the vertex set of G̃ contains
all vertices of G not covered by walks Pe. By construction, G̃[S] ⊇ H̃. We take
the drawing of G̃ in Φ and observe that G̃[S] contains the drawing of H̃ in Φ. In
the drawings of G̃ and H̃, every face f of H̃ covers a subset of vertices Xf of G̃.

The set Xf is separated in G̃ by the vertices incident with f from the remaining

vertices of the graph G̃.
In G̃, every vertex v 6∈ S belongs to some set Xf . Thus, in G, every vertex is

either in some Xf or belongs to some walk Pe. We define vertex subset R0 of G,

as the union of the vertices of all walks corresponding to edges of H̃, i.e.

R0 =
⋃

ẽ∈E(H̃)

V (Pe).

Sets R0 and Xf , f ∈ F̃ , have the following properties.

Claim 1. |R0| ≤ k + 2r(3k + 3g − 6).

Proof of Claim. There are at most 3k + 3g − 6 edges in H̃ and each edge
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corresponds in G to a walk of length at most 2r+1 connecting vertices of S. There
are at most k vertices in S and thus |R0| ≤ k + 2r(3k + 3g − 6).

Let C1, C2, . . . , C` be the connected components of G \R0. We use the following
properties of these connected components.

Claim 2. ∣∣{i : |NG(Ci)| ≥ 3}
∣∣ ≤ 2|R0|+ 2g − 4, (32)∑

{i : |NG(Ci)|≥3}

|NG(Ci)| ≤ 6|R0|+ 6g − 12. (33)

Proof of Claim. We construct a new graph G′ from G by deleting all compo-
nents Ci such that |N(Ci)| < 3, contracting each component Ci with |N(Ci)| ≥ 3
to a single vertex, removing all edges between vertices in R0, and removing double
edges and self loops. Thus G′ is a bipartite simple graph and therefore every face
of G′ is incident with at least 4 edges.

Let c =
∣∣{i : |NG(Ci)| ≥ 3}

∣∣ and r = |R0|. Let also m be the number of edges
and f be the number of faces in G′. Since every face of G′ is incident with at least
4 edges, we have that m ≥ 2f . This fact, together with Euler’s formula (31), yields
that

c+ r −m+
m

2
≥ 2− g.

Hence

m ≤ 2(c+ r)− 4 + 2g. (34)

On the other hand, since every vertex of G′ corresponding to Ci is incident with at
least three edges, we have that 3c ≤ m. Hence

3c ≤ 2(c+ r)− 4 + 2g, (35)

and thus (32) follows.
Since

∑
{i : |NG(Ci)|≥3} |NG(Ci)| ≤ m, (33) follows from (34) and (35).

Claim 3. For each connected component Ci of G\R0, the treewidth of G[N [Ci]]
is at most f1(4r + 2, g).

Proof of Claim. By construction of R0, the component Ci is a subset of Xf

for some face f of H̃. The face f is incident to at most 3 vertices, say x, y and z.
In the graph G̃, the neighborhood of Xf is a subset of {x, y, z}. Hence in the graph
G, the set NG(Xf ) is a subset of vertices which were contracted to x, y, or z. Thus,
also for Ci it holds that NG(Ci) is a subset of the vertices which were contracted
to x, y, or z.

For every vertex u in Ci, there is a path on at most r vertices starting in u and
ending in S. This path must contain a vertex u′ ∈ NG(Ci). The distance from u′ to
{x, y, z} in at most r. Therefore, the distance from each vertex in Ci to {x, y, z} is
at most 2r. Since the distance from x to y and to z is at most 2r+ 1. we have that
N [Ci] is covered by a ball of radius 4r+ 2 centered at x. Then by Proposition 6.3,
the treewidth of G[N [Ci]] is at most f1(4r + 2, g).
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For each i ≤ ` define Gi = G[N(Ci)]. By Claim 3 we have that the treewidth of
Gi is at most t = f1(4r + 2, g). Next we claim the following.

Claim 4. For every i, there exists a set Yi ⊆ V (Gi) such that

—NG(Ci) ⊆ Yi,
—|Yi| ≤ 2|NG(Ci)|(t+ 1),

—Every connected component of Gi \ Yi has at most 2(t+ 1) neighbors in Yi.

Proof of Claim. The proof of this claim is almost identical to the proof of
Lemma 5.4. Here the role of the set Z is given to NG(Ci). We compute a nice tree
decomposition of Gi and mark all uppermost forget nodes of the decomposition
forgetting vertices of N(Ci). We keep marking each lowest common ancestor of
marked nodes as long as possible. The vertices contained in all marked bags form
the set Yi.

We use Claim 4 to find sets Yi for every Gi and define the set

R = R0 ∪
⋃

{i : |N(Ci)|≥3}

Yi.

We partition the remaining set of vertices V (G)\R into sets Q1, Q2, . . . , Qq, where
every Qi is the union of connected components of G \ R with the same neighbor-
hood in R. We claim that P = (R, {Qi}1≤i≤q) is the desired (αk, β)-protrusion
decomposition of G.

First, we have the following bound on |R|.

|R| ≤ |R0|+
∑

{i : |N(Ci)|≥3}

|Yi| ≤ |R0|+ 2(t+ 1)
∑

{i : |N(Ci)|≥3}

|N(Ci)| = O(k)

Here the last bound follows from (33) together with the bound of Claim 1 that
|R0| = O(k)

There are at most |R| sets Qi such that |N(Qi)| = 1. By Euler’s formula, there
are at most 3|R|+6g−6 sets Qi with exactly two neighbors in R. Again, by Euler’s
formula, exactly as in (32), the number of sets Qi with at least three neighbors in
R is at most 2|R|+ 2g − 4. Hence q ≤ 6|R|+ 7g = O(k).

By Claim 4, we have that |N(Qi)| ≤ 2(t+ 1) for every i. Furthermore, for every
i we have that each connected component of G[Qi] is in fact Cj for some j, and
hence by Claim 3, G[Qi] has treewidth at most t. Hence G[N [Qi]] is a protrusion
with treewidth at most 3t+ 2 and boundary size at most 2(t+ 1). This completes
the proof of Lemma 6.2.

6.3 Decomposition lemma for quasi-coverable problems

In this section we prove the following decomposition lemma.

Lemma 6.4. Every r-quasi-coverable problem has the weak protrusion decompo-
sition property B∗.

Given the definition of r-quasi-coverability, Lemma 6.4 is a direct consequence of
the following graph-theoretic result.

44



Lemma 6.5. There exist functions ζ1 and ζ2 such that the following holds: Let
r, g, p, and k be non-negative integers and let G = (V,E) be a graph embedded in a
surface Φ of Euler genus g such that

—G contains a set S of vertices, where |S| ≤ k and tw(G \Rr
G(S)) ≤ r, and

—for every λ ≤ ζ1(r, g), G has no λ-protrusion of size at least p.

Then G has a (ck, c)-protrusion decomposition, where c = ζ2(g, r, p).

Indeed, we set g = r in Lemma 6.5. Then combinatorial propertry B∗ holds for
c′ = ζ1(r, g) and g(x) = ζ2(r, r, x).

The rest of this section is devoted to the proof of Lemma 6.5. Let us outline first
the main ideas of the proof. Let S be a subset of V of size k such that removal of
balls of radius r (in radial distance) around vertices of S from G, results in a graph
of treewidth at most r. We enlarge the set S by adding at most k new vertices and
we want the new set S′ to satisfy the following property:

—Balls of radius µ (in radial distance) around vertices of S′ cover all vertices of G,
where µ is a constant depending on r, p and g.

If we succeed to find such a set S′, then we can use Lemma 6.2 to obtain a (ck, c)-
protrusion decomposition of G for some constant c. To find the required set S′,
we show how to construct a superset S′ of S of size at most 2k, such that for
every vertex v at distance ≥ 2µ from S′ in the graph G \Bµ

G(v) there are at most
two connected components containing vertices of S′. This construction is given in
Lemma 6.6. To prove that S′ is the required set, we have to prove that every
vertex of G is at radial distance µ from some vertex of S′. The proof of this fact
is based on the proof that in graphs embedded in a surface of bounded genus,
two connected sets embedded at a large radial distance from each other and non-
separable by “small” separators, form an obstruction for having “small” treewidth
(Lemma 6.11). Because the treewidth of the graph G \ Rr

G(S′) is at most r, we
obtain that if there is a vertex v at distance > µ from S′, then a ball of radius
p around this vertex should be separated from the remaining graph by a small
separator. This yields that G has a protrusion containing a ball of radius p around
v, and thus of size at least p. But by the assumption of the lemma, there is no such
a protrusion. Thus every vertex v is within distance ≤ µ from S′.

We proceed with the proof of Lemma 6.5.

Constructing S′ from S. Let G be a graph, H be a subgraph of G and S ⊆ V (G).
An S-component ofH is a connected component ofH containing some of the vertices
of S.

Lemma 6.6. Let µ be a positive integer, G = (V,E) be a connected graph, and
S be a subset of V. Then there is a set S′ ⊇ S such that

—|S′| ≤ max{2|S| − 2, 1}, and

—for every v ∈ V \B2µ
G (S′), graph G \Bµ

G(v) has at most two S′-components.

Proof. We use induction on |S|. As the lemma is obvious when |S| ≤ 2, we
assume that |S| = k > 2 and that the lemma holds for all sets S of smaller sizes.
Suppose that G contains a vertex u such that distG(u, S) ≥ 2µ + 1 and G− =
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G \ Bµ
G(u) has at least three S-components. (If there is no such vertex u, we

are done.) We denote these components by C1, . . . , Ch, h ≥ 3, and we denote by
Ch+1, . . . , C`, the connected components of G− not containing vertices from S. For
i ∈ {1, . . . , `}, we define

Si = (S ∩ V (Ci)) ∪ {u},

and

Gi = G[Bµ
G(u) ∪ V (Ci)].

Notice that each Si is a vertex subset of the connected graph Gi and that 1 ≤ |Si| ≤
|S|−1 = k−1. This means that the induction hypothesis holds for Gi and Si. Thus
for every i ∈ {1, . . . , `}, there is a set S′i ⊇ Si such that |S′i| ≤ max{2|Si| − 2, 1},
and

∀v ∈ V (Gi) \B2µ
Gi

(S′i), graph Gi \Bµ
Gi

(v) has at most two S′i-components. (36)

We now set S′ =
⋃

1≤i≤` S
′
i. Clearly, S′ ⊇ S. Notice also that u appears in every

S′i, while each other vertex of S′ appears in exactly one of S′1, . . . , S
′
h. Therefore,

|S′| = (

h∑
i=1

|S′i|)− (h− 1)

≤ 2 · (
h∑
i=1

|Si|)− 2h− h+ 1

= 2 · (
h∑
i=1

|Si \ {u}|) + 2h− 3h+ 1

= 2|S| − h+ 1 ≤ 2k − 2.

(For the last inequality, we use the assumption that h ≥ 3.)
We claim that for every v ∈ V \ B2µ

G (S′), the graph G \ Bµ
G(v) has at most

two S′-components. Without loss of generality, let us assume that v belongs to
the connected component C1 of G− = G \ Bµ

G(u). By (36), in the corresponding
graph G1, the subgraph G1 \Bµ

G1
(v) has at most two S′1-components, where S′1 =

V (G1)∩S′, and one of these components contains u. The distance from u to v is at
least 2µ + 1 and hence the whole ball Bµ

Gv
(v) is contained in C1. Therefore every

vertex w ∈ S′ \ S1 is connected with u in G by a path avoiding Bµ
G(v). Hence,

G \Bµ
G(v) has at most two S′-components.

Treewidth obstructions. The main result of this subsection is Lemma 6.11. It
can be seen as an extension of the following result: if a graph of bounded genus has
two vertices which are far apart (in the radial distance) and cannot be separated by
a small separator, then the treewidth of the graph is large [Mohar and Thomassen
2001]. However for the purposes of the proof, we need an extension of this result
for two “radially” connected and non-separable vertex sets.

To prove Lemma 6.11 we need several combinatorial results. We use the follow-
ing proposition from [Juvan et al. 1996] (see also [Mohar and Thomassen 2001,
Proposition 4.2.7]).
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Proposition 6.7. Let G be a graph embedded in a surface Φ of Euler genus g,
x, y ∈ V (G), and let P be a collection of pairwise internally vertex disjoint paths
from x to y such that no two of them are homotopic. Then, |P| ≤ h(g), where

h(g) =

{
g + 1 if g ≤ 1
3g − 2 if g ≥ 2.

Let G = (V,E) a graph and let X,Y, and Z be pairwise disjoint subsets of V. We
say that Y separates X and Z if X and Z are in different connected components of
G \ Y. We say that Y is a minimal (X,Z)-separator if no subset of Y separates X
and Z. For S ⊆ V, we say that S is connected in G if G[S] is a connected graph.

The following properties of minimal separators of connected vertex sets in trian-
gulated graphs are important for obtaining treewidth obstructions.

Lemma 6.8. Let G be a triangulated graph embedded in a surface Φ with Euler
genus g and let S be a minimal separator for connected vertex subsets X1 and X2

of G. Then S has at most h(g) connected components.

Proof. Let C1, C2, . . . , Cr be the connected components of G\S. Without loss of
generality, we assume that C1 contains X1 and C2 contains X2. For each component
Ci we select a vertex xi ∈ Ci, i ∈ {1, . . . , r}. We call the vertices in S separation
vertices and the vertices {x1, x2, . . . , xr} satellite vertices. From G we construct a
graph H by exhaustively contracting or removing edges according to the following
rules:

—We contract all edges except the edges with one endpoint being a satellite vertex
and the other endpoint a separation vertex.

—We delete loops which are not boundaries of faces and as long as possible, we
delete one of the multiple edges incident with trivial faces, i.e. faces incident with
two edges.

Notice that every connected component Ci is contracted to a single vertex xi and
every connected component of G[S] is also contracted to a single vertex. In addi-
tion, each application of the above rules results in a triangulated graph, thus H is
triangulated. Let S′ be the vertices of H resulted in contracting of G[S]. The ver-
tices of S′ form a minimal (x1, x2)-separator in H, and thus each of xi, i ∈ {1, 2}, is
adjacent to all vertices of S′. Hence there exist |S′| internally vertex disjoint paths
of length two from x1 to x2 in H. Because H is triangulated, these (x, y)-paths are
pairwise non-homotopic, otherwise some edge in H[S′] could be further contracted
or deleted. Combining this with Proposition 6.7, we deduce that |S′| ≤ h(g). The
lemma now follows by observing that each connected component of S shrinks to a
single vertex of S′, therefore S has |S′| ≤ h(g) connected components.

We say that two vertex subsets X,Y of graph G touch if either X ∩ Y 6= ∅ or
there exist an edge of G with one endpoint in X and the other in Y. A bramble of
G is a collection B of mutually touching connected subsets of V (G). The order of
a bramble B is the minimum size of a set S that intersects all its elements. The
bramble number of G is the maximum order a bramble of G may have.

The following min-max characterization of treewidth was proved in [Seymour and
Thomas 1993].
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Proposition 6.9. The treewidth of a graph is one less than its bramble number.

We define functions f1, f2 such that f1(x, y) = (x+1)y and f2(x, y) = x(
(

(x+1)y
x+1

)
)+

1. The following lemma can be seen as a generalization of [Seymour and Thomas
1993, (3.2)].

Lemma 6.10. Let q, t be non-negative integers and let r1 = f1(t, q) and r2 =
f2(t, q). Let G be a graph and let X = {X1, . . . , Xr1} be a collection of mutually
disjoint connected vertex sets of G. Let also Y = {Y1, . . . , Yr2} be a collection of
mutually disjoint vertex sets of G, each with at most q connected components and
such that for every i ∈ {1, . . . , r1} and j ∈ {1, . . . , r2}, Xi∩Yj 6= ∅. Then tw(G) ≥ t.

Proof. For every set Yj , j ∈ {1, . . . , r2}, we select its connected component Y ′j
intersecting the largest number of sets from X . Because every Yj has at most q
connected components, set Y ′j intersects at least t+ 1 = r1/q sets from X .

Let now R be the intersection graph of sets X and Y ′ = {Y ′1 , . . . , Y ′r2}. Then R
is a bipartite graph with bipartition (X ,Y ′) , and every vertex from Y ′ has degree
≥ t+ 1 in R. We remove edges from R such that in the resulting graph all vertices
of Y ′ have degree exactly t+ 1. In the new graph the vertices from Y ′ have at most(

|X |
t+ 1

)
=

(
(t+ 1)q

t+ 1

)
distinct neighbourhoods in X . Because

|Y ′| = |Y| = t

(
(t+ 1)q

t+ 1

)
+ 1,

we deduce that there should be at least t + 1 vertices of Y ′ with the same neigh-
bourhood in X . Let IY be the indices of these vertices in Y and let IX be the indices
of their neighbours in X .

It follows that for every (i, j) ∈ IX × IY , Xi∩Y ′j 6= ∅, and, as both Xi and Y ′j are
connected, Xi ∪ Y ′j is also a connected set. Moreover, because |IX | = |IY | = t+ 1,
it follows that for every set S of t vertices in G, there are i ∈ IX and j ∈ IY such
that S ∩ (Xi ∪ Y ′j ) = ∅. We can now conclude that the collection {Xi ∪ Y ′j | (i, j) ∈
IX × IY}} is a bramble in G of order t+ 1. Therefore, the bramble number of G is
at least t+ 1 and the lemma follows from Proposition 6.9.

Let G be a graph embedded in some surface Φ. We define the radial completion of
G as the graph obtained from drawing of G in Φ together with its radial graph RG.
We denote the radial completion of G by WG. Let us remark that WG is triangulated
and that RG is a spanning subgraph of WG. Notice that every two adjacent vertices
in WG have some common neighbour in RG. This implies the following observation.

Observation 5. Let G be a graph embedded in some surface Φ. Then for every
pair x, y ∈ V (RG), it holds that distWG

(x, y) ≤ distRG(x, y) ≤ 2 · distWG
(x, y).

Loosely speaking, the following lemma says that in a graph of small treewidth
which is embedded on a surface of fixed genus, every two connected sets will be
either radially close or will be be separated by a small set. Let h be the function
from Lemma 6.8, and f1, f2 be the functions defined before Lemma 6.10.
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Lemma 6.11. Let G be a graph embedded in a surface Φ of Euler genus g, t be
a positive integer, and C,Z,Z1, C1 be disjoint subsets of V (WG) such that

—C and C1 are connected in WG,

—Z separates C from Z1 ∪ C1 and Z1 separates C ∪ Z from C1 in WG,

—distWG
(Z,Z1) ≥ 3 · f2(t+ 1, h(g)) + 3, and

—G contains f1(t+ 1, h(g)) internally vertex-disjoint paths from C ∩V (G) to C1 ∩
V (G).

Then tw(G[V (M)∩V (G)]) > t, where M is the union of all connected components
of WG \ (Z ∪ Z1) that have at least one neighbor in Z and at least one neighbor in
Z1. (See Fig. 1.)

Z Z1

C1

M

C

Fig. 1. A visualization of the statement of Lemma 6.11.

Proof. We set µ = f1(t + 1, h(g)) and λ = f2(t + 1, h(g)). Let P1, . . . , Pµ be
internally vertex-disjoint paths in G from C ∩ V (G) to C1 ∩ V (G). Each of these
paths Pi contains at least one subpath with one endpoint in Z and the other in
Z1, and with all internal vertices in M. We denote by P ′1, . . . , P

′
µ′ the set of such

subpaths. Then µ′ ≥ µ.
For j ∈ {1, . . . , 3λ + 2}, let Aj be the set of all vertices of WG that are within

distance exactly j from Z and belonging to M. Notice that each Aj is a (Z,Z1)-
separator and thus also a (C,C1)-separator of WG. Clearly, each Aj contains as a
subset a minimal (C,C1)-separator Yj of WG. As each Yj is also a (Z,Z1)-separator,
it should contain at least one internal vertex of every path in P ′1, . . . , Pµ′ . Moreover,
by its definition, Aj should be a subset of M.

As WG is triangulated, by Lemma 6.8, each WG[Yj ] contains at most h(g) con-
nected components. Recall that, by the definition of WG, for each vertex x ∈
V (WG)\V (G), the graph induced by its neighborhood is a connected subgraph of G.
Using this fact, we obtain that the subgraph of G induced by Y +

j = B1
WG

(Yj)∩V (G)
has also at most h(g) connected components for j ∈ {2, . . . , 3λ+ 1}.

Let I = {1, . . . , λ} and notice that, for any two distinct h, l ∈ I, sets Y +
3h and

Y +
3l are disjoint. For j ∈ {1, . . . , µ′}, we define P ′′j as the path obtained from P ′j

after removing its endpoints. Observe now that P ′′1 , . . . , P
′′
µ′ are connected vertex-

disjoint subgraphs of G[V (M) ∩ V (G)], and each of these graphs intersect all sets
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Y +
3j . Applying Lemma 6.10 for µ graphs from {P ′′1 , . . . , P ′′µ′} and λ graphs from

{Y +
3j | j ∈ I}, we deduce that tw(G[V (M) ∩ V (G)]) ≥ t + 1 > t and the lemma

follows.

Final step. To conclude the proof of the main result of this section, we need the
last lemma. The following lemma essentially says that if (G, k) is a YES-instance
of a quasi-coverable problem Π where G has no big protrusion, then G has an r-
dominating set of size O(k) for some r that depends only on Π and g. Therefore
(G, k) can be treated as a YES-instance of a coverable problem.

We define function f3(x, y) = 2 · f1(x + 1, h(y + 1)) where h is the function of
Lemma 6.8, and f1 is the function defined before Lemma 6.10.

Lemma 6.12. Let G = (V,E) be a graph embedded in a surface Φ of Euler genus
g and let p, t, and r be non-negative integers such that

—there exists a set S ⊆ V such that tw(G \Rr
G(S)) ≤ t;

—for λ ≤ f3(t, g), all λ-protrusions of G are of size less than p.

Then there exist a set S′ ⊆ V and a constant µ (depending on p, g, and r only)
such that

—|S′| ≤ 2|S|, and

—Rµ
G(S′) = V.

Proof. To prove the lemma, we prove a slightly different statement: Under
the assumptions of the lemma, there is a set S′ ⊆ V (WG) such that |S′| ≤ 2|S|
and Bµ

WG
(S′) = V (WG). Then the statement of the lemma can be deduced from

this alternative statement by constructing set S′new as follows: first set S′new ← S′

and then replace each vertex in S′ that does not belong to V (G) with one of its
neighbors from V (G). It remains to observe that Rµ+1

G (S′new) ⊇ Bµ
WG

(S′).

We put µ = 2p + 2r + 2 + 2µ′, where µ′ = 3 · f2(t + 1, h(g)) + 3, and proceed
with the proof of the above alternative statement. We first apply Lemma 6.6 for
WG and S to obtain a set S′ ⊇ S of vertices, where |S′| ≤ 2|S| and such that for
every v ∈ WG \ B2µ

WG
(S′), graph WG \ Bµ

WG
(v) has at most two S′-components.

If B2µ
WG

(S′) = V (WG), then we are done. Otherwise, let v ∈ WG \ B2µ
WG

(S′). Let
C1, C2 be S′-components of WG \ Bµ

WG
(v) (one of these components can be an

empty set), and let Si = Ci ∩ S′, i ∈ {1, 2}. We also define subgraphs of WG as
follows, W1 = WG \ C2 and W2 = WG \ C1.

We claim that at least one of the sets Ci, i ∈ {1, 2}, cannot be separated in Wi

from C = B2p
WG

(v) by a separator of size at most λ/2. Indeed, if it was the case,

then in WG, C is separable from C1 ∪ C2, and thus from B2r
WG

(S′) ⊆ C1 ∪ C2 by
a separator of size at most λ. By Observation 5, this means that in G, vertices
RpG(v) can be separated from Rr

G(S′) by a separator of size at most λ. Because
tw(G \Rr

G(S′)) ≤ t this yields that there is a λ-protrusion in G containing Rp
G(v).

But |Rp
G(v)| ≥ p, and thus the size of this protrusion is at least p in G, which

contradicts to the assumption of the lemma.
Without loss of generality, let us assume that C1 is a S′-component of WG \

Bµ
WG

(v) that cannot be separated in W1 from C by a separator of size λ/2. By

50



Menger’s theorem, in graph W1 there are λ/2 internally vertex-disjoint paths from
C to C1. We define Z as the set of vertices at distance exactly 2p+ 1 from v in W1,
and Z1 as NW1

(C1). Then Z separates C from Z1 ∪ C1 and Z1 separates C1 from
Z ∪C. The distance in W1 between Z and Z1 is at least µ′. Let M be the union of
connected components of W1 \ (Z1∪Z2) having at least one neighbour in Z and Z1.
By Lemma 6.11, the treewidth of the subgraph GM of G induced by M ∩ V (G) is
more than t. On the other hand, every vertex of M is at distance more than r + 1
in WG, and thus at radial distance at least r + 1 in G, from each vertex of S′, and
thus of S. Hence tw(GM ) ≤ tw(G \Rr

G(S)), which is at most t by the assumption
of the lemma. This contradiction concludes the proof of the lemma.

Proof of Lemma 6.5. By applying Lemma 6.12 for r = t and ζ1 = f3, we have
that G contains a set of vertices S′ where |S′| ≤ 2k such that Rµ

G(S′) = V (G) and µ
is the constant of Lemma 6.12. But then by Lemma 6.2, G has a (ck, c)-protrusion
decomposition for some c depending on g, r, and p as required.

7. CRITERIA FOR PROVING FII

To apply Theorem 1.3, to prove that a specific parameterized problem on graphs
admits a linear kernel we have to show that it has FII. This property is not always
easy to prove directly. In this section, we give some general criteria for establishing
FII. These tools are used in Section 8. Early results that establish that problems
have FII were obtained by Bodlaender and de Fluiter [Bodlaender and de Fluiter
1996; Bodlaender and van Antwerpen-de Fluiter 2001; de Fluiter 1997]; another
criterion for FII was given by van Rooij [van Rooij 2011, Section 11.2].

7.1 Strong monotonicity

We first give a sufficient condition which implies that a large class of p-min/max-
CMSO[ψ] problems has FII. We prove it here for vertex versions of p-min/max-
CMSO[ψ] problems. By UI we denote the set of all boundaried structures of type
(graph, vertex set), whose boundaried graph has label set I.

Let Π be a p-min-CMSO[ψ] problem definable by some sentence ψ. We say that
a boundaried structure (G′, S′) whose boundaried graph has label set I is ψ-feasible
for some boundaried graph G with label set I if there exist some S ⊆ V (G) such
that (G ⊕ G′, S ∪ S′) |= ψ. For a boundaried graph G with label set I, we define
the function ζG : UI → Z+ ∪ {∞} as follows. For a structure α = (G′, S′) ∈ UI we
set

ζG(α)=

{
min{|S| |S ⊆ V (G) ∧ (G⊕G′, S ∪ S′) |= ψ} if α is ψ-feasible for G
∞ otherwise

(37)

Similarly, for Π p-max-CMSO[ψ] problems we define

ζG(α)=

{
max{|S| |S ⊆ V (G) ∧ (G⊕G′, S ∪ S′) |= ψ} if α is ψ-feasible for G
−∞ otherwise

Definition 7.1. A p-min-CMSO[ψ] problem Π is strongly monotone if there
exists a function f : Z+ → Z+ such that the following condition is satisfied. For
every boundaried graph G with label set I, there exists a subset W ⊆ V (G) such that
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for every (G′, S′) ∈ UI such that ζG(G′, S′) is finite, it holds that (G⊕G′,W ∪S′) |=
ψ and |W | ≤ ζG(G′, S′) + f(|I|).

For completeness we give below the maximization counterpart of Definition 7.1.

Definition 7.2. A p-max-CMSO[ψ] problem Π is strongly monotone if there
exists a function f : Z+ → Z+ such that the following condition is satisfied. For
every boundaried graph G with label set I there exists a subset W ⊆ V (G) such that
for every (G′, S′) ∈ UI such that ζG(G′, S′) is finite, it holds that (G⊕G′,W ∪S′) |=
ψ and |W | ≥ ζG(G′, S′)− f(|I|).

7.2 FII for p-min/max-CMSO[ψ] problems

Lemma 7.3. Every strongly monotone p-min-CMSO[ψ] and every strongly mono-
tone p-max-CMSO[ψ] problem has FII.

Proof. We prove the lemma for a p-min-CMSO[ψ] problem; the proof for a p-
max-CMSO[ψ] problem is similar. Let Π be a strongly monotone p-min-CMSO[ψ]
problem and let I ⊆ Z+. Let MinRep(ψ, I) be a set containing a representative
(a boundaried structure of arity two) for each equivalence class of ≡σψ with the
minimum number of vertices in the graph of a structure. For brevity we denote
MinRep(ψ, I) by S. From Lemma 3.2 we know that |S| is bounded by some
function of |ψ| and |I|.

Consider a boundaried graph G with label set I and define ζSG : S → Z+∪{∞} to
be the function ζG with domain restricted to S. Let LSG = {ζSG(α) | α ∈ S} \ {∞}.
We first argue that if f is the function in the definition of the strong monotonicity
of Π (i.e., Definition 7.1) and LSG 6= ∅, then

maxLSG −minLSG ≤ f(|I|) (38)

Since Π is strongly monotone, there exists W ⊆ V (G) such that for every (G′, S′) ∈
UI where ζG(G′, S′) 6=∞, it holds that

(G⊕G′,W ∪ S′) |= ψ and (39)

|W | ≤ ζG(G′, S′) + f(|I|) (40)

Let α = (G′, S′) ∈ S such that ζSG(α) 6=∞. Then (39) implies that ζSG(α) ≤ |W |.
This, together with (40), yields that |W | − f(|I|) ≤ ζSG(α) ≤ |W | and (38) holds.
Hence the minimum and the maximum finite values of ζSG can differ by at most
f(|I|).

We now assign for each boundaried graph G with label set I a signature χG :
S → {0, . . . , f(|I|),∞} in a way that for each α ∈ S,

χG(α) = ζSG(α)−minLSG (41)

In (41), we make the agreement that infinite values remain infinite after subtracting
an integer. Notice that it is possible that in (41) minLSG may not exist and this
happens in the extreme case where LSG = ∅. In such a case, we set χG(α) =∞ for
all α ∈ S.

We say that G1 ∼ G2 if and only if χG1 = χG2 and observe that ∼ is an
equivalence relation. Observe that the number of different signatures of boundaried
graphs with label set I is bounded by some function of |ψ| and |I|. Therefore, the
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same holds for the number of equivalent classes of ∼ . To prove that ≡Π has FII,
it is enough to prove that ∼ is a refinement of ≡Π, which means that if G1 ∼ G2,
then G1 ≡Π G2. For this, we claim that if G1 ∼ G2, then there exists some constant
c ∈ Z (depending on G1 and G2) such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ Π⇔ (G2 ⊕ F, k + c) ∈ Π. (42)

To prove the above statement we first determine the constant c. As G1 ∼ G2,
we have that χG1 = χG2 . In the extreme case where χG1(α) = χG2(α) = ∞ for
all α ∈ S, (42) holds trivially for c = 0 as ∀(F, k) ∈ F × Z+ both sides of the
equivalence are false (for completeness, recall that according to the way we defined
parameterized problems, ∀(F, k) ∈ F×Z− both sides of the equivalence in (42) have
the same value). From now onwards we assume that both minLSG1

and minLSG2

exist. Therefore, from (41), for each α ∈ S, ζSG2
(α) = ζSG1

(α)−minLSG1
+ minLSG2

.

We set c = minLSG2
−minLSG1

. and we conclude that

∀α ∈ S ζSG2
(α) = ζSG1

(α) + c. (43)

Let (F, k) ∈ F × Z and assume that (G1 ⊕ F, k) ∈ Π. This means that there exists
a set S ⊆ V (G1 ⊕ F ) such that |S| ≤ k and

(G1 ⊕ F, S) |= ψ. (44)

Let SF = S ∩ V (F ) and SG1
= S \ SF and observe that

|SG1
|+ |SF | ≤ k. (45)

We rewrite (44) as follows:

(G1, SG1
)⊕ (F, SF ) |= ψ. (46)

Let (F ′, S′F ) ∈ S be the representative of (F, SF ). As (F, SF ) ≡σψ (F ′, S′F ), (46)
implies that

(G1, SG1
)⊕ (F ′, S′F ) |= ψ

⇐⇒ (G1 ⊕ F ′, SG1
∪ S′F ) |= ψ (47)

From (37), (47) implies that ζG1
(F ′, S′F ) ≤ |SG1

|. From (43), we get ζSG2
(F ′, S′F ) ≤

|SG1 |+ c which, again from (37), means that there exists SG2 , where

(G2 ⊕ F ′, SG2 ∪ S′F ) |= ψ and (48)

|SG2 | ≤ |SG1 |+ c. (49)

We rewrite (48) as follows:

(G2, SG2)⊕ (F ′, S′F ) |= ψ. (50)

As (F ′, S′F ) ≡σψ (F, SF ), (50) implies that

(G2, SG2)⊕ (F, SF ) |= ψ

⇐⇒ (G2 ⊕ F, SG2 ∪ SF ) |= ψ.

Moreover, |SG2 ∪SF | ≤ |SG2 |+ |SF | ≤(49) |SG1 |+ c+ |SF | ≤(45) k+ c. We conclude
that (G2⊕F, k+c) ∈ Π and we proved the one direction of (42). The other direction
is symmetric.
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Remark 1. In Definitions 7.1 and 7.2 we defined the notion of strong mono-
tonicity for p-min/max-CMSO[ψ] problems where S is a subset of the vertices
of the input graph. If instead we ask S to be an edge subset then an analogue of
Lemma 7.3 can be proved in a similar manner.

Let G be a graph class. We say that G is CMSO-definable if there exist a sentence
ψ on graphs such that G = {G | G |= ψ} and, in such a case, we say that ψ defines
the class G. Recall that, given a parameterized graph problem Π and a graph class
G, we denote by ΠeG the problem obtained by removing from Π all instances that
encode graphs that do not belong to G.

A necessary tool to adapt our results to problems on special graph classes is the
following. The proof follows directly by the definitions.

Lemma 7.4. Let Π be a parameterized problem on graphs and let G be a CMSO-
definable graph class. Then if Π has FII, so does Π e G.

8. IMPLICATIONS OF OUR RESULTS

In this section we mention a few parameterized problems for which we can obtain
either polynomial or linear kernel using Theorems 1.1, 1.2, and 1.3. In Appendix
we provide a full list of the problems amenable to our approach.

8.1 Preliminary tools

All of our results concern problems defined on graphs of bounded genus. Recall
that we denote by Gg the class of all graphs of Euler genus at most g. In this way
for every parameterized problem Π on graphs, we define the problem Πg = Πe Gg,
that contains only YES-instances of Π, encoding graphs of Euler genus at most g.
We need to distinguish the two variants Π and Πg. The reason for this is that, in
many cases, for some fixed value g, Πg admits a polynomial kernel while the general
version Π is not even believed to be fixed parameter tractable. A typical example
is Planar Dominating Set that admits a vertex kernel of size 67k while the
general Dominating Set problem is W[2]-complete [Downey and Fellows 1998].

The following lemma is a direct consequence of the definition of coverability and
quasi-coverability.

Lemma 8.1. Let Π1,Π2 be graph problems whose instances are of the form (G, k).
Then if Π1 ⊆ Π2 and Π2 is r-(quasi)-coverable, then so is Π1.

The next lemma is useful when we work on graphs of bounded genus.

Lemma 8.2. Let Π be a parameterized problem on graphs. If Π has FII, then for
every g ∈ Z+, Πg has FII.

Proof. Let Og be the set containing all minor-minimal elements of the class of
graphs with Euler genus more than g. According to the results of [Mohar 1999],
Og is finite for each fixed g. Notice that Gg = {G | ∀H∈Og H � G} and as minor
checking can be expressed in CMSO, the class Gg is CMSO-definable. Therefore,
the lemma follows from Lemma 7.4.
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8.2 Covering minors

A minor-model of a graph H in a graph G is a minimal subgraph F of G that
contains H as a minor. Notice that H � G if and only if G contains as a subgraph
some minor-model of H.

We give below a generic problem that subsumes many problems in itself. Let H
be a finite set of connected graphs containing at least one planar graph.

p-H-Deletion
Input: A graph G and k ∈ Z+.
Parameter: k.
Question: Is there S ⊆ V (G) such that |S| ≤ k and G \ S does

not contain any of the graphs from H as a minor?

Lemma 8.3. If Π =p-H-Deletion, then for every g ∈ Z+, Πg is quasi-coverable.

Proof. Let (G, k) be a YES-instance for Πg. This means that there exists a set
S ⊆ V (G) of cardinality at most k such that none of the graphs in H is a minor
of G \ S. Let H be a planar graph in H. As G \ S excludes H as a minor and H
is planar, it follows from [Robertson et al. 1994] that tw(G \ S) ≤ cH for some
constant that depends only on H. Set r = max{g, cH} and take an embedding of
G in a surface of genus at most g. Observe that G \ Rr

G(S) ⊆ G \ S, therefore,
tw(G \ Rr

G(S)) ≤ tw(G \ S). Thus Πg has the r-quasi-coverability property for
some r depending on H and g.

Lemma 8.4. If Π =p-H-Deletion, then for every g ∈ Z+, Πg has FII.

Proof. Let ψ = [∀H ∈ H H � (G \ S)]. As minor-checking is CMSO-definable,
ψ can be written as a CMSO sentence, hence Π is a p-min-CMSO[ψ] problem. We
now prove that Π has FII. By Lemma 7.3 and 8.2, it suffices to prove that Π is
strongly monotone. Let G be a boundaried graph with label set I and the boundary
δ(G) = B. Let S− be a set of minimum size such that (G\B)\S− does not contain
any of the graphs from H as a minor and let W = S− ∪B.

Let (G′, S′) ∈ UI be a ψ-feasible structure. We first prove that (G ⊕ G′,W ∪
S′) |= ψ. For this, assume in contrary, that R is a minor-model of some H from
H contained in (G ⊕ G′) \ (W ∪ S′). As H is connected and B is a separator of
G⊕G′, R should be either a subgraph of G \W = (G \B) \ S−, or a subgraph of
(G′ \ B) \ S′. The first case contradicts to the choice of S−. In the second case, R
would be a subgraph of (G′ \B) \ S′, which contradicts the feasibility of (G′, S′).

We next prove that |W | ≤ ζG(G′, S′) + f(|I|), where f(|I|) = |I|. For (G′, S′) ∈
UI , let S∗ ⊆ V (G) be a set of minimum size such that (G⊕G′) \ (S∗ ∪S′) contains
no graph from H as a minor. Thus |S∗| = ζG(G′, S′). Notice that G \ B does not
contain vertices from S′. Therefore for every H ∈ H, every minor-model R of H
in G \ B should be intersected by vertices from S∗—otherwise R would also be a
subgraph of (G⊕G′) \ (S∗ ∪S′), which is a contradiction. By the choice of S−, we
have |S−| ≤ |S∗|. We conclude that |W | = |S− ∪ B| ≤ |S−| + |B| ≤ |S∗| + |B| =
ζG(G′, S′) + f(|I|).
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p-H-Deletion contains various problems as a special case. Some examples are
presented below (all of them are parameterized by solution size k).

—p-Vertex Cover : In this problem given an input graph G and a k ∈ Z+, the
objective is to test whether it is possible to remove at most k vertices from G
and obtain an edgeless graph. This problem is generated by taking H = {K2}.

—p-Feedback Vertex Set : In this problem given an input graph G and a
k ∈ Z+, the objective is to test whether it is possible to remove at most k
vertices from G and obtain an acyclic graph. This problem is generated by
taking H = {K3}.

—p-Diamond Hitting Set : In this problem given an input graph G and a
k ∈ Z+, the objective is to test whether it is possible to remove at most k
vertices from G and obtain a graph where no edge is contained in more than one
cycle. This problem is generated by taking H = {K−4 } where K−4 is the graph
obtained from a K4 after removing an edge.

—p-Almost Outerplanar : In this problem given an input graph G and a
k ∈ Z+, the objective is to test whether it is possible to remove at most k
vertices from G and obtain an outerplanar graph. This problem is generated by
taking H = {K4,K2,3}.

—p-Almost-t-bounded treewidth : In this problem given an input graph G
and a k ∈ Z+, the objective is to test whether it is possible to remove at most k
vertices from G and obtain a graph of treewidth bounded by some fixed constant
t. This problem is generated by taking H to be the set of minor minimal graphs
with treewidth > t (from the results in [Robertson et al. 1994], this set always
contains a connected planar graph).

—p-Almost-t-bounded pathwidth : In this problem given an input graph G
and a k ∈ Z+, the objective is to test whether it is possible to remove at most k
vertices from G and obtain a graph of pathwidth bounded by some fixed constant
t. This problem is generated by taking H to be the set of minor minimal graphs
with pathwidth bigger than t.

8.3 Packing minors

We consider the following problem that, in a sense, is dual to the one examined in
Section 8.2. Again, let H be a finite set of connected graphs containing at least one
planar graph.

p-H-Packing
Input: A graph G and k ∈ Z+.
Parameter: k.
Question: Does there exist k vertex disjoint subgraphs G1, . . . , Gk of G such

that each of them contains some graph from H as a minor.

For proving the quasi-coverability of p-H-Packing, we need to examine its rela-
tion to p-H-Deletion.

Lemma 8.5. If Π =p-H-Packing, then for every g ∈ Z+, Πg is quasi-coverable.
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Proof. Given two graphs G and H, we define covH(G), as the minimum size
of a set S ⊆ V (G) of vertices such that G \ S does not contain any minor model of
H.

We also define

packH(G) = max{k | ∃ partition V1, . . . , Vk of V (G) such that

∀i∈{1,...,k} G[Vi] is a minor-model of H}.

Let H be a connected planar graph in H. To prove that Πg is quasi-coverable,
we show that Πg = ((Σ∗ × Z+) \ Πg) e Gg has the quasy-coverability property. In
order to do so, we prove that if (G, k) ∈ Πg, i.e., G ∈ Gg and has no H-packing
into k sets, then (G, ck) is a YES-instance for Πhd

g , where Πhd =p-H-Deletion,
for some constant c that depends only on g and H. By Lemma 8.5,p-H-Deletion
is r-quasi-coverable, and thus Πg would posses a quasi-coverability property.

Suppose that (G, k) ∈ Πg. This implies that packH(G) < k. According to the
Erdős-Pósa type of result of [Fomin et al. 2011], for every two graphs H and W,
where H is planar and W is any graph, there exists a constant cH,W , depending only
on H and W, such that for every graph G excluding W as a minor, covH(G) ≤
cH,W · packH(G). Let W be a graph of Euler genus g + 1. As the class Gg is
closed under taking of minors, we have that every graph in Gg excludes W as
a minor. Applying the aforementioned result, we have that covH ≤ cH,W · k,
therefore (G, c · k) is a YES-instance for Πhd

g for some c depending only on H and

g, as required. This implies that Πg has a quasi-coverability property, hence Πg is
quasi-coverable.

Notice that when H = {K3}, p-H-Packing is the p-Cycle Packing problem.
Here, given an input graph G and a k ∈ Z+, the objective is to check whether
G contains k vertex-disjoint cycles. While the general problem has FII for every
choice of H, we present the proof for this special case in order to clearly explain
the machinery that we use for such type of problems. After the end of the proof of
Lemma 8.6, we outline how to extend the proof for the general case.

Lemma 8.6. If Π =p-Cycle Packing, then for every g ∈ Z+, Πg has FII.

Proof. By Lemma 8.2, it is sufficient to prove that Π has FII. Let G be a
boundaried graph with label set I and with boundary δ(G) = B∗. The proof
proceeds in three stages: the first stage defines some characteristic of the problem
that depends on the boundary of the input boundaried graph. The second uses this
characteristic to define an equivalence relation on boundaried graphs that will have
finite index, and the last one proves that this equivalence relation is a refinement
of ≡Π and therefore has finitely many equivalence classes as well.

Characteristic. We define set R as the set of all matchings R (not necessarily
maximal) of a complete graph on the vertex set B∗. Let us remark, that matching
R ∈ R is not necessarily a subgraph of G; each graph in R corresponds to a set
of mutually disjoint pairs from B∗. We define ζG : R → Z+ so that, for every
R ∈ R, the value ζG(R) is the maximum number of cycles that can be contained
in a subgraph J of G such that:

—∆(J) ≤ 2, and
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—for every edge {x, y} of R, J contains an (x, y)-path.

Let us remark that all (x, y)-paths of J are internally vertex disjoint. In case such
a graph J does not exist, we set ζG(R) = −∞. Function ζG can be seen as a way
to encode the tables of a dynamic programming for p-Cycle Packing on graphs
of treewidth at most |I|. The proof that follows can be seen as an alternate way to
prove that such a dynamic programming algorithm uses tables whose sizes depend
only on |I|.

Definition of equivalence. Let x be the maximum number of vertex disjoint cycles
in G. Thus for every R ∈ R, we have ζG(R) ≤ x. We define the signature of G as
the function χG : R → {−|I|, . . . , 0} ∪ {−∞} such that

χG(R)=

{
ζG(R)− x if x− |I| ≤ ζG(R) ≤ x
−∞ otherwise

Notice that the number of different signatures is bounded by some function of |I|.
Given two boundaried graphs G1 and G2, we say that G1 ∼ G2 if and only if
Λ(G1) = Λ(G2) and χG1 = χG2 . Clearly, for every I ⊆ Z+, ∼ is an equivalence
relation with finite number of equivalence classes.

Refinement proof. The result will follow if we prove that ∼ is a refinement of ≡Π .
For this we claim that if G1 ∼ G2 then G1 ≡Π G2 or, equivalently, there is some
constant c, depending on G1 and G2, such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ Π⇔ (G2 ⊕ F, k + c) ∈ Π. (51)

Suppose that G1 ∼ G2. Let (F, k) ∈ F × Z such that (G1 ⊕ F, k) ∈ Π. Our
target is to prove that (G2⊕F, k+ c) ∈ Π. (The proof for other direction of (51) is
symmetric and thus omitted.) Let us also assume that G1 and G2 are boundaried
graphs with label set I and δ(G1) = B.

The fact that (G1 ⊕ F, k) ∈ Π means that G1 ⊕ F contains a collection of k
disjoint cycles. Let C be such a collection of maximum size in G1 ⊕ F. Clearly,
|C| ≥ k. We partition C into four sets CG1 , CB , CBF , and CF , where

—CG1
are the cycles that are entirely inside G1,

—CB are the cycles of C that are not entirely in G1 or F,

—CBF are the cycles that are entirely inside F and intersect the boundary B, and

—CF are the cycles that are entirely inside F and do not intersect B.

Notice that |CB | + |CBF | ≤ |I|. Graph G1 ∩ (
⋃
C∈CB C) is a collection of internally

disjoint paths between pairs of terminals in B. By replacing each of these paths by
edges, we create graph R ∈ R. Graph R represents the possibility of linking the
pairs corresponding to the edges in R by disjoint paths inside G1 in a way that
these paths are disjoint from the disjoint cycles in CG1

.
For i ∈ {1, 2}, let C∗i be a maximum size collection of cycles in Gi, and let

xi = |C∗i |. Notice that x1 and x2 depend only on G1 and G2. We claim that x1−|I| ≤
|CG1
|. Indeed, C∗ = C∗1 ∪ CF is also a cycle packing in G1 ⊕ F. If |CG1

| < x1 − |I| =
|C∗1 |−|I|, then |C∗| = |C∗1 |+|CF | > |CG1

|+|I|+|CF | ≥ |CG1
|+|CB |+|CBF |+|CF | = |C|,

contradicting the maximality of C.
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We set c = x2−x1. By the definition of ζG, we have that |CG1
| ≤ ζG1

(R) ≤ x1. We
conclude that x1−|I| ≤ ζG1

(R) ≤ x1 and thus χG1
(R) > −∞. As G1 ∼ G2, we have

that χG1
(R) = χG2

(R), and therefore ζG2
(R) = ζG1

(R)− x1 + x2 = ζG1
(R) + c ≥

|CG1 | + c. This in turn, means that G2 contains a collection of disjoint cycles CG2

and |CG2 | = ζG2(R) ≥ |CG1 |+ c and |E(R)| internally vertex disjoint paths that are
also disjoint from the cycles in CG2

, one for each pair of vertices represented by the
edges of R.

Notice now that if we take the union of these paths with the graph F∩(
⋃
C∈CB C),

we obtain a collection C′B of |CB | vertex disjoint cycles in G2⊕F that are also disjoint
with the cycles from CG2 . The cycles from CG2 ∪CB are disjoint from cycles CBF and
CF . Therefore, CG2 ∪ C′B ∪ CBF ∪ CF is a collection of cycles in G2 ⊕ F that has size
at least |CG1

|+ c+ |CB |+ |CBF |+ |CF | = k+ c. We conclude that (G2⊕F, k+ c) ∈ Π
as required.

The proof that, in general, p-H-Packing has FII follows the same line as the
proof of Lemma 8.5. Instead of cycles we have minor-models of graphs in H and
instead of paths between terminals of the border, we have partial models that are
parts of minor-models of graphs in H that are cropped by G1. The signature χ is
now encodes all the ways such partial models might be “rooted” in the boundary.
This can be done by the “folio” structure introduced in [Robertson and Seymour
1995] for doing dynamic programming for the minor checking problem and the
disjoint paths problem on graphs of bounded treewidth. Variants of folios have
been used for similar purposes in [Adler et al. 2008; Grohe et al. 2011; Kaminski
and Thilikos 2012; Fomin et al. 2012].

8.4 Subgraph Covering and Packing

Let S be a finite set of connected graphs. We define the following two general
problems.

p-S-Covering
Input: A graph G and k ∈ Z+.
Parameter: k.
Question: Is there a S ⊆ V (G) such that |S| ≤ k and G \ S contains

no subgraph isomorphic to a graph from S?

p-S-Packing
Input: A graph G and k ∈ Z+.
Parameter: k.
Question: Does there exist k vertex disjoint subgraphs G1, . . . , Gk of G such

that each of them contains a subgraph isomorphic to a graph in S?

Let us remark that it is not true in general, that if Π =p-S-Covering or Π =p-
S-Packing, then Πg is coverable. However, the problems become coverable if we
modify instances by applying the following simple preprocessing rule.

Redundant Vertex Rule: For a graph G, while this is possible, delete a
vertex that does not belong to any subgraph of G isomorphic to any
graph in S.
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A graph G is RV-S-reduced if each its vertex belongs to a subgraph isomorphic
to a graph in S. We denote by R(S) the set of all RV-S-reduced graphs.

Lemma 8.7. Let Π be either p-S-Covering or p-S-Packing. There is a poly-
nomial time algorithm transforming (G, k) ∈ Πg into an equivalent instance (G′, k) ∈
ΠRV
g = Πg eR(S).

Proof. Let s be the maximum diameter of a graph in S and let G be a graph of
genus g. We can perform the Redundant Vertex Rule in O(|V (G)|2) time by checking
for every vertex v ∈ V (G) if the subgraph Gs(v) induced by Bs

G(v) has a subgraph
isomorphic to a graph in S containing vertex v. By Proposition 6.3, the treewidth
of Gs(v) is bounded by some function of s and g only and thus for every v such a
check can be performed in time O(|V (G)|), see, e.g. [Eppstein 2000].

We are now ready to prove the following lemma.

Lemma 8.8. Let Π be p-S-Covering or p-S-Packing. Then ΠRV
g is coverable.

Proof. Let s be the maximum diameter of a graph in S and let Υ =p-S-
Covering. Let (G, k) be a YES-instance of ΥRV

g and let S be a vertex set of
size at most k such that each subgraph of G that is isomorphic to some graph
in S intersects S. Consider an embedding of G in some surface of Euler genus at
most g. As G ∈ R(S), every vertex in G is within distance at most s from S.
Therefore, Bs

G(S) = V (G). By Observation 3, R2s
G (S) ⊇ Bs

G(S) and thus ΥRV
g has

the r-coverability property for r = 2s.
Assume now that Ψ =p-S-Packing. To prove the coverability of ΨRV

g , we will

prove that Ψ̄RV
g = ((Σ∗ × Z+) \ ΨRV

g ) e Gg has the r-coverability property. Let c
be the maximum number of vertices in a graph of S. We claim that if (G, k) is a
NO-instance for ΨRV

g , where G ∈ Gg, then (G, ck) is a YES-instance of ΥRV
g . Indeed,

as (G, k) is a NO-instance, G does not contain k vertex disjoint subgraphs from S.
A set S of vertices of size ≤ k · c “hitting” all subgraphs of G isomorphic to graphs
in S can be constructed by the following greedy procedure:

Initialize S = ∅ and, as long as G contains a subgraph that is isomorphic
to some graph in S, add all its vertices to S and remove them from G.

Notice that the above procedure cannot be applied more than k−1 times, otherwise
the removed graphs would constitute a vertex packing of graphs of S in G. When
the procedure cannot be applied anymore, the set S intersects every subgraph of G
that is isomorphic to some graph from S and |S| ≤ c · (k−1). Therefore (G, ck) is a
YES-instance of ΥRV

g , which is already shown to be coverable. Now the coverability

of ΨRV
g follows from Lemma 8.1.

Using a modification of the proof of Lemma 8.4, it is possible to show thatp-S-
Covering has FII. The proof that p-S-Packing has FII follows the same steps as
in the proof of Lemma 8.6. The only difference in all cases is that we work with
subgraphs instead of minors.

8.5 Domination and its variants

Given two integers r, q ∈ Z+, a graph G, and a set S ⊆ V (G), we say that S is
a (q, r)-dominating set of G if for every vertex x in V (G) \ S, there are at least
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q vertices in S within distance at most r from x. We define a series of problems
related to domination. In all of them the input is a graph G and a parameter
k ∈ Z+. We mention below the variants and the questions corresponding to each of
them.

—p-r-Dominating Set: Is there a (1, r)-dominating set S of size at most k in G?
For r = 1 the problem is known as p-Dominating Set.

—p-q-Threshold Dominating Set: Is there a (q, 1)-dominating set S of size at
most k in G?

—p-Efficient Dominating Set: Is there a (1, 1)-dominating set S of size at
most k in G such that G[S] is edgeless (i.e. S is an independent set) and each
vertex from V (G) \S is adjacent to exactly one vertex in S. This problem is also
known as p-Perfect Code.

—p-Connected Dominating Set: Is there a (1, 1)-dominating set S of size at
most k in G such that G[S] is connected?

Lemma 8.9. If Π is one of the following problems: p-r-Dominating Set, p-
q-Threshold Dominating Set, p-Efficient Dominating Set, then for every
g ∈ Z+, Πg is coverable and has FII.

Proof. For all these problems, Πg is 2r-coverable by definition because if S is a
(q, r)-dominating set of G and G is embeddable in some surface of Euler genus at
most g then, by Observation 3, Br

G(S) ⊆ R2r
G (G).

By Lemma 8.2, it is enough to prove that each of the problems has FII. We start
from p-r-Dominating Set. Since p-r-Dominating Set is a p-min-CMSO[ψ]
problem, by Lemma 7.3, it is enough to prove that it is strongly monotone. For a
boundaried graph G with label set I and boundary δ(G) = B, let S′′ ⊆ V (G) be
a minimum sized r-dominating set of G. We put W = S′′ ∪ B. For a boundaried
structure (G′, S′) ∈ UI , let S∗ ⊆ V (G) be a set of minimum size such that S∗ ∪ S′
is an r-dominating set of G ⊕ G′. Thus ζG(G′, S′) = |S∗|. Observe that S∗ ∪ B is
an r-dominating set of G, hence |S′′| ≤ |S∗| + |B|. Therefore, |W | = |S′′ ∪ B| ≤
|S′′| + |B| ≤ |S∗| + 2|I| = ζG(G′, S′) + 2|I|. Also observe that W ∪ B is an r-
dominating set of G′, and thus W ∪ S′ is an r-dominating set of G ⊕ G′. This
implies that (G⊕G′, S ∪S′) ∈ Π and the strong monotonicity of p-r-Dominating
Set follows.

The proof that p-q-Threshold Dominating Set is strongly monotone is based
on the same observations as the proof for p-r-Dominating Set and thus omitted.
To prove that p-Efficient Dominating Set has FII, we use the fact that

p-Efficient Dominating Set = p-1-Dominating Set e Geds,

where Geds is the class of all graphs that have an efficient dominating set. The
equality follows from a theorem of [Bange et al. 1988], asserting that if a graph G
has an efficient dominating set, then the size of the minimum efficient dominating
set is equal to the size of the minimum dominating set of G. As Geds is CMSO-
definable, p-Efficient Dominating Set has FII by Lemma 7.4.

In the remaining part of this subsection, we prove that when Π is p-Connected
Dominating Set, then Πg is coverable and has FII. For this we first need some
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auxiliary definitions and results on connected domination. Given a graph G and a
set V (G) we say that a dominating set S is a component-wise connected dominating
set of G if for every connected component C of G, C[S ∩ V (C)] is connected. In
particular, if G is connected, then every component-wise dominating set of G is
also a connected dominating set of G.

We need the following proposition attributed to [Duchet and Meyniel 1982]

Proposition 8.10. Let G be a connected graph and let Q be a dominating set
of G such that G[Q] has at most ρ connected components. Then there exists a set
Z ⊆ V (G) of size at most 2 · (ρ− 1) such that Q∪Z is a connected dominating set
in G.

Lemma 8.11. Let G be a graph and let B be a subset of G. Let also R be a
component-wise connected dominating set of G. Then there exists a set S ⊇ R ∪B
that is also a component-wise connected dominating set of G and has at most |R|+
3|B| vertices.

Proof. Let C be the set of connected components of G. For C ∈ C, let BC =
V (C) ∩B and RC = R ∩ V (C). Observe that C[BC ∪RC ] cannot have more than
1+ |BC | connected components. By Proposition 8.10, there exists a set ZC ⊆ V (C)
such that ZC∪RC∪BC induces a connected subgraph of C such that |ZC | ≤ 2|BC |.
This means that |BC ∪RC ∪ZC | ≤ |RC |+ 3|BC |. Moreover, as RC is a dominating
set of C, the same holds for its superset BC ∪ RC ∪ ZC . Therefore, the set S =⋃
C∈C BC∪RC∪ZC is a component-wise dominating set of G that containing B∪R.

It is now easy to check that |S| ≤ |R|+ 3|B|.

Lemma 8.12. Let G and G′ be boundaried graphs with label set I and boundary
δ(G) = B. Let also S∗ ⊆ V (G) and S′ ⊆ V (G′) such that S∗ ∪ S′ is a component-
wise connected dominating set of G⊕G′. Then G contains a component-wise con-
nected dominating set S+ of size at most 3|B|+ |S∗|.

Proof. We first prove the lemma under the assumption that H = G ⊕ G′ is a
connected graph. Let us remark that G is not necessarily connected. Notice that
Q = S∗ ∪B is a dominating set of G. Let C1, . . . , Cµ be the connected components

of G and, for each i ∈ {1, . . . , µ}, let Q1
i , . . . , Q

δi
i be the vertex sets of the connected

components of Ci[V (Ci)∩Q]. We claim that
∑

1≤i≤µ δi ≤ |B|+1. Indeed, if S∗∪S′
does not intersect B, then since H[S∗ ∪ S′] is connected we have that G[S∗ ∪ S′]
is connected and in this case Q may have at most |B| + 1 connected components,
therefore

∑
1≤i≤µ δi ≤ |B| + 1. In case S∗ ∪ S intersects B, then each connected

component of Q should contain at least one vertex of B, and, again, we have∑
1≤i≤µ δi ≤ |B| < |B|+ 1.

We now apply Proposition 8.10 for the sets Q1
i , . . . , Q

δi
i of the graph Ci, for each

i ∈ {1, . . . , µ}. That way we find, for every i ∈ {1, . . . , µ}, a collection of sets
Z1, . . . , Zµ, where Zi is a connected dominating set of Ci. This means that S+ =⋃

1≤i≤µ Zi is a component-wise connected dominating set of G. By Proposition 8.10,

62



|Zi| ≤ 2(δi − 1) + |V (Ci) ∩Q|. We now have that:

|S+| =

µ∑
i=1

|Zi|

≤
µ∑
i=1

2(δi − 1) +

µ∑
i=1

|V (Ci) ∩Q|

≤ 2|B|+ |Q| = 3|B|+ |S∗|

as required.
If G ⊕ G′ is not a connected graph, then the required component-wise con-

nected dominating set is the union of the component-wise connected dominating
sets obtained if we apply the above proof for each of the connected components of
G⊕G′.

We also need the following lemma. The proof is based on the definition of con-
nected dominating set and is omitted.

Lemma 8.13. Let G and G′ be boundaried graphs with label set I and boundary
δ(G) = B such that C = G⊕G′ is connected. Let also S∗ ⊆ V (G) and S′ ⊆ V (G′)
be such that S∗ ∪ S′ is a connected dominating set of C. Let S ⊆ V (G) be a
component-wise dominating set of G such that B ⊆ S. Then S ∪ S′ is a connected
dominating set of G⊕G′.

Lemma 8.14. If Π =p-Connected Dominating Set, then for every g ∈ Z+,
Πg is coverable and has FII.

Proof. The coverability of Πg is trivial. To show that p-Connected Domi-
nating Set has FII, we define the following auxiliary problem:

Π′ = {(G, k) | G has a component-wise connected dominating set S }

Notice that p-Connected Dominating Set = Π′ e Gcon, where Gcon is the class
of all connected graphs. Let us remark that Gcon is CMSO-definable and Π′ is a
p-min-CMSO[ψ] problem.

Let G be a boundaried graph with label set I and boundary δ(G) = B. Let R
be a minimum size component-wise dominating set of G. By Lemma 8.11, G has
a component-wise connected dominating set W that contains the boundary of G
(B ⊆W ) as a subset and |W | ≤ |R|+ 3|I|.

For a boundaried structure (G′, S′) ∈ UI , let S∗ ⊆ V (G) be a set of minimum
size subset of G such that S∗ ∪S′ is a component-wise connected dominating set of
G ⊕ G′. Thus ζG(G′, S′) = |S∗|. From Lemma 8.12, G contains a component-wise
connected dominating set S+ of size at most |S∗|+ 3|I|. By the definition of R, we
have that |R| ≤ |S+| ≤ |S∗|+ 3|I| = ζG(G′, S′) + 3|I|, therefore |S| ≤ |R|+ 3|I| ≤
ζG(G′, S′) + 6|I|.

In order to prove that (G ⊕ G′,W ∪ S′) ∈ Π′, we have to show that W ∪ S′
is component-wise connected dominating set of G ⊕ G′. Let C be the set of the
connected components of G ⊕ G′, and for every C ∈ C, we set GC = G[V (C)],
G′C = G′[V (C)], S∗C = S∗ ∩ V (C), WC = W ∩ V (C), S′C = S′ ∩ V (C), and BC =
B∩V (C). Notice that C = GC⊕G′C . As S∗∪S′ is a component-wise dominating set
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of G⊕G′, we have that the set S∗C∪S′C is a connected dominating set of C. Moreover,
the fact that S is a component-wise dominating set of G, implies that WC is also a
component-wise dominating set of GC . Recall that the boundary of G is contained
in W, therefore B ⊆ W and this implies that BC ⊆ WC . From Lemma 8.13,
WC ∪ S′C is a connected dominating set of C. Therefore, W ∪ S′ =

⋃
C∈CWC ∪ S′C

is a component-wise connected dominating set of G⊕G′ as required.

Using ideas similar to those in the proof of Lemma 8.9, it is possible to prove
that other problems such as p-Connected Vertex Cover, p-Edge Dominating
Set, or p- Cycle Domination have FII.

8.6 Scattered sets

Given an r ∈ Z+, a graph G, and a set S ⊆ V (G), we say that S is an r-independent
set if every two vertices in S have distance greater than r.

We consider the following problem:

p-r-Scattered Set
Input: A graph G and a k ∈ Z+.
Parameter: k.
Question: Is there an r-independent set in G of size at least k?

Lemma 8.15. For every positive integer r, and every g ∈ Z+, if Πr = r-Scatte-
red Set, then Πr

g is coverable.

Proof. To prove the coverability of Πr
g, we will prove that Ψg = ((Σ∗ × Z+) \

Πr
g) e Gg has the r-coverability property for some constant c that depends on g

and r. Let (G, k) be a NO-instance of Πr
g. This means that G does not contain any

r-independent set of size k. According to the result in [Dvorak 2013], G has an
r-dominating set of size c · k where c is a constant depending on the Euler genus
of G (actually, the result of [Dvorak 2013] holds for much more general classes
of sparse graphs that include graphs of bounded Euler genus). Recall that, from
Observation 3, given an embedding ofG in a surface of Euler genus≤ g, we have that
R2r
G ⊆ Br

G(S), therefore Ψg has the c-coverability property for c = max{r, g}.

We present in details the proof of the following lemma as it is based on slightly
different ideas than the one used in Lemma 8.6.

Lemma 8.16. For every positive integer r, if Πr = p-r-Scattered Set, then
Πg has FII.

Proof. Using Lemma 8.2, we prove instead that Πr has FII. Below we prove
this fact by adapting the three-stage machinery of the proof of Lemma 8.6.

Characteristic. Let G be a boundaried graph with label set I and the boundary
δ(G) = B. Furthermore, let `G : I × I → {0, . . . , r} be a function that for i, j ∈ I
defines

`G(i, j) = min
{

distG

(
λ−1(i), λ−1(j)

)
, r
}
.

That is, the shortest distance in G between λ−1(i) and λ−1(j) if it is at most r
and if it is more than r then `G(i, j) is r itself. Let also S be the set containing
all functions mapping the integers of I to integers in {0, . . . , r} ∪ {∞}. Given a
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σ ∈ S, we define ζG(σ) as the maximum size of an r-independent set S in G with
the property that for every i ∈ I, the distance in G between λ−1(i) and every
vertex in S is at least σ(i). As the empty set is always such a set, it holds that
∀σ∈S ζG(σ) ≥ 0.

Definition of equivalence. Let σ(0) ∈ S such that ∀i∈λ(B) σ
(0)(i) = 0. We also set

xG = ζG(σ(0)). We have that ∀σ∈S ζG(σ) ≤ xG. We define a function χG : S →
{−∞} ∪ {−2t, . . . , 0} as follows:

χG(σ)=

{
ζG(σ)− xG if xG − 2t ≤ ζG(σ) ≤ xG
−∞ otherwise

Given two boundaried graphs G1 and G2, we say that G1 ∼ G2 if Λ(G1) = Λ(G2),
`G1 = `G2 and χG1 = χG2 . Notice that for every finite I ⊆ Z+, ∼ is an equivalence
relation with finitely many equivalence classes.

Refinement proof. The result will follow if we prove that ≡Πr is a refinement of ∼ .
For this we claim that if G1 ∼ G2 then G1 ≡Πr G2 or, equivalently, that there is
some constant c, depending on G1 and G2, such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ Πr ⇔ (G2 ⊕ F, k + c) ∈ Πr. (52)

Suppose that G1 ∼ G2. This implies that Λ(G1) = Λ(G2). Let Λ(G1) = Λ(G2) = I
and |I| = t. Let (F, k) ∈ F × Z such that (G1 ⊕ F, k) ∈ Πr. Our target is to prove
that (G2 ⊕ F, k + c) ∈ Πr (the other direction of (52) is symmetric).

The fact that (G1 ⊕ F, k) ∈ Πr means that (G1 ⊕ F ) contains an r-independent
set S where |S| ≥ k. Let B be the boundary of G1, that is, δ(G1) = B and let
S1 = S ∩V (G1) and SF = S \S1. Let also λ1 and λ2 be the labelings of boundaries
of G1 and G2, respectively. We define σ as follows: for i ∈ I set σ(i) to be the
minimum distance of a vertex of S1 from λ−1

1 (i) in G1. By the definition of ζG1
, we

have that ζG1(σ) ≥ |S1|. Before we proceed, we need to prove the following claim:

Claim: |S1| ≥ xG1
−2t. Let S′1 be an r-independent set of G1 such that |S′1| = xG1

.
Mark in S′1 all vertices that are within distance at most b r2c from B and denote by
S∗1 the set of the non-marked vertices of S′1. Notice that S∗1 is an r-independent set
of G1. The proof of the claim is a consequence of the following two subclaims:

Subclaim 1: |S∗1 | ≥ xG1
− t. For this it is enough to prove that no more than |B|

vertices can be marked from S′1. Indeed if this is not the case, then there should
exist two vertices x and y in S′1 that are within distance at most b r2c from some
vertex z of B. Then the distance between x and y should be less than 2 · b r2c ≤ r,
a contradiction to the fact that S′1 is an r-independent set of G1.

Subclaim 2: |S1| ≥ |S∗1 | − t. For this, we mark in S the vertices of G1 ⊕ F that
are within distance at most b r2c from some vertex of B. As above, the marked
vertices cannot be more than |B|. Let S− be the set obtained from S after removing
the marked vertices. Notice that |S−| ≥ |S| − t, therefore |S− ∩ V (G1)| + |S− \
V (G1)| ≥ |S| − t. Notice that S− ∩ V (G1) is an r-independent set of G1, therefore
|S−∩V (G1)| ≤ xG. Notice that S∗1∪(S−\V (G1)) is an r-independent set of G1⊕F.
Indeed if there are two vertices x ∈ S∗1 and y ∈ S− \ V (G1) within distance r, then
either x or y would be within distance b r2c from some vertex in B, a contradiction.
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We obtain that |S∗1 | + |S− \ V (G1)| = |S∗1 ∪ (S− \ V (G1))| ≤ |S| ≤ |S−| + t =
|S− ∩ V (G1)|+ |S− \ V (G1)|+ t and therefore, |S∗1 | ≤ |S− ∩ V (G1)|+ t ≤ |S1|+ t.

We just proved that ζG1(σ) ≥ |S1| ≥ xG1−2t. This means that χG(σ) > −∞. As
G1 ∼ G2, we have that `G1

= `G2
and χG1

(σ) = χG2
(σ). By the definition of χG, we

obtain that ζG2
(σ) = ζG1

(σ)− ζG1
(σ(0)) + ζG2

(σ(0)) = ζG1
(σ) + c ≥ |SG1

|+ c where
c is a constant depending only on G1 and G2. This implies that, there exists an r-
independent set SG2 in G2 with least |SG1 |+ c vertices and for every i ∈ λ2(B), the
distance in G2 between λ−1

2 (i) and the vertices in S2 is at least σ(i). The facts that
`G1

= `G2
and χG1

(σ) = χG2
(σ) together imply that SG2

∪ SF is an r-independent
set of G2⊕F of size |SG2

∪SF | = |SG2
|+ |SF | ≥ |SG1

|+ |SF |+c ≥ |S1|+ |SF |+c ≥
k + c. We conclude that (G2, k + c) ∈ Πr, as required.

8.7 Problems on Directed Graphs

Our results also apply to problems on directed graphs whose underlying undirected
graph is of bounded genus. In this direction we mention three problems considered
in the literature. In all cases the input is a directed graph D = (V,A) where V is
the set of its vertices and A is the set of its directed edges (i.e., A ⊆ V × V ).

—p-Directed Domination [Alber et al. 2006]: Is there a subset S ⊆ V of size
at most k such that for very vertex u ∈ V \ S there is a vertex v ∈ S such that
(u, v) ∈ A? Such a set S is called a directed dominating set of D.

—p-Independent Directed Domination2 [Gutin et al. 2005]: Is there a subset
S ⊆ V of size at most k such that S is an independent set and for every vertex
u ∈ V \ S there is a vertex v ∈ S such that (u, v) ∈ A?

—p-Maximum Internal Out-branching [Gutin et al. 2009]: Does D contain a
directed rooted spanning tree, an out-branching, with at least k internal vertices?

In order to formally state our results, we extend the notion of coverability to
directed graphs by applying the definitions to their underlying undirected graphs.

Lemma 8.17. The following statements hold:

—Let Π be either p-Independent Directed Domination, or p-Maximum In-
ternal Out-branching. Then Πg is a coverable p-min-CMSO[ψ] problem.

—Let Π be p-Directed Domination. Then Πg is a coverable problem and has
FII.

Proof. Problems p-Independent Directed Domination and p-Directed
Domination can easily be seen to be p-min-CMSO[ψ] problems while p-Maximum
Internal Out-branching can be proved to be a p-max-CMSO[ψ] problem. The
strong monotonicity of p-Directed Domination can be proved using the same
arguments as in the proof of Lemma 8.9. This, together with Lemmata 7.3 and 8.2,
implies that for Π=p-Directed Domination, Πg has FII.
p-Independent Directed Domination and p-Directed Domination are

coverable by definition. Let Π=p-Maximum Internal Out-branching. We

2In literature it is known as “p-Kernels”. We call it differently here to avoid confusion with

problem kernels.
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claim that if (D, k) 6∈ Π, then the underlying undirected graph of D has a domi-
nating set of size at most k−1. For this let k0 = max{k′ | (D, k′) ∈ Π} and observe
that k0 < k. Moreover, it also holds that (D, k0) ∈ Π while (D, k0 + 1) 6∈ Π. These
two facts together imply that D has a rooted directed spanning tree with exactly
k0 internal vertices and all other vertices of D being its leaves. These internal ver-
tices form a dominating set for the underlying undirected graph of D. As k0 < k,
the underlying undirected graph of D has a dominating set of size at most k − 1.
Then the coverability of Πg follows from the coverability of p-Dominating Set
and Lemma 8.1.

8.8 A direct proof of FII for a minimization problem

Although Lemma 7.3 is very useful for showing that a concrete problem has FII,
sometimes a minimization problem may have FII even though it may not be strongly
monotone. For an example, consider the following problem. Let s ≥ 3 be an integer.

s-Cycle Transversal
Input: A graph G and a k ∈ Z+.
Parameter: k
Question: Is there an edge subset S ⊆ E(G) such that G′ = G \ S does not
contain

any cycle of length at most s (i.e. G′ has girth more than s)?

Notice that for each integer s ≥ 3, the above problem is the edge deletion coun-
terpart of Edge-S-Covering when S contains the cycles of size at least 3 and at
most s.

Lemma 8.18. If Πs =s-Cycle Transversal, then Πs
g has FII.

Proof. Using Lemma 8.2, we prove instead that Πs has FII. We present the
proof in three stages, as we did in the cases of Lemmata 8.6 and 8.16.

Characteristic. Let G be a boundaried graph with label set I and the boundary
δ(G) = B. Let |I| = t. We use the term s-cycle for a cycle of length at most s. Let
X be the set of unordered pairs of distinct indices in I and H be the set containing
all functions from X to {0, . . . , s}. We define the function ζG : H → Z+ such that,
given a function f ∈ H, ζG(f) is the size of a minimum set of edges S in G such
that the following hold:

—the graph G \ S has girth > s, and

—for every {i, j} ∈ I, the distance in G′ = G \ S between λ−1(i) and λ−1(j) is at
least f(i, j) + 1. That is, distG′(λ−1(i), λ−1(j)) ≥ f(i, j) + 1.

In case a set satisfying the above conditions does not exist, we set ζG(f) =∞.

Definition of equivalence. We denote by fmin the function in H where, for all
{i, j} ∈ X, fmin({i, j}) = 0. Notice that ζG(fmin) < ∞ (just take S = E(G)). We
set xG = ζG(fmin). The definition of ζG implies that

∀f ∈ H xG ≤ ζG(f) (53)
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We now define the signature of G as the function χG : H → {0, . . . , 3
(
t
2

)
} ∪ {∞},

where

χG(f)=

{
ζG(f)− xG if xG ≤ ζG(f) ≤ xG + 3

(
t
2

)
∞ otherwise

(54)

We say that G1 ∼ G2 if Λ(G1) = Λ(G2) and χG1 = χG2 . Notice that the number
of different signatures is bounded by some function of t and s. Clearly, for every
I ⊆ Z+, ∼ is an equivalent relation with finitely many equivalence classes.

Refinement proof. The result will follow if we prove that ∼ is a refinement of ≡Π .
For this we claim that if G1 ∼ G2 then G1 ≡Π G2 or, equivalently, that there is
some constant c, depending on G1 and G2, such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ Π⇔ (G2 ⊕ F, k + c) ∈ Π. (55)

Suppose that G1 ∼ G2. Let (F, k) ∈ F ×Z such that (G1⊕F, k) ∈ Π. Our target
is to prove that (G2 ⊕ F, k + c) ∈ Π (the other direction of (55) is symmetric and
is omitted).

The fact that (G1 ⊕ F, k) ∈ Π, means that there is a set S ⊆ E(G1 ⊕ F ) of
edges such that all cycles in (G1 ⊕ F ) \ S have length > s. Recall that λG is
an injective labelling from the boundary of the graph to I. We denote by λ1, λ2

and λF the labelings of the boundaried graphs G1, G2, and F respectively. Let
B = λ−1

1 (Λ(G1) ∩ Λ(F )) and B′ = λ−1
2 (Λ(G2) ∩ Λ(F )). Since G1, G2 and F

are boundaried graphs with label set I we have that |B|, |B′| = |I| = t. Let also
SG1

= E(G1)∩S and SF = E(F )∩S. The set C of s-cycles in G1∪F is partitioned
into three sets:

—C1 are the cycles in C that are entirely inside G1,

—CF are the cycles in C that are entirely inside F, and

—CB are the cycles in C that contain both edges that are not in G1 and edges that
are not in F, i.e., CB = C \ (CG1

∪ CF ).

Observe that SF intersects all s-cycles in CF and the set SG1 intersects all s-cycles in
C1. Observe that SG1

∩SF contains only edges with both endpoints in B, therefore
|SG1

∩ SF | ≤
(
t
2

)
. This implies that

|SG1 |+ |SF | −
(
t

2

)
≤ |S|. (56)

Recall that xG1
= ζG1

(fmin). We prove the following claim. Let xG1
denote the

cardinality of a minimum sized subset of E(G1) intersecting all s-cycles in G1.

Claim: |SG1
| ≤ xG1

+ 3
(
t
2

)
.

Proof of Claim: Let S∗G1
be a minimum size subset of E(G1) intersecting all s-cycles

in G1. By definition, |S∗G1
| = xG1

. Notice that the set S∗G1
∪ SF meets all cycles in

C1 ∪ CF . Let C•B be the cycles of CB that are not met by S∗G1
∪ SF .

Our first aim is to find a set SB of at most 2
(
t
2

)
edges that interest all cycles of

C•B . Observe that each cycle in C•B meets at least two vertices in B. Let W be the
set of pairs in X that are met by the cycles in C•B . For each pair p = {x, y}, we
denote by Qleft

p (resp, Qright
p ) the set of all (x, y)-paths in G1 that belong to cycles
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in C•B . We claim that for each p = {x, y} where x, y ∈ B, at most one of the (x, y)-
paths in Qleft

p can have length at most s/2. Suppose in contrary that P1, P2 are two
(x, y)-paths of G1 of length ≤ s/2. The union of P1 and P2 contains a cycle Cx,y
that is entirely in G1. By the definition of C•B , we have that Cx,y does not contain
any edge e from S∗G1

. This contradicts the fact that S∗G1
intersects all s-cycles in

G1. Therefore, for each p = {x, y} where x, y ∈ B, at most one, say Qright
p , of the

(x, y)-paths in Qright
p can have length at most s/2. Using the same arguments on

F, instead of G1, it follows that for each p = {x, y} where x, y ∈ B, at most one,
say Qleft

p , of the (x, y)-paths in Qleft
p can have length at most s/2.

We now construct the set SB by adding to it, for each pair p ∈ X, one edge
from the Qright

p and one edge from Qleft
p . As there are at most

(
t
2

)
pairs in X, we

obtain that |SB | ≤ 2
(
t
2

)
. We next prove that SB meets all cycles in C•B . For this, let

C be a cycle in C•B . Clearly, there are at least two internally vertex-disjoint paths
contained in C (these two paths may not contain all the vertices on C) that are
entirely inside G1 or F and have their endpoints in B. Since C is an s-cycle, we
have that at least one, say Q, of these paths should have length ≤ s/2. Let x and y
be the endpoints of Q and p = {x, y}. Clearly, Q belongs in one of Qleft

p or Qright
p .

W.l.o.g., suppose that Q belongs in Qleft
p . As Q has length at most s/2, then Q is

the unique path in Qleft
p that has such a length. By its construction, SB intersects

Q and, as Q is a path of C, SB intersects C as well.
We just proved that SB intersects all s-cycles in C′B and contains at most 2

(
t
2

)
edges. This implies that S∗G1

∪ SB ∪ SF is intersecting all s-cycles in C. By the
definition of S, we have that |S| ≤ |S∗G1

∪SB ∪SF | ≤ |S∗G1
|+ |SB |+ |SF |. Therefore,

|SG1
|+ |SF | −

(
t
2

)
≤(56) |S| ≤ |S∗G1

|+ |SB |+ |SF | ≤ xG1
+ 2
(
t
2

)
+ |SF |. We conclude

that |SG1
| ≤ xG1

+ 2
(
t
2

)
+
(
t
2

)
and the claim follows. 2

For every pair {i, j} ∈ X, let s(i, j) be equal to s minus the distance between
λ−1
F (i) and λ−1

F (j) in F. We define the function f ∈ F as follows. For every pair
{i, j} ∈ X, if {λ−1

1 (i), λ−1
1 (j)} is an edge of SG1 ∩ SF then define

f(i, j) = max{1, s(i, j), }

else define f(i, j) = s(i, j). The choice of f and the definition of ζG1 , imply that

ζG1(f) ≤ |SG1 |. (57)

From (53) we have that xG1 ≤ ζG1(f). Moreover, from (57) and the above claim,
we obtain ζG1

(f) ≤ xG1
+ 3
(
t
2

)
. By (54), χG1

(f) = ζG1
(f)− xG1

. Recall now that
G1 ∼ G2, hence χG2

(f) = χG2
(f). This means that ζG2

(f) = ζG1
(f) + c, where

c = xG2
− xG1

, and clearly c depends only on G1 and G2.
Let SG2 be a subset of E(G2) such that ζG2(f) = |SG2 |. By the definition of ζG2 ,

SG2 has the following properties:

(A) the graph G2 \ SG2
has girth > s, and

(B) for every {i, j} ∈ X, the distance in G2 \ SG2
between λ−1

2 (i) and λ−1
2 (j) is at

least f(i, j) + 1.

By the definition of f, and Properties (A) and (B), all s-cycles in G2⊕F that are not
entirely in F are intersected by SG2

. Hence, S′ = SG2
∪ SF intersects all cycles in
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G2⊕F. Moreover, by the definition of f we obtain that SG1
∩SF ⊆ SG2

. This implies
that S′ = SG2

∪SF = SG2
∪(SG1

∩SF )∪(SF \(SG1
∩SF )) = SG2

∪(SF \(SG1
∩SF )).

We now have that |S′| ≤ |SG2
|+ |SF \ (SG1

∩SF )| = ζG2
(f)+ |SF \ (SG1

∩SF )| =
ζG1(f) + c+ |SF \ (SG1 ∩SF )| ≤(57) |SG1 |+ |SF \ (SG1 ∩SF )|+ c = |SG1 ∪SF |+ c =
|S|+ c ≤ k + c. Therefore (G2 ⊕ F, k + c) ∈ Π and the lemma follows.

8.9 Summary of consequences of our results

In this section, we discuss some of the consequences of our main meta-algorithmic
results, namely Theorem 1.3 and Theorem 1.1.

We start with the consequences of Theorem 1.3 to minimization problems that
have FII.

Corollary 8.19. If g ∈ Z+ and if Π is one of the following problems: p-
Vertex Cover, p-Feedback Vertex Set, Almost Outperplanar, p-Diamond
Hitting Set, p-Almost-t-bounded treewidth, p-Almost-t-bounded path-
width, p-H-Deletion, p-Edge Dominating Set, p-Minimum-Vertex Feed-
back Edge Set, p-Dominating Set, p-r-Dominating Set, p-q-Threshold
Dominating Set, p-Efficient Dominating Set, p- Connected Dominat-
ing Set, p-Connected Vertex Cover, p-Cycle Domination, p-Directed
Domination, p-S-Covering, p-Minimum Partition Into Cliques, p-Edge
Clique Cover, and p-s-Cycle Transversal, then Πg admits a linear kernel.

Proof. The definitions of p-Vertex Cover, p-Feedback Vertex Set, p-
Almost Outerplanar, p-Diamond Hitting Set, p-Almost-t-bounded treewidth,
p-Almost-t-bounded pathwidth have been given in Subsection 8.2 and all of
them are special cases of the p-H-Deletion problem. They all have FII because
of Lemma 8.4 and the quasi-coverability of Πg follows from Lemma 8.3. We remark
that not all of these problems are coverable.
p-Edge Dominating Set asks whether a graph G contains a set F of at most

k edges such that every other edge shares a common endpoint with some edge in
F . The coverability of Πg follows by the fact that the endpoints of the edges in F
form a dominating set of G. Moreover, the p-Edge Dominating Set problem can
be easily expressed as a p-min-CMSO[ψ] problem (with edge quantification) and
the proof of its strong monotonicity is similar to the one of Lemma 8.9. Therefore
it has FII as well. Using similar arguments one can prove that if Π=Minimum-
Vertex Feedback Edge Set – given an undirected graph G and a positive
integer k the task is to find a spanning tree T of G in which at most k vertices
have a degree smaller than in G, then Πg is quasi-coverable (however, it is not
coverable). Moreover, Minimum-Vertex Feedback Edge Set has FII because
it can be expressed as a p-min-CMSO[ψ] problem and can be proved to be strongly
monotone with a proof that uses the ideas of Lemma 8.9.
p-Dominating Set, p-r-Dominating Set, p-q-Threshold Dominating Set,

p-Efficient Dominating Set, are defined in Subsection 8.5. All these problems
are coverable and have FII because of Lemma 8.9. Notice that for the first three
problems the FII property follows by expressing them as p-min-CMSO[ψ] problems
and proving that are are strongly monotone. However, p-Efficient Dominating
Set is not strongly monotone and the proof that it has FII uses a different idea.
p-Connected Dominating Set is also defined in Subsection 8.5. The cover-
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ability of Πg and the FII property is proved in Lemma 8.14. Using similar ideas,
the same results can be proved also for Connected Vertex Cover.

The Cycle Domination problem asks whether a graph G contains a set S of
at most k vertices such that the removal of S together with its neighbours from
G results in an acyclic graph. This problem can be seen as a common extension
of p-Feedback Vertex Set and p-Dominating Set. Πg can be proven to be
quasi-coverable with arguments similar to those in the case of p-Feedback Ver-
tex Set (p-Cycle Domination is not a coverable problem). The problem is
easily expressible as a p-min-CMSO[ψ] problem and the proof that it is strongly
monotone is a blend of the ideas of the proofs of Lemmata 8.4 and 8.9.
p-Directed Domination is defined in Subsection 8.7. The coverability and the

FII property of Πg are proved in Lemma 8.17.
p-S-Covering has been defined in Subsection 8.4. The existence of a linear

kernel for this problem makes use of the Redundant Vertex Rule (Lemma 8.7),
Lemma 8.8 (for coverability) and the ideas in the proof of Lemma 8.4 (for the
FII property).

The p-Minimum Partition Into Cliques problem asks whether the vertex set
of a graph G scan be partitioned into at most k sets each inducing a clique in G
(in other words, we are asking for a k-coloring of the complement of G). Let S be
a set containing a vertex from each clique. Notice that S is a dominating set of
G. Therefore, Πg is a coverable problem. To prove that it also has FII, one needs
to express it as a p-min-CMSO[ψ] problem and then to use arguments similar to
those of Lemma 8.9 in order to prove that it is strongly monotone.

The p-Edge Clique Cover asks whether a graph G contains a collection of at
most k cliques such that for every edge of G, both its endpoints belongs to some of
those cliques. We observe first that Πg is quasi-coverable. To see this, just notice
that if we consider a set with one vertex from each such clique, then the removal
of the closed neighbourhood of this set from G results to an edgeless graph. The
proof that the problem has FII is omitted in this paper.

Finally, p-s-Cycle Transversal has been defined in Section 8.8. While this
problem is not strongly monotone, it has FII because of Lemma 8.18. To prove
that it has a linear kernel, one needs first to apply to its instances the following
preprocessing routine: remove each vertex that does not appear in some cycle of G
of length ≤ s. This routine can be seen as a special case of the Redundant Vertex
Rule presented in Subsection 8.4 and, with a proof similar to the one of Lemma 8.7,
one can show that it produces equivalent instances. Under these circumstances, the
coverability of Πg can be proved following the arguments of Lemma 8.8.

We continue with the consequences of Theorem 1.3 to maximization problems
that have FII.

Corollary 8.20. If g ∈ Z+ and if Π is one of the following problems: p-
r-Scattered Set, p-Independent Set, p-Induced Matching, p-Triangle
Edge Packing, p-Maximum Internal Spanning Tree, p-Maximum Full-
Degree Spanning Tree, p-Cycle Packing, p-H-Packing, p-Triangle Ver-
tex Packing, p-S-Packing, and p-Edge Cycle Packing, then Πg admits a
linear kernel.
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Proof. The p-r-Scattered Set problem has been defined in Subsection 8.6.
The coverability of Πr

g is proved in Lemma 8.15, while the problem has FII because
of Lemma 8.16. We stress that the p-r-Scattered Set problem is, in general, not
a strongly monotone problem. The p-Independent Set problem asks whether
a graph G contains a set of at least k mutually non-adjacent vertices. If Π=p-
Independent Set, then Πg is coverable using an argument that is very similar to
the one of Lemma 8.15. Similarly, one may use the arguments of Lemma 8.16 to
prove that the problem has FII. Alternatively, one may express p-Independent
Set as a p-max-CMSO[ψ] problem and then prove that it is strongly monotone.

The p-Induced Matching problem asks whether a graph G contains a set of
at least k edges such that no vertex in G has as neighbours endpoints of more than
one edges in this set. The problem is quasi-coverable because every NO-instance
without isolated vertices has a (1, 3)-dominating of size at most k. Moreover, the
FII property uses ideas of the proof of 8.16. We stress that p-Induced Matching
is not a strongly monotone problem.

The p-Triangle Edge Packing problem asks whether a graph G contains at
least k triangles such that no two of them have any edge in common. The existence
of a linear kernel for this problem makes use of the Redundant Vertex Rule and is
based in suitable adaptations of the proofs of Lemma 8.8 (for coverability) and
Lemma 8.4 (for the FII property).

The p-Maximum Internal Spanning Tree problem asks whether a graph
G has a spanning tree with at least k internal vertices. The coverability of Πg

follows by observing that a NO-instance has a connected dominating set of less
than k vertices. The problem is not strongly monotone and proving that it has FII
requires a direct proof that we omit in this paper.

The p-Maximum Full-Degree Spanning Tree problem asks whether a graph
G has a spanning tree T containing at least k vertices of full degree (a vertex v of
T has full degree if NT (v) = NG(v)). Clearly, a NO-instance of Πg cannot have a
2-independent set of size at least k, otherwise we grow can a spanning tree with
≥ k full-degree vertices by starting from the neighbourhoods of the vertices in
such a set. But then, using the arguments of the proof of Lemma 8.15, G has a
dominating set of size c · k where c is a constant that depends on the Euler genus
g of G. This implies the coverability of Πg. For the FII property we only mention
that the problem is not strongly monotone and a specialized proof is required that
is omitted in this paper.

The p-Cycle Packing, asks whether a graph contains at least k mutually vertex
disjoint cycles. This is a special case of the p-H-Packing problem whereH = {K3}.
For both problems, the quasi-coverability of Πg follows from Lemma 8.5. The FII
property of p-Cycle Packing follows from Lemma 8.6 and this proof can be
extended for the general case of the p-H-Packing problem, as mentioned in the
end of Subsection 8.3. Notice that both problems are neither strongly monotone
nor coverable.

The p-Triangle Vertex Packing problem asks whether a graph G contains a
set of at least k triangles where no two such triangles share some common vertex. p-
Triangle Vertex Packing is a special case of the p-S-Packing problem where
S = {K3}. The existence of a linear kernel for these problem makes use of the
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Redundant Vertex Rule (Lemma 8.7), Lemma 8.8 (for coverability) and the ideas in
the proof of Lemma 8.6 (for the FII property).
p-Edge Cycle Packing asks whether a graph G contains a collection of at least

k mutually edge-disjoint cycles. To prove the quasi-coverability of Πg observe that
a NO-instance, cannot contain a collection of k vertex disjoint cycles. But then, by
the application of Erdős-Pósa property on bounded genus graphs (see, e.g. [Fomin
et al. 2011; Kloks et al. 2002]) G contains a set of at most c · k vertices meeting all
the cycles of G, where c is a constant depending on the Euler genus g of G. The
proof that the problem has FII is omitted.

Corollaries 8.19 and 8.20 unify and generalize results presented in [Alber et al.
2006; Alber et al. 2004; Bodlaender and Penninkx 2008; Bodlaender et al. 2008;
Chen et al. 2007; Fomin and Thilikos 2004; Guo and Niedermeier 2007b; Guo et al.
2010; Kanj et al. 2011; Lokshtanov et al. 2011; Moser and Sikdar 2009; Xia and
Zhang 2011].

We conclude this subsection with some consequences of Theorem 1.1 for problems
that do not have FII.

Corollary 8.21. If g ∈ Z+ and if Π is one of the following problems: p-
Independent Dominating Set, p-Acyclic Dominating Set, p-Independent
Directed Domination, p-Maximum Internal Out-branching, p-Odd Set,
and p-Edge-S-Covering, then Πg admits a polynomial kernel.

Proof. The p-Independent Dominating Set problem asks whether a graph
G contains a dominating set of at most k mutually non-adjacent vertices. The p-
Acyclic Dominating Set problem asks whether a graph G contains a dominating
set S of at most k vertices such that G[S] is acyclic. While these problems do
not have FII, they can be both expressed as p-min-CMSO[ψ] problems and are
obviously coverable.

Problems p-Independent Directed Domination and p-Maximum Inter-
nal Out-branching have been defined in Subsection 8.7 and they do not have
FII. According to Lemma 8.17, in both cases, Πg is a coverable p-min-CMSO[ψ]
problem.

The p-Odd Set problem asks whether a graph G contains a set S of at most k
vertices such that for every vertex of G, the number of its neighbors in S is odd.
Clearly, such a set is a dominating set, therefore Πg is coverable. p-Odd Set does
not have FII. However, it can be expressed as a p-min-CMSO[ψ] problem (notice
that here we have to use the “counting” expressive power of CMSO).

Given some fixed finite collection of graphs S, the p-Edge-S-Covering problem
asks whether a graph G contains a set of at most k edges meeting every subgraph of
G that is isomorphic to a graph in S. For this problem, a linear kernel requires the
application of the Redundant Vertex Rule. The coverability of Πg follows similarly to
the proof of Lemma 8.8. Edge-S-Covering does not have, in general, FII (while
it has FII when if S contains only cliques). However, it is possible to formulate it
as a p-min-CMSO[ψ] problem.

Concluding this section, we mention that there are several problems that do not
satisfy the conditions of Theorems 1.3 and 1.1.
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Apart from the problems mentioned in Corollary 8.20, other examples of p-max-
CMSO problems that do not have FII are p-Maximum Cut, p-Longest Path,
and p-Longest Cycle, see [de Fluiter 1997]. Notice that p-Maximum Cut is
(trivially) quasi-coverable, while p-Longest Path and p-Longest Cycle are
not. In fact, p-Maximum Cut admits a trivial 2k kernel on general graphs while
p-Longest Path, and p-Longest Cycle do not admit polynomial kernels unless
coNP ⊆ NP/poly [Bodlaender et al. 2009].

As an example of a problem that has FII but it is neither coverable or quasi-
coverable, we mention p-Hamiltonian Path Completion (asking whether the
addition of at most k edges in a graph can make it Hamiltonian). This problem can
be expressed as a p-min-CMSO[ψ] and it is possible to prove that it is strongly
monotone. Therefore, it has FII. However, none of our results apply on this problem
as it is not quasi-coverable. In fact, p-Hamiltonian Path Completion cannot
have a kernel, unless P=NP, as such a kernelization algorithm, for k = 1, would be
a polynomial algorithm for the Hamiltotonian Path Problem.

9. OPEN PROBLEMS AND FURTHER DIRECTIONS

This paper gives the first meta-theorems on kernelization, where logical and com-
binatorial properties of problems lead to kernels of polynomial or linear sizes. Our
results are quite general in the sense that they can be applied to a large number of
combinatorial problems on graphs on fixed surfaces and generalize a large collec-
tion of known results. Still, there are several directions in which our results could
possibly be extended. We conclude with some new problems and further research
directions opened by our results.

Further extensions. The first natural question for further research is if our logical
and combinatorial properties can be extended to larger classes of problems. The
property that problems should satisfy some kind of coverability or quasi-coverability
cannot be omitted. For instance, even though the problem of finding a path of
length k is expressible in first order logic, it does not admit a polynomial kernel
on planar graphs, unless coNP ⊆ NP/poly [Bodlaender et al. 2009]. An interesting
question for further research is

—Do all quasi-coverable CMSO problems admit a linear kernel on graphs of bounded
genus?

This question is interesting even restricting ourselves to planar graphs.

It is very natural to ask whether our results can be extended to more general
classes of graphs. The most natural candidates for such extensions are graphs
of bounded local-treewidth [Frick and Grohe 2001] and graphs of bounded expan-
sion [Nešetřil and de Mendez 2008]. The first step in this direction is done in [Fomin
et al. 2010].

Practical considerations. Our meta-theorems provide simple criteria to decide
whether a problem admits a polynomial or linear kernel on graphs of bounded
genus. It is expected that for concrete problems, tailor-made kernels will have
much smaller constant factors, than what would follow from a direct application
of our results. However, our approach might be useful for computer aided design
of kernelization algorithms: a computer program can in some cases output a set
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of rules that transform each protrusion to a minimum size representative and es-
timate the obtained kernel size. This seems an interesting and far from trivial
algorithm-engineering problem. In general, finding linear kernels with reasonably
small constant factors for concrete problems on planar graphs or graphs with small
genus remains a worthy topic of further research.

Some concrete open problems. We conclude with some concrete problems that
cannot be resolved by our approach. These include p-Directed Feedback Ver-
tex Set [Chen et al. 2008] and p-Odd Cycle Transversal [Reed et al. 2004]
to name a few. All these problems are expressible in CMSO but none of them
are known to be quasi-coverable. For p-Directed Feedback Vertex Set no
polynomial kernel is known even on planar graphs. For p-Odd Cycle Transver-
sal a randomized kernel for general graphs was obtained recently in [Kratsch and
Wahlström 2014] but existence of a deterministic kernel even on planar graphs is
open.

Impact. The protrusion replacement technique for kernelization was introduced
in the preliminary conference version of this paper [Bodlaender et al. 2009] appears
to be useful in different algorithmic approaches. They were used to obtain kernels
for a wide set of bidimensional problems on H-minor-free graphs [Fomin et al. 2010;
2012], vertex removal problems on general and unit disc graphs [Fomin et al. 2011],
and problems on graphs excluding a fixed graph as a topological minor [Fomin
et al. 2013; Kim et al. 2016]. It was also used in the design of fast parameterized
algorithms and approximation algorithms [Fomin et al. 2011; Fomin et al. 2012;
Fomin et al. 2012; Joret et al. 2014; Kim et al. 2015; Kim et al. 2016]
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A. PROBLEM COMPENDIUM

In this compendium we present the kernelization status of all problems that have
been mentioned in this paper.

A.1 Minimization problems that have FII and are quasi-coverable – linear kernels for
graphs of bounded genus.

p-Vertex Cover, p-Feedback Vertex Set, p-Almost Outerplanar, p-
Diamond Hitting Set, p-Almost-t-bounded treewidth, p-Almost-t-bounded
pathwidth, p-H-Deletion, p-Edge Dominating Set, p-Minimum-Vertex
Feedback Edge Set, p-Dominating Set, p-r-Dominating Set, p-q-Threshold
Dominating Set, p-Efficient Dominating Set∗, p-Connected Dominating
Set, p-Connected Vertex Cover, p-Cycle Domination, p-Directed Domi-
nation, p-S-Covering, p-Minimum Partition Into Cliques, p-Edge Clique
Cover∗, and p-s-Cycle Transversal∗.

A.2 Maximization problems that have FII and are quasi-coverable – linear kernels for
graphs of bounded genus.

p-r-Scattered Set∗, p-Independent Set, p-Induced Matching∗, p-Triangle
Edge Packing+, p-Maximum Internal Spanning Tree∗, p-Maximum Full-
Degree Spanning Tree∗, p-Cycle Packing∗, p-H-Packing∗, p-Triangle
Vertex Packing+, p-S-Packing+, and p-Edge Cycle Packing∗,

For all problems with an asterisk “∗”, a direct proof that they have FII is required.
For the rest, FII property follow by expressing them as a p-min/max-CMSO prob-
lem and proving strong monotonicity. For the problems with a cross “+”, the linear
kernel assumes the application of some preprocessing routine.

A.3 Problems that do not have FII and are coverable p-min/max-CMSO – polyno-
mial kernels for graphs of bounded genus.

p-Independent Dominating Set, p-Acyclic Dominating Set, p-Independent
Directed Domination, p-Maximum Internal Out-branching, p-Odd Set,
and p-Edge-S-Covering.

A.4 A problem that has FII but is not quasi-coverable.

p-Hamiltonian Path Completion.

A.5 A quasi-coverable problem that has no FII.

p-Maximum Cut.

A.6 Problems that do not have FII and they are not quasi-coverable.

p-Longest Path and p-Longest Cycle.
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